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Background: Magnetic resonance imaging (MRI) images synthesized from computed tomography (CT) 
data can provide more detailed information on pathological structures than that of CT data alone; thus, the 
synthesis of MRI has received increased attention especially in medical scenarios where only CT images 
are available. A novel convolutional neural network (CNN) combined with a contextual loss function was 
proposed for synthesis of T1- and T2-weighted images (T1WI and T2WI) from CT data. 
Methods: A total of 5,053 and 5,081 slices of T1WI and T2WI, respectively were selected for the dataset 
of CT and MRI image pairs. Affine registration, image denoising, and contrast enhancement were done on 
the aforementioned multi-modality medical image dataset comprising T1WI, T2WI, and CT images of the 
brain. A deep CNN was then proposed by modifying the ResNet structure to constitute the encoder and 
decoder of U-Net, called double ResNet-U-Net (DRUNet). Three different loss functions were utilized to 
optimize the parameters of the proposed models: mean squared error (MSE) loss, binary crossentropy (BCE) 
loss, and contextual loss. Statistical analysis of the independent-sample t-test was conducted by comparing 
DRUNets with different loss functions and different network layers.
Results: DRUNet-101 with contextual loss yielded higher values of peak signal-to-noise ratio (PSNR), 
structural similarity index measure (SSIM), and Tenengrad function (i.e., 34.25±2.06, 0.97±0.03, and 
17.03±2.75 for T1WI and 33.50±1.08, 0.98±0.05, and 19.76±3.54 for T2WI respectively). The results were 
statistically significant at P<0.001 with a narrow confidence interval of difference, indicating the superiority 
of DRUNet-101 with contextual loss. In addition, both image zooming and difference maps presented for 
the final synthetic MR images visually reflected the robustness of DRUNet-101 with contextual loss. The 
visualization of convolution filters and feature maps showed that the proposed model can generate synthetic 
MR images with high-frequency information.
Conclusions: The results demonstrated that DRUNet-101 with contextual loss function provided better 
high-frequency information in synthetic MR images compared with the other two functions. The proposed 
DRUNet model has a distinct advantage over previous models in terms of PSNR, SSIM, and Tenengrad score. 
Overall, DRUNet-101 with contextual loss is recommended for synthesizing MR images from CT scans. 
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Introduction

Magnetic resonance imaging (MRI) provides a wide range 
of soft-tissue contrast, such as T1-weighted images (T1WI) 
for anatomical structures and T2-weighted images (T2WI) 
for identifying lesions (1,2). Computed tomography 
(CT) has a lower discrimination between different soft 
tissues with less defined contours than MRI because of 
its relatively limited soft tissue contrast. Therefore, an 
MRI examination is important for an accurate diagnosis in 
medical scenarios where only CT images are available (3). 
Synthesis of MR images from CTs can assist clinicians in 
making medical decisions in such cases without MR images. 
In emergency treatment, MRI use is constrained by its 
limited availability and time cost (4). Real-time synthesis of 
MRI from CT images reduces the time cost for acquiring 
MRI data allowing timely diagnosis for acutely ill patients. 
Another limitation of MRI is its use in populations with 
metal implants or claustrophobia. Synthetic MRI eliminates 
the risk of displacement of pacemakers, joint prostheses, 
coronary stents, etc. (5), and avoids unnecessary discomfort 
in patients with claustrophobia during the actual process of 
MRI. More importantly, although CT is mainly employed 
for accurate target localization and dose calculation during 
radiotherapy treatment planning system (TPS), MRI may 
be beneficial for obtaining a more accurate picture of target 
structures for TPS compared to relying on CT images 
alone (6-8). 

At present, most synthetic medical images are CT images 
derived from standard MR scans. There are generally three 
synthetic methods: image segmentation based on cluster 
statistics of different tissues (9-11), image registration based 
on associated MR/CT atlas (12,13), and deep learning based 
on convolutional neural network (CNN), including U-Net 
and generative adversarial networks (GAN) (14-18). The 
published studies cited here show that accurate synthetic 
CT images could be generated from single-sequence MR 
images in near real-time. 

Compared with the published studies on the generation 
of synthetic CT images, there are few deep learning 

methods used to generate synthetic MR images (14,19,20). 
Among these studies, the network structure of CNN and 
loss function are two main factors that influenced the 
performance of synthetic MR images. For the former, Li 
et al. respectively used CycleGAN and U-Net to generate 
synthetic brain MR/CT images from their counterpart 
modality (14), the results of the quality of synthetic images 
by U-Net was higher than those of CycleGAN, it indicated 
that U-Net outperformed CycleGAN. In addition, 
synthesizing MR images from CT scans is currently limited 
because of the unclear boundary of soft tissues in CT (9) 
and the weakness of some loss functions in dealing with 
high-frequency information (21). There is high soft-tissue 
contrast in MR images compared to its CT counterparts (22),  
which means that more high-frequency soft-tissue 
information exists in MR images. For synthetic CT images 
from MRI, a structured-consistency loss function can be 
defined to process high-frequency data in MRI, but it is 
difficult to generate high-level synthetic MR images from 
low-level CT images (15). Therefore, the loss function is an 
important factor that can affect the performance of a CNN. 
There are two types of commonly used loss functions for 
optimizing the generated values of synthetic MR images: 
pixel-to-pixel loss function and global loss function (23). 
The former compares the predicted and actual values 
pixel-by-pixel under the same spatial coordinates to obtain 
characteristics such as mean square error (MSE) (17,20,24), 
binary cross-entropy (BCE) (25), etc. The global loss 
function can capture image features by comparing the 
statistics collected over the entire image. Specifically, the 
perceptual loss aims to synthesize T1WI planning CTs 
using deep learning (DL)-based frameworks, U-Net and 
CycleGAN (24). The contextual loss function has been used 
in a fully convolutional neural network (FCN) to generate 
pseudo-CTs from MRI, which confirms that it can improve 
the predicted performance of the CNN without changing 
the network architecture (26).

The main purpose of this study is to design a novel deep 
CNN, which is called Double ResNet-U-Net (DRUNet), 
with contextual loss by combining the strengths of both 
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ResNet and U-Net. DRUNet is a general supervised 
learning system used for the synthesis of MRI. The 
synthetic MR images, including T1WI and T2WI from 
CT scans, achieved the desired results. More detailed 
comparisons and analyses of the proposed network and loss 
function are discussed in the following sections. We present 
the following article in accordance with the TRIPOD 
reporting checklist (available at https://qims.amegroups.
com/article/view/10.21037/qims-21-846/rc).

Methods

The study was conducted in accordance with the 
Declaration of Helsinki (as revised in 2013). This study 
passed the ethical approval of The First Affiliated Hospital 
of Shenzhen University’s Bioethics Committee, and the 
participants all signed the informed consent form. Data 
processing and model training for different procedures 
involve multiple systems and redundant processing. A 
general flowchart including the acquisition of multi-model 
images (CT, T1WI, and T2WI), image registration, image 
enhancement, image denoising, and model training is shown 
in Figure 1. The individual procedures are introduced in 
detail in the following sections.

Data acquisition

The datasets came from Shenzhen Second People’s Hospital, 
China during the period from January 1, 2017 to December 

30, 2019. The inclusion and exclusion criteria are as follows. 
The inclusion criteria: (I) age between 18 and 60 years old; 
(II) no hypertension and diabetes; (III) no trauma to the 
head. The exclusion criteria: (I) failure to complete MRI and 
CT examinations; (II) the presence of artifacts in the image 
leads to poor image quality; (III) presence of brain tumors, 
hemorrhage, infarct, and other diseases. 

Initially, a total of 45 participants were selected, but five 
participants had hypertension or diabetes, two participants 
suffered severe head trauma in the past, one participant 
could not complete the MRI examination, one participant 
had poor quality brain CT or MRI images, and one 
participant had a brain tumor. Thus, 35 participants who 
underwent brain CT and MRI examinations at the same 
time were finally included. 

For the specific acquisition parameters of MRI and 
CT, T1WI was acquired from 3D MPRAGE sequences 
of the transverse section using the following acquisition 
parameters: TR =1,600 ms [this refers to the MPRAGETR 
between two non-selective (180º) inversion pulses (27)], 
TE =3.37 ms, pixel size =1×1×1 mm3, image size =256×256, 
acquisition range =160 mm, turbo factor =125. T2WI was 
acquired from 3D SPACE sequences of the transverse 
section using the following acquisition parameters: TR 
=2,500 ms, TE =123 ms, pixel size =1×1×1 mm3, image size 
=256×256, acquisition range =160 mm, turbo factor =125. 
Both were acquired by GRAPPA with R-factor =2 on a 1.5T 
Avanto scanner (Siemens). CT images (120 kV, 330 mA, 
exposure time =500 ms, pixel size =0.5×0.5×1 mm3, image 

Figure 1 General flowchart of work. DRUNet, double ResNet-U-Net; CT, computed tomography; T1WI, T1-weighted images; T2WI, 
T2-weighted images. 
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size =512×512) were acquired using SOMATOM Definition 
Flash (Siemens). 

Image preprocessing

(I) Image registration. For the same patient, the CT/MR 
image pair (CT/T1WI or CT/T2WI) was aligned 
with a linear affine registration algorithm using FSL 
software (28). The affine registration simulates the 
global motion of viscera and improves visualization of 
soft tissues in the course of medical treatment (29,30).

(II) Image mask. Because large amounts of low-level noise 
exist in non-brain regions of CT images (Figure 2A), 
image masks for the brain region will reduce the noise 
impact on experiment performance. In this study, the 
watershed algorithm (31) conducted on the original 
CT images (Figure 2A) yielded masks (Figure 2B) to 
eliminate noise from non-brain regions for CT, T1WI 
and T2WI as shown in Figure 2C-2E.

(III) Image enhancement. The original CT images of brain 

soft tissue have low contrast, and image enhancement 
can increase it in soft tissues and benefit image 
computation. After truncating and adjusting the 
window width of CT images appropriately according 
to the Hounsfield unit (HU) values of different 
organs, the numerical difference of brain soft tissue in 
CT data was greatly increased, enhancing the contrast 
of regions of interest against bone windows. The HU 
histogram of the adjusted CT image provided more 
detailed information about soft tissues (Figure 2F). 

DRUNet model

DRUNet combines U-Net (16) and ResNet (32) to generate 
synthetic MR images from CT images. The U-shaped 
model is usually used to generate pixel-level segmentation 
results based on the codec structure, that is, the encoder 
and decoder. Image segmentation is a special form of image 
generation. U-Net can be used for image generation under 
certain conditions, and it guarantees the optimal transfer 

Figure 2 Image preprocessing. (A) Original CT image; (B) image mask using watershed algorithm; (C) CT image masked; (D) T1WI image 
masked; (E) T2WI image masked; (F) enhanced CT image masked. CT, computed tomography; T1WI, T1-weighted images; T2WI, T2-
weighted images. 
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of spatial information from input to output images (33). 
Two types of residual networks were constructed for the 
proposed U-shaped structure to take advantage of ResNet 
and U-Net compatibility. 

When ResNet was designed as the encoder of the U-Net 
to extract complex features from the input CT images 
hierarchically, ResNet-18/34 used the basic blocks and 
ResNet-50/101/152 used the bottleneck block. There are 
two types of basic or bottleneck blocks, residual blocks 
with downsampling (Figure 3A,3B), and the residual 
blocks without downsampling (Figure 3C,3D). Specifically, 
Figure 3A,3C show bottleneck blocks; however, the former 

undergoes the process of downsampling by convolution 
(kernel =3, stride =2, padding =1) as shown by the dark grey 
trapezoid block in Figure 3A, and a residual block with a 
downsampling convolution (kernel =1, stride =2) as shown 
by the light grey trapezoid block in Figure 3A. Figure 3B,3D 
show basic blocks, but that in Figure 3B has an identical 
downsampling process, which is also illustrated by the light 
grey trapezoid blocks. To distinguish between them in the 
following design of the decoder, Figure 3A is called a down-
bottleneck, Figure 3B is a down-basic block, Figure 3C is a 
bottleneck block, and Figure 3D is a basic block. 

When ResNet was designed as the decoder of the U-Net, 

Figure 3 Residual networks designed as encoder. (A,B) Down-bottleneck/down-basic block; (C,D) bottleneck/basic block. Each sub-
block was composed by the convolution and batch normalization, there is a kernel size like 1×1 and 3×3 marked on the sub-block, the 
rectangle block represents the stride step =1, and trapezoidal block represent the stride step =2, which has the operation of downsampling 
on convolutional features. Residual networks designed as decoder. (E,F) Up-bottleneck/up-basic block. Each sub-block was composed by 
the convolution and batch normalization, there is a kernel size like 1×1 and 3×3 marked on the sub-block, the rectangle block represents the 
stride step =1, and trapezoidal block represent the up-sampling operation with nearest-neighbor interpolation. Conv, convolution; ReLU, 
rectified linear units. 
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the decoding was transformed in a concatenated manner 
and the convolutional features from the decoder were fused 
with the corresponding features from the encoder. Then, 
the predicted MR images were gradually reconstructed 
from low to high resolution. To match the hierarchical 
structure of our encoder, the decoder uses a series of 
residual networks to generate synthetic images, reverse the 
entire convolutional component of the encoder, and replace 
the downsampling convolution of the encoder with nearest-
neighbor interpolation upsampling to retrieve the output 
images where the corresponding changed residual blocks are 
called up-bottleneck or up-basic blocks. As shown in Figure 
3E, the up-bottleneck block of the encoder was a variant 
of the down-bottleneck of the decoder, which substituted 
convolutional downsampling (kernel size =3, stride step 
=2, and padding =1) in Figure 3A with a combination of 
upsampling (scale =2) and convolution operation (kernel 
size =1, stride step =1), the operation of upsampling is 
labeled with the opposite trapezoid in Figure 3A. The same 
rule was applied to the basic block as shown in Figure 3F. 
Although deconvolution (i.e., transposed convolution) 
follows a similar procedure as upsampling, it generates 
checkerboard pattern artifacts if the stride step and kernel 
size are improper, thus resulting in uneven overlap during 
deconvolution (34). To avoid artifact formation, nearest-
neighbor interpolation was used to double the output size 
of the last feature layer, and then a convolution (kernel size 
=1 and stride step =1) was performed. The integration of 
interpolation and convolution reduced the checkerboard 

artifacts. In addition, the skip connection, or concatenation, 
is a unique structure in U-Net, which ensures that the 
recovered feature maps can incorporate more low-level 
features from different scales (35). In the start phase of each 
scale block in the decoder, the concatenation of the last 
layer output and the corresponding same-scale output from 
the encoder doubled the feature size of this layer, so input 
channels were half the amount of output channels to match 
the feature size at the beginning of each scale layer. This is 
called the cate-bottleneck block.

Taking DRUNet-101 as an example (Figure 4), it has a 
symmetrical structure and four layers for both the encoder 
and decoder. The layers of equivalent hierarchy between the 
encoder and decoder have the same characteristic scale, and 
the scale between adjacent hierarchical layers has a double 
size relationship from top to bottom. The detailed feature 
scales of DRUNet-101, such as layer name, module name, 
input shape, and output shape, are described in Table 1. The 
convolutional layers of DOWN 4 and UP 1, for instance, 
have the main body structure of size 28×28, the former 
feature size is changed from 512×56×56 to 1,024×28×28. 
Inversely, the latter layer concatenated with upper layer is 
changed from 2,048×28×28 to 512×56×56. The DOWN 3 
and UP 2 has a feature scale of 56×56, which is double of 
that in DOWN 4 and UP 1. D-CENTER and U-CENTER 
are the lowest-level structures that are responsible for 
handling high-dimensional features. Owing to the excellent 
performance of ResNet in image classification and 
recognition, the number of bottlenecks of ResNet in each 

Figure 4 Diagram of DRUNet-101. Conv, convolution; ReLU, rectified linear units; DRUNet-101, double ResNet-U-Net with double 
101 convolutional layers. 
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layer was transferred to the designed CNN model. Thus, 
the blocks in each layer of DRUNet-101 have the numbers 
3, 4, 23, 3, 3, 23, 4, and 3 in sequence, similar to the number 
of convolutional components of ResNet-101 (i.e., 3, 4, 23, 3),  
but with the addition of the mirror structures behind. 

Loss function

The loss function measures the similarity between the 
generated image and the target image during both 
medical image generation and reconstruction (36). It can 
be classified into two types: pixel-to-pixel loss functions 
and global loss functions. When compared in terms of 
appearance, pixel-to-pixel faces problems such as the lack of 
high-frequency information and over-smoothness in MSE 
and BCE loss (21). Contextual loss was initially proposed 
for super-resolution reconstruction of non-aligned data, 
which makes the generated image sharper and brighter 
(23,37). The contextual information in an image shows 
the importance of the proposed deep learning model (38). 
The key idea of contextual loss is to consider an image as a 
collection of features and apply a similarity measure to these 
features instead of measuring spatial location. In this study, 
contextual loss was compared with MSE loss and BCE loss 
to test individual performance. We describe these three loss 
functions in this section.

MSE loss 
MSE loss is the squared L2-norm, also known as the least-

squares error (LSE). It minimizes the sum of the squares 
of the differences between the real MR images IMR and the 
synthetic MR images from the CT scans SynMR(ICT). For the 
M×N images:

 ( ) ( )( )( )
1 1 2

0 0

1 , ,
M N

MR MR CT
i j

MSE I i j Syn I i j
M N

− −

= =

= −
× ∑∑  [1]

BCE loss
Here, the loss function was used by combining a “Sigmoid” 
layer with a “BCE loss” in one single class, which is more 
numerically stable than a plain “Sigmoid” followed by 
a “BCE loss”. The log-sum-exponent was calculated to 
evaluate the numerical stability of the BCE loss.

 
( ) ( )( )( )

( )( ) ( )( )( )( )
0 0

1 , log ,

1 , log 1 ,

M N

MR MR CT
i j

MR MR CT

BCE I i j Syn I i j
M N

I i j Syn I i j

= =

= − × +
×

− × −

∑∑  

[2]

Contextual loss
Contextual loss calculates the similarity between the real 
MR images IMR and synthetic MR images SynMR(ICT) using 
the following mathematical formulas (23,26):

First, dij is the raw distance, which represents the cosine 
distance between xi and yj,

 ( ) ( )
2 2

1 i r j r
ij

i r j r

s r
d

s r

µ µ

µ µ

− × −
= −

− × −
  [3]

where si=fvgg[SynMR(ICT)] and rj=fvgg(TMR) are the feature 
points extracted from the layer conv5_4, which is the third 
convolution layer inside the fifth convolutional block, of 
VGG-19 for synthetic MR images and real MR images, and 
 1

r jj
r

N
µ = ∑  is the mean of the N feature points of the real 
MR images.

As shown in Figure 5, the blue circle represents the 
synthetic features of the generated MR images in Figure 5A, 
the yellow star represents the real features of the real MR 
images in Figure 5B, and CXij is the contextual similarity 
between the prediction and target in Figure 5C. 

Then, the raw distance is normalized to get the relative 
distance:

 

min
ij

ij
ik

d
d

d ε
=

+
  [4]

where ε=1e−5.
The next variable is exponent distance, which is derived 

from shifting the relative distance to similarities by 

Table 1 The detail feature scales of DRUNet-101

Layer name Input shape Output shape

DOWN 1 3×448×448 64×224×224

DOWN 2 64×224×224 256×112×112

DOWN 3 256×112×112 512×56×56

DOWN 4 512×56×56 1,024×28×28

D-CENTER 1,024×28×28 2,048×14×14

U-CENTER 2,048×14×14 1,024×28×28

UP 1 2,048×28×28 512×56×56

UP 2 1,024×56×56 256×112×112

UP 3 512×112×112 64×224×224

UP 4 64×224×224 1×448×448

DRUNet-101,  double ResNet-U-Net with double 101 
convolutional layers.
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exponentiation, which can magnify the distance measure:

 1
exp ij

ij

d
w

h
 −

=   
 



 [5]

where h =0.5 is a bandwidth parameter.
Then, the contextual similarity between feature points 

was defined as the normalized similarities of the exponent 
distance.

 
ij ij ikk

CX w w= ∑  [6]

As depicted in Figure 5, transforming data into a high-
dimensional feature space of a pre-trained model (VGG19) 
is the key idea to guarantee the similarity measure of both 
aligned and non-aligned data. The similarity measure can 
then be directly applied to high-dimensional feature points.

 ( ) ( )( ) 1, , maxMR MR CT ijij
CX s r CX I Syn I CX

N
= = ∑  [7]

Finally, negative logarithms are used as the final texture 
loss function

 ( ) ( )( ), log ,cxL s r CX s r= −  [8]

Evaluation of DRUNet

To evaluate the performance of the proposed DRUNet, 
peak signal-to-noise ratio (PSNR), structural similarity 
(SSIM), and Tenenbaum gradient (Tenengrad) were 
calculated with the synthetic MRI images against the real 
MRI images for each patient. The definitions of PSNR, 
SSIM, and Tenengrad are briefly described as follows.

PSNR is often used to measure the quality of signal 
reconstruction, such as image synthesis, and is often defined 
simply by the MSE. For the real MR images IMR and the 
synthetic MR images from CT images SynMR(ICT) of size 
M×N with B bits, the MSE between them is defined as  
Eq. [1]; then, 

 
( ) ( )2

10

2 1
, 10 log

B

MR MRPSNR I Syn
MSE

 − = ⋅
 
 

 [9]

SSIM is also a full reference image quality evaluation 
index that can measure image similarity in terms of 
brightness, contrast, and structure. 

 
( ) ( )( )

( )( )
1 2

2 2 2 2
1 2

2 2
, I S IS

MR MR
I S I S

c c
SSIM I Syn

c c
µ µ σ

µ µ σ σ
+ +

=
+ + + +  [10]

where μ I and μS denote the mean of images IMR and 
SynMR(ICT), σI and σS indicate the variance of images IMR and 
SynMR(ICT), and σIS calculates the covariance of images IMR and 
SynMR(ICT). c1 and c2 are constants included to avoid division 
by 0. 

Tenengrad is a gradient function used to evaluate image 
clarity without a reference image (39). It calculates the 
horizontal and vertical gradient values using the Sobel 
operator. There are more high-frequency signals in well-
focused images and they have sharper edges and clearer 
details. The definition of image sharpness based on 
Tenengrad is as follows,

 ( ) ( ), ,
i j

Ten i j G i j=∑∑  [11]

 ( ) ( ) ( )2 2, , ,i jG i j G i j G i j= + ,  ( ),G i j T>  [12]

Figure 5 Contextual similarity between real MR image and synthetic MR image. (A) The feature points si from synthetic MR image; (B) the 
feature points rj from real MR images; (C) the contextual similarity CXij between (A) and (B). MR, magnetic resonance.
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where T is the given threshold of edge detection, and Gi and 
Gj are the convolutions of Sobel operators of horizontal and 
vertical edge detection at pixel point (i,j) respectively. 

Root mean squared error (RMSE) is commonly used for 
measuring the error rate of regression models. In there, 
RMSE was used to evaluate the performance of DRUNet 
on cross validation. 

 
( ) ( ) ( )( )2

1

1,
m

MR MR MR MRi i
i

RMSE I Syn I Syn
m =

= −∑  [13]

where SynMR(ICT) is the synthetic MR images from CT 
images, and IMR is the real MR images, i represent the 
pixel position, and m is the total number of pixels in both 
synthetic MR images and real MR images.

To ensure that differences in other factors are not 
masking or enhancing a significant difference in means, the 
independent-samples t-test was used to compare two groups 
for different loss functions (contextual loss, MSE, and BCE 
loss), and different deep learning models [different layers 
DRUNet and ordinary U-Net (17)] with a P value (P<0.001) 
and a confidence interval of difference. 

Training details

The proposed DRUNet models were implemented using 
Pytorch 1.5.1, and all computations were performed using 
high-performance computing (HPC) with an NVIDIA 
GeForce 2070 GPU and Intel Core i7-8700 CPU. The 
proposed models had an increasing training time with 
increase of layers, that is, 18 h for DRUNet-34, 50 h for 
DRUNet-50, and 85 h for DRUNet-101, when finishing 
100 epochs with a batch size of 5.

In this task of synthesizing MR images, a total of 35 
participants were enrolled following the inclusion and 
exclusion criteria as described in Section 2.1, including 19 
women (40.9±10.4 years old) and 16 men (39.4±12.0 years 
old) without hypertension, diabetes, trauma, brain tumors, 
hemorrhage, and other diseases. Among these participants, 
30 patients were randomly selected for model training and 
validation, which accounted for 90% and 10%, respectively. 
The remaining 5 patients were used for the final test after 
completion of model training and validation. Originally, 
there were 130 to 190 slices for one patient’s MR or CT 
scan; thus, the total number of T1WI and T2WI was 5053 
and 5081 slices, respectively, after image preprocessing. 
Augmenting the images by rotating each image by 90°, 
180°, and 270°, the slice numbers of T1WI and T2WI were 
20,212 and 20,324, respectively, which were sufficient for 

deep learning to train a model to synthesize MRI images. 
Because MR images present significant intensity variations 
across patients and their intensity has no fixed meaning, the 
MRI image was transformed from a single channel to three 
channels to perform transfer learning with the pre-trained 
ImageNet model before the proposed DRUNet model 
training. Then, we used channel means (0.485, 0.456, and 
0.406) and channel standard deviations (0.229, 0.224, and 
0.225) to standardize our dataset and eliminate the effects of 
scale differences.

Results

Three loss functions were applied to the proposed DRUNet 
model: MSE loss, BCE loss, and contextual loss. The 
synthetic T1WI and T2WI images from CT images under 
the different loss functions of DRUNet-101 are shown in 
the first and second rows of Figure 6, and the images from 
the first to third columns were synthesized by MSE loss, 
BCE loss, and contextual loss, respectively. The images in 
the last column are the actual T1WI and T2WI images. 
The synthetic MR images produced by contextual loss were 
intuitively closer to the actual ones, especially when there 
were more details and high-frequency components in the 
synthetic images after zooming into the regions of interest. 

Except for the comparison of visual effects, PSNR, SSIM, 
and Tenengrad function were calculated to numerically 
verify the superiority of contextual loss. In Table 2, it is 
clear that the contribution of contextual loss is superior to 
the other functions because the larger PSNR and SSIM 
demonstrated that the synthetic images were closer to the 
actual images, and the larger Tenengrad function proved 
that the synthetic images have higher resolutions. 

To test how the ResNet layer affects the performance 
of DRUNet, three types of ResNet were constructed 
for the DRUNet, respectively, thus obtaining models 
like DRUNet-34, DRUNet-50, and DRUNet-101. The 
ordinary U-Net was also considered for the comparison 
experiment. There are few significant differences among 
the synthetic MR images generated by DRUNet-34, 
DRUNet-50, and DRUNet-101, as shown in Figure 7.  
The first four images in the first two rows are the 
synthetic T1WI, whereas those in last two rows are 
synthetic T2WI images, which were generated by 
DRUNet-34, DRUNet-50, DRUNet-101, and ordinary 
U-net, respectively. The pictures below them are the 
corresponding difference maps between synthetic and actual 
images. The real images in Figure 7E are located in the last 
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column. In Figure 7A-7C generated using the proposed 
DRUNet, the differences between synthetic T2WI 
images and actual images are larger than those between 
synthetic T1WI images and actual images. Compared with 
the difference maps of T1WI images, the higher pixel 
differences of T2WI images are present in intracranial areas 

more than in other skull areas. For the images in Figure 7D  
generated by ordinary U-net (17), it was more obvious 
that their difference maps had outstanding defects, and the 
brain sulci and gyri in the synthetic T1WI had a reversed 
image rendering performance compared with actual T1WI, 
especially in the image of (D2). Although the synthetic 

Figure 6 Synthetic T1WI and T2WI by DRUNet-101 with MSE loss, BCE loss and contextual loss. (A) Top: synthetic T1WI by MSE 
loss; bottom: synthetic T2WI by MSE loss. (B) Top: synthetic T1WI by BCE loss; bottom: synthetic T2WI by BCE loss. (C) Top: synthetic 
T1WI by contextual loss; bottom: synthetic T2WI by contextual loss. (D) Top: real T1WI; bottom: real T2WI. DRUNet-101, double 
ResNet-U-Net with double 101 convolutional layers; MSE, mean squared error; BCE, binary cross-entropy; T1WI, T1-weighted images; 
T2WI, T2-weighted images.

Table 2 The performances of DRUNet-101 with different loss functions for synthesizing T1WI and T2WI

Loss function
PSNR SSIM Tenengrad

T1WI T2WI T1WI T2WI T1WI T2WI

MSE loss 23.52±1.51 21.87±1.43 0.87±0.05 0.71±0.02 7.64±1.33 8.14±1.72

BCE loss 23.04±1.75 22.46±1.68 0.84±0.05 0.73±0.02 11.11±2.15 14.16±2.66

Contextual loss 34.25±2.06 33.50±1.08 0.97±0.03 0.98±0.05 17.03±2.75 19.76±3.54

DRUNet-101, double ResNet-U-Net with double 101 convolutional layers; PSNR, peak signal-to-noise ratio; SSIM, structural similarity; 
Tenengrad, Tenenbaum gradient; MSE, mean square error; BCE, binary cross-entropy. T1WI, T1-weighted images; T2WI, T2-weighted 
images.

A B C D
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Figure 7 Performance comparison of DRUNets with contextual loss among different Resnet layers and ordinary U-net for synthetic T1WI 
and T2WI. The first two row panels A1/A2 to D1/D2: synthetic T1WI generated by DRUNet-34, 50, 101 and ordinary U-Net. The last two 
row panels A3/A4 to D3/D4: synthetic T2WI generated by DRU-Net-34, 50, 101 and ordinary U-net. The last column panels E1/E2: real 
T1WI; E3/E4: real T2WI; color bars below each synthetic images: difference maps between synthetic and real images. DRUNet-X, double 
ResNet-U-Net with double X convolutional layers; T1WI, T1-weighted images; T2WI, T2-weighted images.
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Table 3 Evaluation of DRUNet comparing with different layers and different networks

Networks
PSNR SSIM Tenengrad

T1WI T2WI T1WI T2WI T1WI T2WI

DRUNet-34 34.19±2.07 33.43±1.11 0.96±0.04 0.96±0.06 17.85±2.87 19.82±3.67

DRUNet-50 34.23±2.02 33.44±1.12 0.97±0.04 0.97±0.04 18.10±2.94 19.57±3.40

DRUNet-101 34.25±2.06 33.50±1.08 0.97±0.03 0.98±0.05 17.03±2.75 19.76±3.54

U-Net (17) 34.08±2.16 27.61±0.06 0.90±0.06 0.73±0.12 13.62±2.36 21.79±0.70

DRUNet-X, double ResNet-U-Net with double X convolutional layers; PSNR, peak signal-to-noise ratio; SSIM, structural similarity; 
Tenengrad, Tenenbaum gradient; T1WI, T1-weighted images; T2WI, T2-weighted images.

Table 4 The statistical analysis of DRUNet-101 with contextual loss compared with other models

Experimental control
PSNR SSIM

P value Confidence interval of difference P value Confidence interval of difference

Contextual loss vs. MSE loss <0.001 10.92, 11.45 <0.001 0.20, 0.22

Contextual loss vs. BCE loss <0.001 10.86, 11.40 <0.001 0.18, 0.20

DRUNet-101 vs. U-Net (17) <0.001 2.59, 3.47 <0.001 0.14, 0.17

DRUNet-101, double ResNet-U-Net with double 101 convolutional layers; PSNR, peak signal-to-noise ratio; SSIM, structural similarity; 
MSE, mean square error; BCE, binary cross-entropy.

T2WI had a significant image-rendering performance 
in brain areas, the entire synthetic image was full of 
checkerboard pattern artifacts, especially in the background 
of the synthetic T2WI. There were also checkerboard 
pattern artifacts in the foreground of the synthetic T1WI 
and T2WI when zooming in on these images. Thus, the 
spatial resolution of the synthetic images generated by 
DRUNet-101 was superior to that of the others and was 
more pronounced in the enlarged local areas of the image.

Table 3 illustrates the overall statistical analysis of the 
three quantitative metrics (PSNR, SSIM, and Tenengrad) 
for synthetic MR images by DRUNet-34, DRUNet-50, 
and DRUNet-101, and ordinary U-net. Although the 
differences in the aforementioned quantitative indices 
among these models were not obvious, the performance of 
DRUNet-101 was slightly superior to the other models, 
whereas the performance of ordinary U-net was slightly 
inferior to DRUNet. There is an upward tendency with 
an increase in the number of DRUNet layers in the PSNR 
and SSIM. Although Tenengrad function does not obey this 
rule, it is only a quality evaluation method without reference 
images, which reflects the image resolution but not the 
accuracy of the generated images. Therefore, DRUNet-101 
has the expected performance and sharpness, although 

DRUNet-50 and DRUNet-34 have higher Tenengrad 
values in synthetic T1WI and T2WI. 

Furthermore, statistical analyses with independent-
samples t-tests were performed on the results (Tables 2,3)  
and are listed in Table 4, including the P value and 
confidence interval of difference. The middle two rows of 
the table are the statistical results obtained by comparing 
different loss functions under the same DRUNet-101, and 
the last row shows the statistical results when comparing 
different networks under the same contextual loss function. 
There is a significant difference (P<0.001) in the statistical 
results, and the narrower 95% confidence interval of 
difference demonstrated that DRUNet-101 with contextual 
loss outperforms the other models.

To confirm the optimization of the aforementioned 
model parameters, the convergence rate of these models 
was investigated using loss curve graphs (Figure 8). Figure 8  
reflect the loss curves when generating T1WI and T2WI 
images, respectively. With a decrease in layer number, the 
validating loss curves oscillate more drastically, especially 
for DRUNet-34 shown in Figure 8. In addition, the 
validating loss curves of the ordinary U-Net fluctuated 
drastically, which illustrates that the ordinary U-Net model 
has a weak convergence ability. More importantly, all curves 
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gradually flattened out after 60 epochs of data training, 
which indicates that the overfitting problem was eliminated 
in the parameter setting and that accuracy gains were 
successfully obtained from increased depth. Therefore, 
DRUNet-101 exhibits considerably lower training loss and 
is generalizable to the validation data, which also fits well 
with the aforementioned conclusion. 

To further evaluate the generalization performance of 
a DRUNet-101 on a given dataset, the performance of 
5-fold cross validation through RMSE was conducted on 
the synthetic model of T1WI and T2WI as illustrated 
in Table 5. The differences among each fold were no 
significant, and the variances within each fold were also 
slight, all values of RMSE are within the acceptable ideal 
range. This eliminates the undesirable effects of unbalanced 
data division and proves the generalization performance of 
DRUNet on different datasets. Furthermore, all the RMSE 
values of T2WI were lower than that of T1WI, which was 
in keeping with the rule of validating loss curves of Figure 8 
where the validation loss values of T2WI in Figure 8B were 

lower than that of T1WI in Figure 8A.
In this study, the MSE, BCE, and contextual loss 

functions were used to optimize the model parameters. The 
aforementioned results demonstrate that the performance 
of contextual loss is better than that of MSE and BCE 
loss. Visualization of the convolution filters and feature 
maps of CNN models is also very significant for analyzing 
the CNN mechanism as shown in Figure 9, where “JET” 
colormap is used to reflect the model weight, the higher the 
weight value, color tends to warm tone. The convolution 
filters can reflect part of the extracted features; thus, the 
visualization of the filters is very significant for the analysis 
of the CNN mechanism. MSE, BCE, and contextual 
algorithms were used as loss functions to optimize the 
model parameters. The experimental results demonstrated 
that the performance of contextual loss was better than that 
of BCE and MSE loss. Figure 9A-9C shows the heat maps of 
the 64 filters with a size of 7×7 from the first convolutional 
layer. If the filter detects an image region that is similar 
to its textural features, it will be activated to obtain a high 
value when striding over that area, and this feature of the 
image will be preserved in the feature maps. It can be seen 
that the vast majority of filters for contextual loss have more 
complicated textures, indicated by different shades of red, 
yellow, and blue visually, which ensures that more detailed 
features of the image can be fetched to the next layer for 
further high-dimensional feature extraction. In contrast, 
there were more red clustered areas in the filter maps 
generated by MSE loss, which demonstrated that more 
low-frequency features tended to be extracted in the feature 
maps. Hence, to a certain degree, the performance of the 
convolutional filters was in agreement with the experimental 
results: contextual loss > BCE loss > MSE loss.

Figure 8 Training and validating loss curves of DRUNet-34, 50, 101, and ordinary U-Net when generating synthetic T1WI and T2WI. 
(A) T1WI; (B) T2WI. DRUNet-X, double ResNet-U-Net with double X convolutional layers; DCNN, deep convolutional neural network; 
T1WI, T1-weighted images; T2WI, T2-weighted images.

Table 5 Cross validation of 5-fold with RMSE

K-fold T1WI T2WI

1 1.16±0.06 0.11±0.02

2 1.51±0.04 0.19±0.06

3 1.14±0.07 0.19±0.01

4 1.66±0.03 0.30±0.01

5 2.12±0.07 0.17±0.03

Average 1.52 0.19

RMSE, root mean squared error.

DRUNet-34 training loss
DRUNet-34 validation loss
DRUNet-50 training loss
DRUNet-50 validation loss
DRUNet-101 training loss
DRUNet-101 validation loss
DCNN training loss 
DCNN validation loss
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Figure 9 Feature maps of convolutional filters and different layers of DRUNet-101. (A-C) The convolutional filter feature maps of MSE 
loss, BCE loss, and contextual loss respectively; (D-F) the lowest layer feature maps of MSE loss, BCE loss, and contextual loss respectively; 
(G-I) the penultimate convolutional layer feature maps of MSE loss, BCE loss, and contextual loss respectively; (J-L) the final output layer 
feature maps of MSE loss, BCE loss, and contextual loss respectively. The sub-pictures attached on (D-I) are the zooming in of a random 
CNN feature map. DRUNet-101, double ResNet-U-Net with double 101 convolutional layers; MSE, mean squared error; BCE, binary 
cross-entropy; CNN, convolutional neural network. 
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In addition, feature maps extracted from the proposed 
models were used to further illustrate the superiority of 
contextual loss. The most convincing feature maps were 
selected to analyze the performance variations among 
the MSE loss, BCE loss, and contextual loss. As shown in 
Figure 9, the feature maps generated by MSE loss, BCE 
loss, and contextual loss were aligned in three columns 
from left to right: Figure 9D,9G,9J are the feature maps 
of the lowest layer, the penultimate convolutional layer, 
and the final output generated by MSE loss, respectively; 
Figure 9E,9H,9K are the feature maps of the lowest layer, 
the penultimate convolutional layer, and the final output 
generated by BCE loss, respectively; Figure 9F,9I,9L are 
the feature maps of the lowest layer, the penultimate 
convolutional layer, and the final output generated by 
contextual loss, respectively. Aside from this, we used 
random zooming in pictures to distinguish texture or 
frequency information in the feature map. Specifically, the 
81 images of the lowest layer were randomly selected from 
a total of 2,048 feature maps and were arranged with a grid 
size of 9×9 as shown in Figure 9D-9F. Similarly, the nine 
images of the penultimate layer were randomly selected 
from a total of 64 feature maps and were arranged with a 
grid size of 9×9 as shown in Figure 9G-9I. 

The highest-dimensional feature maps of the lowest 
layer in DRUNet-101 are in the first row, and it is clear that 
the features generated by contextual loss are sparser and 
more abstract than the corresponding maps from the other 
two loss functions, which demonstrates that the features 
extracted from contextual loss are clearer and more definite 
for the concretization of features (40). The feature maps 
of the penultimate convolutional layer of the decoder are 
shown in the third row, and the last row presents the final 
feature maps to the output. The details of the MR images 
are depicted more clearly in each feature map generated 
by contextual loss, and the final output feature map also 
reflects more high-frequency information in the synthetic 
MR images due to contextual loss. Specifically, there are 
sparser signals in Figure 9F and denser signals in Figure 9D. 
The former is far more representative of high-dimensional 
characteristics. Although there are also sparse signals in 
Figure 9E, it focuses more on the skull area, which is not 
the region of interest. High-frequency signals inside the 
skull appear more richly in Figure 9I, including the gray 
matter, white matter, cerebrospinal fluid, sulcus, and gyrus. 
In contrast, there are more details about the skull in Figure 
9H. The signals of the cerebral tissue are mixed with noise, 
as shown in Figure 9G. Figure 9I appears to have a blurred 

background noise. The detailed information in the brain 
regions is unclear despite noise removal from unrelated 
areas in Figure 9H. Figure 9L, generated by contextual loss, 
has the best rendering effects of MR images compared with 
Figure 9J,9K generated by MSE and BCE loss. In summary, 
contextual loss, a loss function originally used for hyper-
resolution image reconstruction, can achieve the desired 
results in the medical image transfer task from CT to MR 
images.

Discussion

As a common generated network, CycleGAN and U-Net 
are typically used for medical images generation (41). 
Therefore, Li et al. (14,20) compared the performance of 
U-Net and CycleGAN to transform brain MR/CT images 
to their counterpart modality. The SSIM and PSNR of 
synthetic CT by U-Net and CycleGAN were 0.972 vs. 
0.955, 28.84 vs. 26.32, respectively, and these identical 
figures of synthetic MRI were 0.946 vs. 0.924, 32.35 vs. 
30.79, respectively. The quantitative results indicated that 
the U-Net method outperformed the CycleGAN method. 
Therefore, the U-Net was mainly adopted as the DRUNet 
in the research to synthesize MR images from CT scans. 
DRUNet is a general synthesis system for supervised 
learning and is different from some seemingly similar 
deep learning models that are limited to the application of 
a few residual blocks to the U-shaped model (38,42,43). 
Based on LinkNet and D-LinkNet, the whole ResNet-18 
and ResNet-34 were set as their encoders, respectively 
(44,45), which enables full exploitation of the advantages 
of ResNet, and the decoder is designed based on ResNet. 
The final experimental results, including PSNR and SSIM, 
verified that ResNet integrated with U-Net outperformed 
several residual blocks inserted into U-Net on the synthetic 
scene. 

The introduction of contextual loss from image super-
resolution enriched the high-frequency information 
that existed in the synthesis of MR images through the 
evaluation indicator Tenengrad. The use of contextual 
information was initially investigated using a deep learning 
model, which proved the importance of contextual 
information in an image (38). The emergence of gram loss 
prompted the use of CNN to represent textures and images 
and synthesize new ones (46). This network uses the gram 
matrix to activate the texture feature of the VGG-19 layer. 
Then, perceptual loss (47,48) was proposed to apply a gram 
matrix to penalize differences in colors, textures, and exact 
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shapes when outputs deviated from the target images. Few 
studies have applied global loss functions to medical image 
synthesis before. Dar et al. (49) used perceptual loss to 
improve the synthesis performance of T1WI and T2WI. 
In contrast to the aforementioned global loss functions in 
aligned images, contextual loss (23,37) aims to tackle image 
transformation for non-aligned data based on both context 
and semantics. Although contextual loss function was used 
in the FCN to generate synthetic CTs from MRI, this was 
only a simple application of contextual loss. Furthermore, 
the availability of contextual loss used for the synthesis of 
medical images (26) was confirmed by detailed analyses such 
as loss curves and feature maps. 

There is a nearly inverse tendency of contextual loss 

curves when generating synthetic T1WI and T2WI in 
Figure 8, which was possibly associated with the larger 
differences between CT and T2 images than between CT 
and T1 images. Some attempts have been made to explain 
this performance by plotting a profile across cerebral 
spinal fluid on the same position as CT, T1WI, T2WI in 
Figure 10. It can be clearly seen that there is a more parallel 
tendency between the profile of CT and T1WI than the 
counterparts of CT and T2WI. An obvious valley of the 
curve occurred in the distance ranging from 100 to 150 
for the CT and T1WI, whereas the curve of T2WI has a 
visible convexity in the same position. In addition to feature 
maps, the superiority of the contextual loss function in 
processing high-frequency information was carried out by 

Figure 10 The inversed profile of CT, T1WI, T2WI on the same position. CT, computed tomography; T1WI, T1-weighted images; 
T2WI, T2-weighted images.
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the visualization of the convolutional filter and heat map, as 
shown in Figure 9.

In this study, synthetic MRIs were generated from 
CT scans for obtaining a more accurate target volume in 
medical scenarios where MRI examination is not available. 
Because of the application of the proposed method to 
radiotherapy, it is important to know whether the synthetic 
MR images can accurately determine the planning target 
volume and delineate the lesions. The dataset of CT 
and MRI images was initially screened according to the 
exclusion criteria. Therefore, the results cannot provide a 
reasonable interpretation that synthetic MRI can serve a 
more accurate target volume. Considering this deficiency, 
this article is a preliminary attempt to apply synthetic MR 
images to TPS, which provides the theoretical feasibility of 
MRI-assisted TPS and is beneficial for the establishment 
of tumor radiotherapy model in future research. In 
addition, the experiment was conducted on pairs of brain 
MRI and CT images, it has not been verified whether the 
model can be applied to medical images of other body 
parts. Next, images of various tissues and organs coming 
from clinical work will be used to train a common model 
for the synthesis of MRI. In addition, DRUNet is a 2D 
deep learning network, which has a potential inter-slice 
discontinuity problem while generating synthetic images. In 
future studies, 3D networks will be used to investigate the 
differences between 2D and 3D networks.

Conclusions

In this paper, a new DCNN model, DRUNet, was proposed 
based on ResNet and U-Net for cross-modality medical 
image synthesis, which synthesizes T1WI and T2WI from 
CT. Three loss functions (i.e., BCE loss, MSE loss, and 
contextual loss) were introduced to optimize the parameters 
of DRUNet until it converged to a stable state. The loss 
curves and feature maps illustrated that the contextual loss 
preserved the high-frequency information of the intracranial 
tissues and removed the low-frequency background 
noise. Comparing DRUNet models with different layer 
numbers (i.e., 34, 50, and 101) and ordinary U-Net using 
PSNR, SSIM, and Tenengrad, it was concluded that 
DRUNet was superior to the ordinary U-Net model and 
that DRUNet-101 had the optimal performance for both 
synthetic T1WI and T2WI. In summary, DRUNet-101 
with contextual loss can be a useful model for synthesizing 
MR images from CT images of the brain. This can be 
valuable for further evaluation in future studies concerning 

clinical applications
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