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Background: Circulating tumor cells (CTCs) acting as “liquid biopsy” of cancer are cells that have been 
shed from the primary tumor, which cause the development of a secondary tumor in a distant organ site, 
leading to cancer metastasis. Recent research suggests that CTCs with abnormalities in gene copy numbers 
in mononuclear cell-enriched peripheral blood samples, namely circulating genetically abnormal cells (CACs), 
could be used as a non-invasive decision tool to detect patients with benign pulmonary nodules. Such cells 
are identified by counting the fluorescence signals of fluorescence in situ hybridization (FISH). However, 
owing to the rarity of CACs in the blood, identification of CACs using this technique is time-consuming and 
is a drawback of this method. 
Methods: This study has proposed an efficient and automatic FISH-based CACs identification approach 
which is based on a combination of the high accuracy of You Only Look Once (YOLO)-V4 and the 
lightweight and rapidness of MobileNet-V3. The backbone of YOLO-V4 was replaced with MobileNet-V3 
to improve the detection efficiency and prevent overfitting, and the architecture of YOLO-V4 was optimized 
by utilizing a new feature map with a larger scale to enable the enhanced detection ability for small targets. 
Results: We trained and tested the proposed model using a dataset containing more than 7,000 cells based 
on five-fold cross-validation. All the images in the dataset were 2,448×2,048 (pixels) in size. The number 
of cells in each image was >70. The accuracy of four-color fluorescence signals detection for our proposed 
model were all approximately 98%, and the mean average precision (mAP) were close to 100%. The final 
outcome of the developed method was the type of cells, i.e., normal cells, CACs, gaining cells or deletion 
cells. The method had a CACs identification accuracy of 93.86% (similar to an expert pathologist), and a 
detection speed that was about 500 times greater than that of a pathologist.
Conclusions: The developed method could greatly increase the review accuracy, enhance the efficiency of 
reviewers, and reduce the review turnaround time during CACs identification.

Keywords: Circulating genetically abnormal cell (CAC); fluorescence in situ hybridization (FISH); multi-scale; 

You Only Look Once-V4 (YOLO-V4); MobileNet-V3

Submitted Sep 11, 2021. Accepted for publication Feb 11, 2022.

doi: 10.21037/qims-21-909

View this article at: https://dx.doi.org/10.21037/qims-21-909

2976

https://crossmark.crossref.org/dialog/?doi=10.21037/qims-21-909


Xu et al. Deep learning method for CACs identification2962

© Quantitative Imaging in Medicine and Surgery. All rights reserved.   Quant Imaging Med Surg 2022;12(5):2961-2976 | https://dx.doi.org/10.21037/qims-21-909

Introduction

Quantitation of circulating tumor cells (CTCs) has been 
reported as a useful tool for prognosis and monitoring of 
advanced cancers, like breast, colon, and prostate cancer, 
as well as non-small cell lung cancer (NSCLC). However, 
several CTCs that extravasate into the bloodstream undergo 
epithelial-mesenchymal transition remain undetected 
by the epithelial cell adhesion molecule (EpCAM) based 
methods. An antigen-independent, 4-color method based 
on fluorescence in situ hybridization (FISH) was reported 
to detect CTCs with abnormalities in gene copy numbers—
called circulating genetically abnormal cells (CACs). The 
CACs were thought to be a subset of “sentinel” CTCs 
found in the blood of patients with nodule-negative low-
dose computed tomography (LDCT) scans, 1 to 4 years 
before the appearance of malignant lung nodules. This 
suggested that CACs may be markers of lung cancer, which 
might help in its early diagnosis. Furthermore, CACs 
in non-malignant nodules are extremely rare in healthy 
subjects and patients (1-3). Hence, there is an urgent 
requirement for developing and identifying techniques 
that would enable the accurate, efficient detection and 
enumeration of CACs in clinical blood samples, thereby 
aiding the early diagnosis of cancer.

Several semi-automatic identification systems for the 
identification of CACs have been developed so far. BioView 
fluorescence microscope systems are an example of such 
systems. However, the drawback of such systems is that they 
require a human operator to classify and count the detected 
CACs from a series of microscopic images. Normally, CACs 
are rare in peripheral blood (1–10 cells/mL) (4), a rapid, 
efficient, and sensitive automatic detection method for 
CACs is in high demand. Researchers have proposed a few 
automatic identification methods for CACs utilizing their 
morphological information. However, the reliability and 
reproducibility of these methods remain debatable (5-8). 

Some studies suggested that the abnormal multiplication 
of specific genes in CACs indicates the formation of 
quantifiable standards, implying that it was possible to 
identify CACs based on the enhancement of fluorescence 
in two or more probes using the FISH technique (2,3,9,10). 
This FISH-based CACs identification method had the 
advantages of distinct and objective interpretation standards 
(2,3) and has been applied in clinical practice. However, the 
FISH review and result report are very labor-intense and 
time-consuming. The cell classification accuracy is often 
subjected to the reviewer’s experience as well as the degree 

of fatigue. Therefore, devising an automatic identification 
of CACs would establish a unified review standard based 
on large-scale case training to increase review accuracy, 
thus, enhancing reviewers’ efficiency and reducing review 
turnaround time.

Deep learning algorithms have undergone significant 
advancements in the last  decade,  particularly for 
biomedical applications such as cell detection (11,12) and 
cell classification (13,14), which in turn find important 
applications in the identification of hemocytes and 
cancer cells (15-17). Therefore, it is possible to develop 
an automatic identification method for CACs, based 
on fluorescence signal detection using a deep learning 
algorithm.

In the present study, an automatic identification method 
for CACs was developed based on an improved You Only 
Look Once (YOLO)-V4 (18) algorithm. In the developed 
detection method, the backbone of YOLO-V4 was replaced 
with MobileNet-V3 (19) to resolve overfitting and reduce 
time consumption. Meanwhile, an additional output 
based on a large-scale feature map was added to avoid 
misdetection of signal points. The proposed multi-scale 
MobileNet-YOLO-V4 algorithm achieved an accuracy of 
93.86% in a dataset containing >7,000 clinical cell images. 
We present the following article in accordance with the 
TRIPOD reporting checklist (available at https://qims.
amegroups.com/article/view/10.21037/qims-21-909/rc).

Methods

Data acquisition

Data was acquired based on methods, namely, Ficoll 
density separation and 4-color FISH technique (3). Sample 
preparation and probe hybridization were carried out as 
described below. The study was conducted in accordance 
with the Declaration of Helsinki (as revised in 2013).

Initially, human full blood samples were enriched 
using the Ficoll-Hypaque density medium (2). Then, 
the peripheral blood mononuclear cells (PBMCs) were 
collected, enumerated, and deposited on glass slides. 
Next, the cell samples were hybridized with fluorescence 
probes targeting specific loci on chromosomes. The probe 
set comprised 3q29 (Spectrum Green), the locus-specific 
identifier 3p22.1 (Spectrum Red), CEP10 (Spectrum 
Aqua), and the locus-specific identifier 10q22.3 (Spectrum 
Gold). Finally, the cells were stained with 4',6-diamidino-
2-phenylindole (DAPI; Boehringer Mannheim) and then 

https://qims.amegroups.com/article/view/10.21037/qims-21-909/rc
https://qims.amegroups.com/article/view/10.21037/qims-21-909/rc
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visualized and digitalized using the BioView Duet-3 
instrument.

All the images in the dataset were 2,448×2,048 (pixels) 
in size. The number of cells in each image was >70, and the 
total number of cells was >7,000. The dataset included 6,333 
normal cells, 673 deletion cells, 415 gaining cells and 76 
CACs. Figure 1 provided the number of cells for each type 
and the corresponding proportion.

A representative image was shown in Figure 2. In Figure 2,  
the usual disadvantages of fluorescence signal images, viz., 
background contaminates (Figure 2C), nonuniformity in 
signal brightness and size (Figure 2D), the filamentous 
signal of the aqua channel due to high repetitive sequence 
content in the centromere region (Figure 2E), and signal 
overlap (Figure 2F) which lead to difficulties in detection 
could be observed.

Figure 1 The number of cells for each type and the corresponding proportion. CAC, circulating genetically abnormal cell.

Figure 2 Fluorescence signals of cells after 4',6-diamidino-2-phenylindole (DAPI) staining and fluorescence in situ hybridization 
(FISH). The images were captured with 60× objective lens and 10× eyepiece. (A) Cells with DAPI staining. (B) Gold, green, aqua, and 
red fluorescence signals of 10q22.3, 3q29, CEP10, and 3p22.1, respectively. (C) Background contaminates. (D) Nonuniformity in signal 
brightness and size (arrows). (E) Filamentous signal in aqua channel (arrows). (F) Signal overlap (arrows).

CAC

CAC
1%

6%

9%

84%
6333

76

415

673

0          1000        2000        3000       4000        5000       6000        7000

Normal cell

Normal cell

Deletion cell

Deletion cell

Gain cell

Gain cell

A B

C D E F



Xu et al. Deep learning method for CACs identification2964

© Quantitative Imaging in Medicine and Surgery. All rights reserved.   Quant Imaging Med Surg 2022;12(5):2961-2976 | https://dx.doi.org/10.21037/qims-21-909

Data preprocessing

Initially, the nucleus in the DAPI images was detected and 
segmented using mask region convolutional neural networks 
(Mask R-CNN) (20)—a deep neural network that has 
been applied widely in medical image segmentation and 
demonstrated good performance for microscopic images 
(21,22). Mask R-CNN had ResNet-50 as its backbone 
network, with critical parameters as follows: non-maximum 
suppression (NMS) threshold used for postprocessing the 
region proposal network (RPN) proposals and intersection 
over union (IOU) between the anchor and the ground truth 
(GT) box were set to 0.7. For the model, 1,200 images were 
used for training and 200 for validating. During the training, 
the size of input images was adjusted to 1,024×1,024, with 
hyperparameters set as follows: Epoch and batch size were 
set to 300 and 16, respectively. The initial learning rate 
was 0.02, which decayed at a rate of 10% per 100 epochs. 
Simultaneously, a weight decay of 0.0001 and a momentum 
of 0.9 were adopted. The trained model was tested on 
the testing sets including 100 images, and 97.67% of dice 
similarity coefficient (DSC), 100% of independent cell 
detection rate, and 95.32% of overlapping cell detection 
rate were obtained. Then, the bounding boxes and masks of 
the nucleus were obtained. Next, the patch of each nucleus 

was obtained by cropping the fluorescence signal images in 
each channel with bounding boxes. The obtained patches 
were multiplied by the corresponding masks to remove the 
background noise originating from outside the nucleus. The 
pipeline for nucleus segmentation was illustrated in Figure 3.

The identification rule of cells

The identification rule of cells, namely clear definition of 
the outcome that was predicted by the prediction model, 
was shown in Table 1. A CAC was defined as an intact 
round or oval cell, having polysomy of at least 2 out of 4 
DNA probes per nucleus, which was shown as more than 
2 fluorescence signals in 2 or more channels in the image 
(2,3). The deletion and gain cells were also classified to 
demonstrate the total abnormality and hybridization 
efficiency of PBMCs. However, they were not considered 
as risk factors in later nodule malignancy prediction in the 
clinical setting. The gain cells were also included as review 
candidates for human confirmation to avoid any possible 
misclassification of CACs into a gain cell.

Network architecture for detection of stained signals 

YOLO-V4 is utilized frequently for object detection tasks 

Figure 3 Pipeline of the data preprocessing. The image in the dashed box on the right panel represents the patches of a single nucleus in the 
four different color channels obtained by the data preprocessing. The images were captured with 60× objective lens and 10× eyepiece. (a-
d) indicate the four nuclei shown in the DAPI image. Mask R-CNN, mask region convolutional neural networks; DAPI, 4',6-diamidino-2-
phenylindole; FISH, fluorescence in situ hybridization.
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(23-25). It exhibits the characteristics of high precision, 
high efficiency, flexibility, and generalization (18). Its 
backbone is constituted of CSPDarknet53 and may be 
replaced with several other frameworks for different 
application scenarios (26), giving it additional flexibility for 
use in various engineering applications. The Multi-scale 
MobileNet-YOLO-V4 algorithm proposed in the present 
study presented improvements in the aspects listed below:

(I) The backbone in YOLO-V4 was  replaced 
with MobileNet-V3, which is lightweight and 
convenient to train (19). This prevented the issue 
of overfitting in small-scale datasets and improved 
the detection efficiency.

(II) The architecture of YOLO-V4 was optimized 
by utilizing a new feature map with a larger 
scale, which enriched more texture and contour 
information, thereby enabling the detection of 
small fluorescence signals.

Replacing the backbone
A large quantity of data and labels were required in training, 
depending on the excessive amount of backbone network 
parameters, floating-point operations, and the number of 
layers in the original YOLO-V4 (26). Otherwise, the issue 
of over-fitting would occur. MobileNet-V3 is a lightweight, 
low-latency model. In certain visual tasks, such as 
classification, target detection, semantic segmentation, etc., 
the model size was significantly reduced, and promising 
results were obtained (19). YOLO-V4 Tiny is a further 
lightweight implementation of the YOLO-V4 network. 
However, the mean average precision (mAP) of YOLO-V4 
Tiny (mAP 22%) was inferior to YOLO-V4 (mAP 43.5%) 
on the MS COCO dataset, although it was faster than 
YOLO-V4 in detection speed (27). The YOLO-V4 Tiny 
had been shown in practice to be better at detecting 
independent objects, but struggled with detecting small 
objects and overlapping targets (28). For identification of 
CACs, high accuracy and quick response are both required 
clinically. Therefore, in the present work, YOLO-V4 was 

combined with the MobileNet-V3 network. The replaced 
section is illustrated inside the red dotted box around 
MobileNet-V3 in Figure 4. 

Adding a larger scale 
Supposing the size of the input image of YOLO-V4 was 
416×416, then three featured output layers, 52×52, 26×26, 
and 13×13, were selected for upsampling and feature fusion 
to detect large, medium, and small objects of different 
sizes. The area corresponding to each grid cell in the input 
image was related inversely to the size of the feature map; 
that is, the 13×13 detection layer was suitable for detecting 
large targets, while the 52×52 detection layer was suitable 
for detecting small targets. Due to the relatively small size 
of the signal point, it would have been inappropriate to 
directly predict the signal points’ position using the 13×13 
feature map. Certain fluorescence signals, which were 
relatively small, such that even a 52×52 feature map failed 
to detect them, resulted in missed signal detections in the 
identification of CACs. 

To solve the problem of missing small-signal points, a 
shallow layer feature output was added based on the original 
layer in the proposed algorithm. To obtain more texture and 
contour information, the scale 4 was added (the red dotted 
box named scale 4), which was beneficial for detecting 
small objects. The minimum scale prediction output was 
deleted but not abandoned, as it was fused with the feature 
of the earlier layer through upsampling. The network of the 
improved Multi-scale MobileNet-YOLO-V4 was illustrated 
in Figure 4.

Mosaic data augmentation

Mosaic data augmentation (18) was utilized in the training 
stage, which mixed four images into one image by random 
flipping, scaling, and cropping, as shown in Figure 5. 
The utilizing of Mosaic data augmentation enriched the 
background of the detected objects and enable the model 
to identify targets smaller than normal size or close targets, 

Table 1 The identification rule of cells

Category Description

Normal cell 2 signals in all the channels

Deletion cell Less than 2 signals in 1 or more channels

Gain cell More than 2 signals in 1 channel

Circulating genetically abnormal cell (CAC) More than 2 signals in 2 or more channels
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Figure 4 The Multi-scale MobileNet-YOLO-V4 architecture. The left red dotted MobileNet-V3 indicates the backbone of Multi-scale 
MobileNet-YOLO-V4, which was replaced by CSPDarknet53 to MobileNet-V3. The right red dotted Scale 4 was the larger scale, which 
was added to improve the detection performance of the network. The images were captured with 60× objective lens and 10× eyepiece. 
Conv2D, two-dimensional convolution; SPP, spatial pyramid pooling layer; YOLO, You Only Look Once; BN, batch normalization.

Figure 5 Fluorescence signal image processed by Mosaic data augmentation method. All of the above four images were formed by four 
images from the same color channel in the dataset, which were mixed by random flipping, scaling and clipping. The images were captured 
with 60× objective lens and 10× eyepiece.
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thus enhancing the robustness of the model.

Modification of anchor boxes

YOLO-V4 followed the concept of anchor boxes (a set of 
initial candidate boxes with fixed width and height). The 
selection of the initial anchor boxes would directly affect the 
accuracy and speed of detection. In this study, the K-means 
clustering analysis was used to regain the size of the anchor 
boxes of the model. Nine different sizes were selected in the 
4-color channels, respectively. The smallest of these anchor 
frames was 10×10, and the largest was 45×37.

Evaluation criterion and parameter setting

The values of accuracy, recall (sensitivity), precision, 
harmonic mean (also known as F1 score) and mAP were 
used as the evaluation criteria. These indicators can be 
defined as follows:
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Where true positive (TP), true negative (TN), false 
positive (FP), and false negative (FN) denote the number 

of correctly identified signal points, correctly predicted 
non-signal points, falsely detected signal points, and missed 
signal points, respectively. In Eq. [5], r and P(r) represent 
recall and precision respectively. In Eq. [6], n represents the 
number of detection targets types. In this study, mAP was 
equal to average precision (AP) because there was only one 
type of detection target, i.e., fluorescence signal.

The experiment was conducted using Linux with 
NVIDIA Tesla V100 GPU. Python 3.5.6 was the 
programming language used in the experiment, based 
on TensorFlow-GPU 1.14.0 deep learning framework. 
Epoch, batch size, and initial learning rate were set to 200, 
24, and 0.001, respectively, in correspondence with other 
comparable algorithms. The initialization parameters for 
training were tabulated in Table 2.

Results

CACs identification

The flowchart for the identification of CACs was presented 
in Figure 6. In the data preprocessing stage, the mask of the 
individual nucleus was segmented from the DAPI images 
by applying the Mask R-CNN. Subsequently, the FISH 
fluorescence images were also segmented into single-cell 
images based on the nucleus mask. Next, the segmented 
single-cell FISH fluorescence images were used as an input 
for the developed (in this study) algorithm to derive the 
number and location of the signal points. Hence, the CACs 
were identified according to the classification rule of cells, 
as shown in Table 1. 

Comparison of four networks

To evaluate the performance of the proposed Multi-
scale MobileNet-YOLO-V4 for fluorescence signal 
detection, the developed approach was compared with the 
YOLO-V4, YOLO-V4 Tiny, and MobileNet-YOLO-V4. 
The patches, which were single-cell images of 4-color 
channels in the dataset, were utilized as the experimental 
data. K-fold cross-validation (29) was applied for evaluating 
the overall performance of the model more objectively 
and comprehensively. In the experiment, five-folds cross-
validation were used to randomize the datasets to five parts, 
and each time, one part was used as testing sets, while the 
remaining four parts as training sets and validation sets, 
of which the ratio was 4:1. The final overall performance 
of the model was presented as the mean of five runs with 

Table 2 The initialization parameters of training

Parameters Value

Input size 416×416

Batch size 24

Momentum 0.9

Initial learning rate 0.001

Epoch 200
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different data as testing sets. The evaluation criteria have 
been presented as Eqs. [1-4,6]. In addition, the test time was 
recorded to confirm the efficiency of the improved network 
proposed in the present study. The test results for the four 
networks have been presented in Table 3. Figure 7 showed 
the precision-recall (P-R) curves of the first test dataset of 
four detection models in four different color channels based 

on five-folds cross-validation. The remaining results were 
shown in Figure S1.

As presented in Table 3, the accuracy of Multi-scale 
MobileNet-YOLO-V4 was approximately 98%, the 
highest among all four channels. Moreover, the values 
of sensitivity, precision, F1-score and mAP were close 
to 100%. In all these metrics, Multi-scale MobileNet-

Figure 6 The flowchart for CACs identification. The images were captured with 60× objective lens and 10× eyepiece. The flowchart 
includes three sections: (A) Data preprocessing; (B) fluorescence signals detection; (C) classification of cells. DAPI, 4',6-diamidino-
2-phenylindole; FISH, fluorescence in situ hybridization; CAC, circulating genetically abnormal cell; Mask R-CNN, mask region 
convolutional neural networks.
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YOLO-V4 outperformed the other three networks applied 
in fluorescence signal detection. According to Figure S1, 
the performance of the proposed method in fluorescence 
signal detection was superior to that of other networks. It 
was noteworthy that due to the presence of filamentous 
signals in the aqua channel (as depicted in Figure 2E), 
the identification accuracy was consequently lower than 
the other three channels. However, the accuracy of the 
aqua channel was improved to 97.03%, with a difference 
of only approximately 1% compared to the other three 
channels. Furthermore, in terms of detection time, the 
last three models using the lightweight network improved 
the detection speed by 2–3 times when compared to the 
original YOLO-V4. However, our improved Multi-scale 
MobileNet-YOLO-V4 achieved the best performance while 
increasing the detection speed.

Comparison of results with and without the Mosaic data 
augmentation method

The results of Multi-scale MobileNet-YOLO-V4 in Table 3  
were based on the Mosaic data augmentation method. To 

further describe the influence of Mosaic data augmentation 
method on the experimental results comprehensively, the 
Multi-scale MobileNet-YOLO-V4 results with and without 
Mosaic data augmentation method were compared as shown 
in Table 4. The results have proved the effectiveness of the 
Mosaic data enhancement method. 

Results for CACs identification

The fluorescence signals of the 4-color channels detected 
using Multi-scale MobileNet-YOLO-V4 were marked on 
the images with red rectangular boxes. The results were 
then counted, and CACs were detected according to the 
classification rule of cells. The results have been presented 
in Figure 8.

According to the classification rules, it is evident that 
Figure 8A is a deletion cell, Figure 8B,8E are gain cells, 
Figure 8C,8D are normal cells, and Figure 8F is a CAC. 
The evaluation indicators for the identification of CACs 
were the same as Eqs. [1-4]. Among them, TP indicated 
the number of correctly identified CACs, FP indicated 
the number of falsely detected CACs, and FN indicated 

Table 3 The test results of the four networks

Net Probe Accuracy (%) Recall (%) Precision (%) F1 (%) mAP (%) (IOU =0.5) Time (s)

YOLO-V4 Aqua 89.29 96.23 92.53 94.34 95.62 0.040

YOLO-V4 Tiny Aqua 91.96 98.25 93.49 95.81 96.71 0.017

MobileNet-YOLO-V4 Aqua 93.46 98.80 94.53 96.62 97.73 0.018

Multi-scale MobileNet-YOLO-V4 Aqua 97.03 99.25 97.75 98.49 99.01 0.020

YOLO-V4 Gold 94.53 98.78 95.65 97.19 99.24 0.041

YOLO-V4 Tiny Gold 95.10 98.96 96.06 97.49 99.39 0.016

MobileNet-YOLO-V4 Gold 97.57 98.98 98.55 98.77 99.77 0.018

Multi-scale MobileNet-YOLO-V4 Gold 98.20 99.29 98.89 99.09 99.86 0.018

YOLO-V4 Green 96.46 99.21 97.21 98.20 99.49 0.039

YOLO-V4 Tiny Green 97.06 99.11 97.91 98.51 99.59 0.015

MobileNet-YOLO-V4 Green 98.13 99.43 98.69 99.06 99.79 0.019

Multi-scale MobileNet-YOLO-V4 Green 98.93 99.56 99.36 99.46 99.91 0.019

YOLO-V4 Red 87.09 98.23 88.48 93.10 97.27 0.038

YOLO-V4 Tiny Red 94.83 98.92 95.82 97.35 98.14 0.017

MobileNet-YOLO-V4 Red 96.46 98.77 97.64 98.20 99.38 0.018

Multi-scale MobileNet-YOLO-V4 Red 98.13 99.29 98.82 99.06 99.83 0.019

F1, F1-score; mAP, mean average precision; IOU, intersection over union; YOLO, You Only Look Once.

https://cdn.amegroups.cn/static/public/QIMS-21-909-supplementary.pdf
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Figure 7 The precision-recall (P-R) curves of the first test dataset of four detection models in four different color channels based on five-
folds cross-validation. (A-D) Corresponded to the four-color channels (i.e., aqua, gold, green and red) respectively. YOLO, You Only Look 
Once.

Table 4 The results of the Multi-scale MobileNet-YOLO-V4 with and without Mosaic data augmentation method

Probe Mosaic Accuracy (%) Recall (%) Precision (%) F1 (%) mAP (%)

Aqua Yes 97.03 99.25 97.75 98.49 99.01

No 95.90 98.93 96.90 97.91 98.23

Gold Yes 98.20 99.29 98.89 99.09 99.86

No 97.73 99.19 98.52 98.85 99.80

Green Yes 98.93 99.56 99.36 99.46 99.91

No 98.43 99.49 98.93 99.21 99.85

Red Yes 98.13 99.29 98.82 99.06 99.83

No 97.46 99.12 98.32 98.72 99.59

F1, F1-score; mAP, mean average precision; YOLO, You Only Look Once.
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the number of missed CACs. The test results have been 
presented in Table 5. 

I t  has  been experimental ly  proven that  Mult i-
scale MobileNet-YOLO-V4 is better than that of the 
other networks. Using the approach in this study, the 
accuracy, sensitivity, precision, and F1-score values in the 
identification of CACs reached 93.86%, 90.57%, 87.80%, 
and 89.16%, respectively. Further, the detection speed of the 
method used in this study is advantageous when compared 
to YOLO-V4. Furthermore, based on the performance of 
MobileNet-YOLO-V4 and the method used in this study, 
it could be inferred that adding a larger scale output would 
indeed be beneficial for the identification CACs.

Discussion

Currently, LDCT scanning is the most extensively used 
method for the detection of pulmonary nodules. However, 
LDCT is radiative and unable to distinguish between 
malignant and non-malignant pulmonary nodules (3). 
Though CACs act as “liquid biopsy” of cancer and play a 
critical role in early cancer diagnosis, their detection in the 
blood poses a challenge. The morphology-based approach 
for automated CACs identification had three main defects 
as follows: Firstly, a large amount of training data being 
used to train the model is necessary for a machine learning 
classifier based on cell morphology approach (30). For 
example, the detection accuracy of the model compromised 

Figure 8 Fluorescence signal detection based on the Multi-scale MobileNet-YOLO-V4. The images were captured with 60× objective lens 
and 10× eyepiece. (A) A deletion cell; (B,E) gain cells; (C,D) normal cells; (F) a CAC. CAC, circulating genetically abnormal cell; YOLO, 
You Only Look Once.
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greatly as the CAC quantity was not enough (31). However, 
CAC is extremely rare cell, and thus, it tends to cause 
insufficient data and serious data imbalance. Secondly, the 
morphological analysis of CACs had revealed that they were 
uneven in morphology—either round or oval, with sizes 
ranging from 4 to 30 µm (7). Moreover, if the size of CACs 
was similar to other cells, such as nucleated blood cells 
in certain prostate cancers (5) and even white blood cells 
in certain cases (7), the false-positive rate might increase. 
Therefore, the applicability of methods based on the 
morphology of CACs was limited. Finally, these methods 
involved end-to-end prediction, lacking integration with 
clinically interpretable methods. The blood-based 4-color 
FISH method for the identification of CACs was possible to 
achieve undisputed detection results, which identified CACs 
by analyzing the number of fluorescence signals in the 
different channels according to the identification rules, as 
presented in Table 1. The method could accurately identify 
patients with lung cancer by enabling a reduction in the 
frequency of non-malignant nodules biopsied, which has 
been applied in clinical practice (32-36). 

From Tables 3,5, it can be observed that the original 
YOLO-V4 exhibited low accuracy, sensitivity, and precision 
and also required a long testing time. Numerous high-level 
semantic features are unessential in fluorescence signal 
detection as these signals are simple in structure and have a 
small area. However, extensive texture details and location 
information are required to be added. Therefore, a deep 
network structure is unnecessary and may lead to overfitting 
due to insufficient training data. Improved results obtained 
using YOLO-V4 Tiny compared to YOLO-V4 proved 
that there was no requirement for a deep network to detect 
fluorescence signals. The results were further improved 
when CSPDarkNet53 was replaced with MobileNet-V3.

As shown in Table 3, the precision and sensitivity of 
MobileNet-YOLO-V4 were lower than those of Multi-
scale MobileNet-YOLO-V4. The MobileNet-YOLO-V4 
algorithm missed relatively small signal points, as shown 

in the experimental results (Figure 9A,9B). In addition, 
there was false detection to such significantly large noise 
interference. As depicted in Figure 2, the percentage of 
signal points in the patches was relatively small. The 
K-means clustering algorithm was applied to cluster the 
width and height of the target boxes of the signal points 
in the dataset. The average overlap (AvgIOU) was used 
as a measure in the target clustering analysis to cluster 
the dataset. The average pixel of the signal points was 
determined as 25×25 in a 416×416 cell image, which was 
approximately 0.361% in an image. According to the 
characteristics of the network architecture of YOLO-V4, 
the small size feature maps at the top level mainly provided 
deep semantic information, while the large size feature maps 
at the bottom level provided more information regarding 
the location of the target. The addition of the 4-fold 
down-sampling feature map of the output to MobileNet-
YOLO-V4 for target detection improved the detection 
capability of the network for relatively small targets as more 
information on the size and location of small-signal points 
was now available. Meanwhile, to address the false detection 
of noisy points, the output of the smallest scale, i.e., the 
output of detecting the large targets, was deleted, which 
enhanced the robustness of the model against interference 
from noisy points. The results have been presented in 
Figure 9C,9D. 

When the distance between two signal points was 
considerably small or when the points were partially 
overlapping, as depicted in Figure 9E,9F, they could be 
detected as one signal point. Meanwhile, the filamentous 
signal (Figure 9G,9H) of the aqua channel could be easily 
identified as two or more signal points. Data augmentation 
for this case was done using the Mosaic data augmentation 
method (18), which spliced four different images by 
flipping, zooming, and cropping. Then the background of 
the detected object was enriched, and the detection of small 
targets was also enhanced. The experiments conducted 
in this study have demonstrated that using the Mosaic 

Table 5 The accuracy of CACs identification

Net Accuracy (%) Recall (%) Precision (%) F1 (%) Time (s)

YOLO-V4 87.45 74.21 72.84 73.52 0.039

YOLO-V4 Tiny 89.23 77.99 74.25 76.17 0.016

MobileNet-YOLO-V4 91.36 80.50 79.50 80.01 0.018

Multi-scale MobileNet-YOLO-V4 93.86 90.57 87.80 89.16 0.019

CAC, circulating genetically abnormal cell; F1, F1-score; YOLO, You Only Look Once.
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data augmentation method could enhance the accuracy 
by approximately 2% in CACs identification. The Mosaic 
data augmentation method was also effective in detecting 
overlapping signals.

The accuracy (93.86%) and sensitivity (90.57%) of the 
results obtained in this study have reached the level of human 
expert (accuracy 94.2% and sensitivity 89%) compared to 
the manual counting method using FISH technology (3). 
Furthermore, the method used in this study is significantly 
faster than manual identification by a factor of approximately 
500. Furthermore, compared to other state-of-the-art 
methods related to deep learning, used in the identification 
of CACs, such as NBC (Semi-supervised) (F1 86.9%) (37),  
Faster R-CNN Deep Detector (F1 85.5%) (38), and 
improved faster R-CNN based network (F1 84.7%) (39),  
the F1 of the method used in this study was higher. This 
indicated the promising overall performance of the method 
used in this study and hence established it as a highly 
competitive method that could be used for clinical practice.

Conclusions

In the present study, an efficient automatic approach for the 
identification of CACs, based on Multi-scale MobileNet-
YOLO-V4 was proposed. The Multi-scale MobileNet-
YOLO-V4 is a lightweight network for processing 
fluorescence images. The backbone of YOLO-V4 was 
replaced with MobileNet-V3 to avoid overfitting and 
improve detection efficiency. In addition, a larger scale 
output was added to suitably detect small targets. The 
experimental results demonstrated that compared to 
the expert, the proposed approach showed excellent 
performance accuracy of 93.86% and a processing time of 
0.076 s/cell. The present study would provide novel insights 
into the problems encountered in the identification of 
CACs.
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Figure S1 The P-R curves of four detection models in four different color channels based on five-folds cross validation. (A-E) Five groups 
of results from the 5-fold cross-validation. (a-d) corresponded to the four-color channels (i.e., aqua, gold, green and red) respectively.


