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Background: Ultrasonography—an imaging technique that can show the anatomical section of nerves and 
surrounding tissues—is one of the most effective imaging methods to diagnose nerve diseases. However, 
segmenting the median nerve in two-dimensional (2D) ultrasound images is challenging due to the tiny 
and inconspicuous size of the nerve, the low contrast of images, and imaging noise. This study aimed to 
apply deep learning approaches to improve the accuracy of automatic segmentation of the median nerve in 
ultrasound images.
Methods: In this study, we proposed an improved network called VGG16-UNet, which incorporates 
a contracting path and an expanding path. The contracting path is the VGG16 model with the 3 fully 
connected layers removed. The architecture of the expanding path resembles the upsampling path of 
U-Net. Moreover, attention mechanisms or/and residual modules were added to the U-Net and VGG16-
UNet, which sequentially obtained Attention-UNet (A-UNet), Summation-UNet (S-UNet), Attention-
Summation-UNet (AS-UNet), Attention-VGG16-UNet (A-VGG16-UNet), Summation-VGG16-UNet 
(S-VGG16-UNet), and Attention-Summation-VGG16-UNet (AS-VGG16-UNet). Each model was trained 
on the dataset of 910 median nerve images from 19 participants and tested on 207 frames from a new image 
sequence. The performance of the models was evaluated by metrics including Dice similarity coefficient 
(Dice), Jaccard similarity coefficient (Jaccard), Precision, and Recall. Based on the best segmentation results, 
we reconstructed a 3D median nerve image using the volume rendering method in the Visualization Toolkit 
(VTK) to assist in clinical nerve diagnosis.
Results: The results of paired t-tests showed significant differences (P<0.01) in the metrics’ values of 
different models. It showed that AS-UNet ranked first in U-Net models. The VGG16-UNet and its variants 
performed better than the corresponding U-Net models. Furthermore, the model’s performance with the 
attention mechanism was superior to that with the residual module either based on U-Net or VGG16-UNet. 
The A-VGG16-UNet achieved the best performance (Dice =0.904±0.035, Jaccard =0.826±0.057, Precision 
=0.905±0.061, and Recall =0.909±0.061). Finally, we applied the trained A-VGG16-UNet to segment the 
median nerve in the image sequence, then reconstructed and visualized the 3D image of the median nerve. 
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Introduction

Ultrasound technology provides real-time imaging of 
nerves, and has thus been widely applied in nerve diagnosis 
and treatment, for example, ultrasound-guided drug 
injection (1), peripheral nerve blockade (2), the diagnosis of 
traumatic nerve injuries (3,4), postoperative complications 
of nerve repair (5), inflammatory neuropathies (6), and 
nerve entrapment syndromes (7,8). The benefits of 
ultrasound imaging include the ability to depict nerve 
morphology, describe the degree of nerve injuries, quantify 
nerve size/pathology, uncover the underlying cause, and 
guide a likely intervention or forthcoming surgery; all of 
which share the common goal of localizing and segmenting 
the nerve. The nerve appears hyperechoic in ultrasound 
images with a honeycomb texture (9). However, nerve 
segmentation in ultrasound images is incredibly challenging 
due to the tiny and inconspicuous size of nerves, the low 
image quality, degradation of structure details induced by 
noise disturbance of the ultrasound waves, and blurred 
demarcation of anatomical tissues due to the low contrast 
with neighboring nerves.

Concerted efforts have previously been made for 
automatic detection and segmentation of the median 
nerve in medical ultrasound images. A machine learning 
framework was proposed to enable robust detection of the 
median nerve (10). Hafiane et al. (11) used deep learning 
combined with spatiotemporal information to robustly 
segment the nerve region. Ding et al. (12) proposed the 
BPMSegNet network for multiple instance segmentation 
in brachial plexus ultrasound images. Horng et al. (13) 
proposed a new convolutional neural network framework 
called DeepNerve for localization and segmentation of the 
median neve. Festen et al. (14) used a U-Net-shaped neural 
network for segmentation of the median nerve, and Wu  
et al. (15) evaluated the performance of the pretrained 

models using ultrasound images of the median nerve. 
However, in these studies, the ultrasound image of the 
median nerve was recorded at the level of wrist inlet. The 
segmentation contour of the median nerve displayed in 
a two-dimensional (2D) image lacks information of the 
morphology and travel direction when a section of the nerve 
needs to be evaluated from different perspectives. Important 
image features may be overlooked if only 2D images from 
the traditional sonogram are used for assessment (16). 
Therefore, this study aimed to propose a deep learning 
method for automatic segmentation of the median nerve 
in a sequence of ultrasound images and demonstrate the 
potential for 3D reconstruction of the median nerve based 
on the segmentation results.

Previous studies

The U-Net  (17)  i s  a  commonly  used  model  for 
segmentation in ultrasound images, and modified versions 
of U-Net (18-21) were proposed to detect and segment 
the brachial plexus. The Visual Geometry Group (VGG) 
network (22) proposed in ImageNet Large Scale Visual 
Recognition Challenge (ILSVRC) 2014 improves the 
recognition performance by increasing the depth of the 
convolutional neural network (CNN), in which the best 
network contains 16 weight layers. The VGG model is 
useful for object localization due to its tiny filter size-based 
design (23). The networks based on VGG architecture have 
been applied for detection and segmentation (24-28). Skip 
connection is a standard module in many convolutional 
architectures, and attention is a mechanism that can 
improve the performance of the model by incorporating an 
encoder and decoder.

Skip connections (i.e., shortcut connections), add an 
extra layer of connection from the network input to the 

Conclusions: This study demonstrates that the attention mechanism and residual module improve deep 
learning models for segmenting ultrasound images. The proposed VGG16-UNet-based models performed 
better than U-Net-based models. With segmentation, a 3D median nerve image can be reconstructed and 
can provide a visual reference for nerve diagnosis.
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output (skipping 1 or more layers) and have been analyzed 
in previous literature (29-31). The extra layer can be 
linear, such as identity mapping in ResNet (32), or non-
linear with gating functions, as in Highway Networks (33).  
Skip connections are used to bypass the signal from 1 
layer to another, which can help the algorithm avoid being 
attracted to spurious local optima and guide the algorithm 
to evolve towards a global optima (32,34), therefore solving 
the problem of gradient explosion and gradient vanishing 
during training in deep networks. Research has also shown 
that skip connections perform identity mapping and their 
inputs are added to the outputs of the stacked layers, 
forming the residual module (32,35-38). 

Technically, summation and concatenation (copy and 
cut) of feature maps are the most popular operations in skip 
connections for feature fusion (39). In concatenation, only 
the number of channels for the features increases, while the 
information of each feature does not gain. Concatenation 
is often used to aggregate and merge the features extracted 
by multiple convolutional feature extraction frameworks. 
During summation, the information increases with the 
amount of the channel constant, which is beneficial to the 
classification of the final image. Furthermore, summation 
has been demonstrated to preserve the spatial information 
lost during the pooling operation and capture full resolution 
features (35).

The attention mechanism is a resource allocation scheme 
to allocate computing resources to more important tasks 
and solve the problem of information overload when 
computing power is limited. Previous research used the 
attention mechanism to connect deep layers to shallow 
layers, enabling the model to distinguish regions as a useful 
feature selection function in computer vision (40-42). The 
inputs of the attention mechanism are the outputs produced 
by the encoder. They are weighted and combined into the 
decoder at the current location to influence the output of 
the decoder. By weighting the outputs of the encoder, more 
context information from the raw data can be used while 
aligning the inputs with the outputs of the decoder.

Our main aim in this work was to develop improved 
models for median nerve segmentation in ultrasound images 
and to reconstruct the 3D visualization of the median nerve 
based on the best segmentation results. Based on U-Net 
and VGG16, an improved network called VGG16-UNet 
was proposed. To enhance the improvement of the model 
performance, the attention mechanism and/or the residual 
module were added to the U-Net and VGG16-UNet to 
subsequently obtain the following models: Attention-UNet 

(A-UNet), Summation-UNet (S-UNet), and Attention-
Summation-UNet (AS-UNet),  Attention-VGG16-
UNet (A-VGG16-UNet), Summation-VGG16-UNet 
(S-VGG16-UNet), and Attention-Summation-VGG16-
UNet (AS-VGG16-UNet). Then, the performance of 
these models was evaluated by metrics including Dice, 
Jaccard, Precision, and Recall. Based on the weighted 
blending results of the median nerve image sequence and its 
corresponding best segmentation results, 3D visualization of 
the median nerve was reconstructed with the Visualization 
Toolkit (VTK) (43) to assist in clinical nerve diagnosis.

Contributions

In this study, we propose a deep learning approach to 
improve the accuracy of automatic segmentation of the 
median nerve in ultrasound image sequence. Specifically, 
we make the following contributions: (I) we propose a 
novel method by combining the VGG16 network and the 
architecture resembling the upsampling path of U-Net, 
aiming to improve the segmentation performance of U-Net 
model; (II) we apply the attention mechanism and residual 
module to the U-Net and VGG16-UNet and achieve better 
performance than the corresponding original models. 

The proposed A-VGG16-UNet model provides the 
highest accuracy of automatic segmentation of the median 
nerve compared with other existing methods.

We present the following article in accordance with the 
Transparent Reporting of a multivariable prediction model 
for Individual Prognosis or Diagnosis (TRIPOD) reporting 
checklist (available at https://qims.amegroups.com/article/
view/10.21037/qims-21-1074/rc).

Methods

Dataset description

In this work, a dataset of the median nerve of 20 healthy 
participants was collected by doctors from the Third 
Affiliated Hospital of Sun Yat-Sen University. The inclusion 
criteria were as follows: (I) aged 20–45 years; and (II) no 
history of peripheral nerve injuries or wrist injury. The 
study was conducted in accordance with the Declaration of 
Helsinki (as revised in 2013). The study was approved by 
the Ethics Committee of the Third Affiliated Hospital of 
Sun Yat-sen University, and informed consent was provided 
by all individual participants.

For each participant, 1 or 2 ultrasound videos of the 

https://qims.amegroups.com/article/view/10.21037/qims-21-1074/rc
https://qims.amegroups.com/article/view/10.21037/qims-21-1074/rc
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median nerve were acquired using an S-Nerve Ultrasound 
System (Fujifilm SonoSite Inc., Bothell, WA, USA) 
equipped with a HFL38x probe with a central frequency 
of 10 MHz. All participants were positioned with the palm 
facing upward, arm on the pillow, and wrist in neutral 
position. The probe was placed about 2 cm from the level 
of wrist inlet and then moved from the distal point to the 
proximal on the forearm, as illustrated in Figure 1. During 
scanning, the forearm and wrist remained stationary, and 
the sequence of transverse ultrasound images of the median 
nerve was recorded. 

For the training set, 910 image frames were selected 
from 35 image sequences obtained from 19 participants 
to perform 5-fold cross-validation. The goal of selecting 
frames in a sequence of images was to capture the frames 
that were different from each other and make a final 
training set that covered as much diverse terrain as possible. 
Therefore, sequential images were chosen at an interval of 
5 frames from the image sequence, and 26 image frames on 
average were selected for annotation from each acquired 
image sequence. Then, the image sequence of 207 frames 
collected from the remaining participants were used for the 
test set. The ground truth (GT) of the nerve segmentation 
of each frame was the corresponding binary mask generated 
from the manual delineation of the median nerve using an 
annotation tool LabelMe (44) under the guidance of an 
experienced doctor. In addition, each of the images in the 
dataset was cropped into 320×448 pixels.

Data augmentation

Deep neural networks often require a large amount of 

training data to achieve satisfactory performance. However, 
the available medical images are usually limited. Therefore, 
to reduce the impact of insufficient data, data augmentation 
is commonly used to increase the variability in the medical 
dataset. In this study, rotation, clip, zoom, translation, and 
horizontal flip were used in turn to augment the variability 
of the original training set in each iteration of training. 
Since the parameter values of each augmentation mentioned 
above were selected at random, different training sets 
could be obtained in different iteration batches. However, 
the number of images in the training set of each iteration 
remained constant. 

Combination of attention mechanism and/or residual 
module with U-Net

Figure 2 displays the architectures of U-Net model and its 
variants, and the 3 blocks used in the models. The U-Net 
is a classical fully-convolutional network for classification, 
localization, and segmentation in ultrasound images (Figure 
2A). It consists of an encoder (contracting path) and a 
decoder (expanding path). The output of the encoder is the 
feature map or vector that contains the information of the 
input. The decoder has the same structure as the encoder 
but takes feature maps as the input and provides a similar 
match to the actual input or intended output. Furthermore, 
concatenating feature maps from the contraction phase 
helps the expansion feature recover the information about 
the location of the respective object. The encoder process 
reduces the size of the input matrix by increasing the 
number of the feature maps. On the contrary, the decoder 
returns the matrix to its original size by minimizing the 
number of the feature maps. Therefore, the segmentation 
results can be compared with the ground truth (GT) in 
every pixel. 

In this study, 3 variants of U-Net (A-UNet, S-UNet, and 
AS-UNet) were proposed by using the attention mechanism 
and/or the residual module based on U-Net. These 3 
variants are described in the remainder of this section. 

The A-UNet (Figure 2B )  combines 4 attention 
mechanisms with U-Net to better represent features 
learned by convolutional layers (Figure 2G). The 2 inputs 
of the attention mechanism are the feature maps extracted 
from the encoder and the decoder, which can restore the 
same spatial resolution as the input image. The output of 
the attention mechanism is concatenated to the result after 
the corresponding upsampling operation. The kernel size 
of the 3 convolutions was 1×1, and the size of the output 

Figure 1 Ultrasound imaging design. The red arrow indicates the 
direction of probe motion.
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of the attention fusion was the same as the size of the 
corresponding encoder feature. Therefore, the attention 
map was calculated with a pointwise operation.

The S-UNet (Figure 2C) can leverage features by adding 
residual modules based on U-Net. The architecture in 
Figure 2F can be a residual module, in which a summation 
operation of the skip connection was applied, adding the 
input of the first convolution layer to the output of the 
second convolution layer of the same module. Ultimately, 
there were 9 residual modules in S-UNet, which made 
better use of the information in the feature maps of 
different layers for model learning. 

The AS-UNet (Figure 2D) combines the characteristics 
of  A-UNet and S-UNet for  better  segmentat ion 
performance. 

The proposed VGG16-UNet and its variants

Figure 3 displays the architectures of VGG16 and its 
variants. As shown in Figure 3A, the VGG16 network has 13 

convolutional layers, 5 pooling layers, and 3 fully connected 
layers in the end of the network. The VGG16 network 
features a homogeneous architecture that only performs 
3×3 convolution and 2×2 max pooling from the beginning 
to the end.

For the improved VGG16-UNet (Figure 3B), similar to 
the networks in (24-26), the final 3 fully connected layers 
of VGG16 (the green solid rectangles in Figure 3A) were 
replaced with architecture that resembled the decoding 
part of U-Net, which formed the expanding path with 
convolution layers and upsampling layers. Hence, the 
VGG16 without the final 3 fully connected layers was 
retained as the contracting path. Additionally, 3 more 
modifications were performed in this study. (I) For the 
original rectified linear unit (ReLu) activation function in 
7 convolution layers (the final four convolutional blocks in 
Figure 3B), they were replaced with Leaky ReLu (α=0.1). 
(II) We used 4 skip connections (3 concatenations and a 
summation) to combine feature maps of different modules 
in contracting path and expanding path. (III) The size of the 

Figure 2 The architectures of the U-Net and its variants, and three blocks used in the models. (A) U-Net; (B) A-UNet; (C) S-UNet; (D) 
AS-UNet; (E) the convolutional block including 2 convolutional layers, each of which is followed by a ReLu activation function; (F) the 
residual module, in which F(x)+x is realized by feedforward neural networks with “skip connections”; (G) the attention mechanism applied in 
A-UNet and AS-UNet. ReLu, rectified linear unit.
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kernel for the upsampling operation was 4×4.
The AS-VGG16-UNet (Figure 3C) applies attention 

mechanisms and residual modules to VGG16-UNet. 
Meanwhile, A-VGG16-UNet and S-VGG16-UNet, which 
are constructed like A-UNet and S-UNet, were also used in 
this study.

3D nerve visualization using the VTK

More recently, 3D ultrasound image reconstruction 
based on 2D images has become a popular method to 
analyze abnormalities in some parts of the anatomy (45).  
The VTK toolbox is an open source, free software 
system for 3D computer graphics, image processing 
and visualization (43). It was originally designed for 
medical applications, so it has powerful capabilities for 
medical visualization (46). It encapsulates some common 
visualization algorithms, such as surface rendering used 
in Marching Cubes (MC) and volume rendering used 
in light projection (Ray-Casting), to reconstruct the 
3D structure of objects from 2D images into a type of 
packaging in the form provided to the user. 

The volume rendering method uses the transfer functions 
to convert volume data values into optical properties such as 
color, opacity, and gradient, which are then combined into 
pixels on the screen to form a 3D image. The VTK is also 
used for 3D reconstruction and visualization (45,47).

In this paper, 3D median nerve reconstruction and 
visualization were completed with the volume rendering 
method and by implementing vtkPiecewiseFunction 
and vtkColorTransferFunction classes as the design of 
transfer functions. The weighted blending results of the 
image sequence of the median nerve and the responding 
segmentation results were input as a volume into the system 
by using the function vtkJPGReader. 

Evaluation metrics

To quantitatively measure the image segmentation 
performances of the 8 models, this study defined 2 region-
based assessment metrics, Precision (Eq. [1]) and Recall 
(Eq. [2]), which were calculated based on the region overlap 
between manually and automatically segmented results. 
In addition, Dice similarity coefficient (Dice, Eq. [3]) and 
Jaccard similarity coefficient (Jaccard, Eq. [4]) were used 
to evaluate the general accuracy of the mass segmentation. 
The values of these 4 metrics are between 0 and 1. They are 
defined as follows:

TP
Precision = 

TP + FP
 [1]

TP
Recall =

TP + FN
 [2]

Figure 3 The architectures of VGG16 and its variants. (A) VGG16 network. The digit in blue blocks means the number of convolutional 
layers, each of which is followed by a ReLu function. (B) VGG16-UNet, in which the contracting path is the VGG16 removing the 3 fully 
connected layers and the expanding path is the architecture resembling the upsampling path of U-Net. (C) AS-VGG16-UNet, integrating 
both attention mechanism and residual module. ReLu, rectified linear unit. 
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∩2 GT SR
Dice =

GT + SR
 [3]

∩

∪

GT SR
Jaccard =

GT SR
 [4]

where TP, FP, and FN denote the pixel numbers of true 
positives, false positives, and false negatives, respectively. 
The GT denotes the ground truth, SR denotes the 
segmented result, and |∙| denotes the region size. 

Experimental setup

All the models used in this study were implemented using 
the Python 3.6 programming language with Tensorflow 
and Keras libraries, and all experiments were performed on 
NVIDIA TITAN X graphics processing unit (GPU). The 
training parameters and training strategy of the models are 
outlined in Table 1, in which each assignment is optimal for 
each model. Additionally, each model was trained with a 
training set after data augmentation.

Results

In this study, we proposed and constructed 8 models based 
on U-Net and VGG. For each model, 5-fold cross-validation 
was performed on the training set, and the test set was used 
to illustrate the effectiveness of the trained models. The 
evaluation metrics mentioned in the Methods section were 
used to compare the segmentation results of the 8 models 
and ground truths. The metrics were calculated for each 
image in the test set, and all values of the evaluation metrics 
were presented as mean ± standard deviation. Paired t-tests 

were performed on the metrics’ values of different models. 
We also compared our proposed methods with 3 other 
methods, including ResUNet (48), MultiResUNet (49),  
and UNet++ (50). 

Evaluation of segmentation using U-Net and the proposed 
U-Net variants

Table 2 shows the 4 evaluation metrics used to evaluate and 
analyze the segmentation performance of the U-Net and 
its 3 variants. The 3 variants of U-Net had higher scores 
than U-Net on Dice, Jaccard, and Precision. The A-UNet 
had significantly higher values of Dice, Jaccard, and Recall 
(0.869±0.054, 0.772±0.082, and 0.932±0.040, P<0.01, 
respectively) and outperformed S-UNet; AS-UNet had 
significantly higher values of Dice, Jaccard, and Precision 
(0.881±0.038, 0.789±0.059 and 0.865±0.065, P<0.01, 
respectively) and performed better than A-UNet. The 
quantitative segmentation results suggested that AS-UNet 
had the best performance.

As shown in the second row of Figure 4, the segmentation 
contours produced by A-UNet (red), S-UNet (purple), and 
AS-UNet (orange) were closer to the ground truths (yellow), 
compared to U-Net (green). The results demonstrated the 
significance of the attention mechanism and the residual 
module to improve the performance of the U-Net model.

Evaluation of Segmentation using the proposed VGG16-
UNet and its variants

The experiment results of the proposed VGG16-UNet and 
its variants were quantitatively evaluated with evaluation 
metrics. As shown in Table 2, all 3 variants of VGG16-

Table 1 Parameters assigned to each deep learning model

Methods Batch size Training epochs No. of trainable variables Loss function Optimizer Learning rate

U-Net 2 30 31,031,685 Cross entropy Adam 0.00001

A-UNet 2 30 31,380,805 Cross entropy Adam 0.00001

S-UNet 2 30 32,427,333 Cross entropy Adam 0.00001

AS-UNet 2 30 32,242,885 Cross entropy Adam 0.00001

VGG16-UNet 2 30 38,337,473 Cross entropy SGD 0.01

A-VGG16-UNet 2 30 40,493,377 Cross entropy SGD 0.01

S-VGG16-UNet 2 30 39,290,177 Cross entropy SGD 0.01

AS-VGG16-UNet 2 30 41,880,769 Cross entropy SGD 0.01

SGD, stochastic gradient descent. 
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Table 2 Segmentation results (mean ± standard deviation) of test set produced by the 8 methods using 5-fold cross-validation

Methods
Metrics

Dice Jaccard Precision Recall

U-Net 0.846±0.048 0.739±0.071 0.788±0.072 0.926±0.036

A-UNet 0.869±0.054+ 0.772±0.082+ 0.819±0.084 0.932±0.040+

S-UNet 0.855±0.056 0.751±0.084 0.871±0.085 0.845±0.067

AS-UNet 0.881±0.038* 0.789±0.059* 0.865±0.065* 0.901±0.043

VGG16-UNet 0.868±0.047 0.769±0.072 0.792±0.077 0.965±0.028

A-VGG16-UNet 0.904±0.035** 0.826±0.057** 0.905±0.061** 0.909±0.061

S-VGG16-UNet 0.891±0.044 0.806±0.071 0.834±0.077 0.962±0.033

AS-VGG16-UNet 0.893±0.038 ++ 0.810±0.061 ++ 0.879±0.061 ++ 0.912±0.046
+, the statistically significant improvement at P<0.01 vs. S-UNet; *, the statistically significant improvement at P<0.01 vs. A-UNet; ++, the 
statistically significant improvements at P<0.01 vs. S-VGG16-UNet; **, the statistically significant improvement at P<0.01 vs. the other 
three VGG16-UNet models.

Figure 4 Four frames are selected from the median nerve image sequence (the first row). The region of interest of the median nerve is 
highlighted in red rectangle. The segmentation results shown in the enlarged images are obtained using U-Net and its variants (the second 
row), VGG16-UNet and its variants (the third row). The yellow curves represent the manual delineation (ground truths). The green, red, 
purple, and orange curves indicate the segmentations generated by U-Net, A-UNet, S-UNet and AS-UNet (the second row), and the 
segmentations produced by VGG16-UNet, A-VGG16-UNet, S-VGG16-UNet, and AS-VGG16-UNet (the third row), respectively.
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UNet performed better compared with VGG16-UNet. 
Similar to U-Net and its variants, the results reconfirmed 
that the attention mechanism and the residual module 
can enhance the performance of the deep learning model 
for segmentation. The AS-VGG16-UNet model had 
significantly higher values of Dice, Jaccard, and Precision 
(0.893±0.038, 0.810±0.061, and 0.879±0.061, P<0.01) and 
performed better than S-VGG16-UNet. Interestingly, 
the segmentation results of A-VGG16-UNet obtained the 
highest results (Dice of 0.904±0.035, Jaccard of 0.826±0.057, 
and Precision of 0.905±0.061; P<0.01). 

The segmentation results produced by VGG16-UNet 
and its variants are illustrated in the third row in Figure 4. 
Compared to A-VGG16-UNet (red), S-VGG16-UNet 
(purple), and AS-VGG16-UNet (orange), the segmentation 
contours of VGG16-UNet (green) expressed the largest 
difference with the ground truths (yellow). This is 
consistent with the quantitative results shown in Table 2. 

Evaluation of architectures of U-Net and VGG16-UNet 

The results in Table 2 indicate that VGG16-UNet and 
its variants performed better than the corresponding 
U-Net and its variants. With more convolutional layers, 
VGG16-UNet could extract higher dimensional image 
representations by processing local information layer by 
layer in comparison with U-Net.

Interestingly, both A-UNet and S-UNet improved the 
Precision, but S-UNet greatly reduced the Recall. The 
reason might be that the U-Net used in this study could 

not perform well on feature extraction for the details inside 
the median nerve. Adding the attention mechanism or the 
residual module to U-Net improved the Precision, and the 
Precision of S-UNet increased more than that of A-UNet. 
This indicated that the residual module could supplement 
the missing information due to insufficient network depth 
and could extract more details of features. However, doing 
so resulted in under-segmentation to some extent, which 
increased false negatives and therefore decreased Recall. 
Furthermore, since VGG16-UNet could already extract the 
features of the internal details of the median nerve, adding 
the residual module to VGG16-UNet made little difference 
to its original feature extraction ability and then had a 
limited impact on the Recall. 

Comparison of AS-UNet and A-VGG16-UNet with other 
methods

The test set of the median nerve image sequence was used 
to test different methods. Figure 5 shows the comparison 
of evaluation results of AS-UNet, A-VGG16-UNet, 
ResUNet, MultiResUNet, and UNet++. The metric 
scores of Dice, Jaccard, and Precision of A-VGG16-
UNet were significantly improved in comparison with the 
other four methods (P<0.05). Recall of A-VGG16-UNet 
was significantly improved in comparison with AS-UNet, 
ResUNet, and MultiResUNet (P<0.05). 

3D reconstruction and visualization using VTK based on 
the segmentation results

Since A-VGG16-UNet achieved the best performance, the 
segmentation results of the image sequence in the test set 
were produced by the trained A-VGG16-UNet model and 
then used for 3D reconstruction. The segmentation results 
and the corresponding image sequence were blended with 
different weights to highlight the general shape and travel 
direction of the median nerve in 3D visualization. The 
blending results were input as a volume into the system 
using the function vtkJPGReader. Therefore, 3D median 
nerve reconstruction and visualization were obtained by 
using the volume rendering method in VTK. 

As shown in Figure 6, the significantly highlighted area 
illustrates the general shape and travel direction of the 
median nerve from the distal to the proximal on the forearm 
(Figure 1). The 3D reconstruction was displayed from 
different perspectives to view the morphological features of 
the median nerve. 

Figure 5 Comparison results of AS-UNet, A-VGG16-UNet, 
ResUNet, MultiResUNet, and UNet++ tested by the test set. 
Metric Score represents the specific value of the evaluation metrics 
including Dice, Jaccard, Precision, and Recall. *, a statistically 
significant difference at P<0.05 for a paired t-test. 
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Discussion

Deep learning methods based on VGG and U-Net have 
been used for medical or natural image segmentation  
(24-26,51,52), but seldom for nerve segmentation in 
ultrasound images. The main challenges are the low contrast 
of ultrasound images, the tiny and inconspicuous size of the 
nerve, and imaging noise. Since VGG16 is quite simple and 
highlight for having only small convolutional filters (23),  
and U-Net possesses the ability of precise pixel-level 
localization, we proposed a novel model named VGG16-
UNet based on VGG16 and U-Net. Meanwhile, the 
attention mechanism and the residual module were 
applied to U-Net and VGG16-UNet, to produce their 
corresponding variants (A-UNet, S-UNet and AS-UNet, 
A-VGG16-UNet, S-VGG16-UNet and AS-VGG16-
UNet). The spatial attention mechanism can prevent 
missing pixel-level information and improve the accuracy of 
feature extraction (38). The residual module can prevent the 
vanishing gradient problem by applying identity mapping to 
facilitate the training process (36). 

The experimental segmentation results of the median 
nerve dataset showed that, for both U-Net and VGG16-
UNet, the models constructing with the attention 
mechanism and/or the residual module performed better 
than their original models. This demonstrated that the 2 
additions can leverage more learned features between the 

layers to improve the performance of the models. The 
attention mechanism can transform the original image’s 
spatial information into another space while retaining 
essential information or properties, and the residual 
module can preserve the spatial information lost during 
the pooling operation to alleviate the disparity between 
the encoder-decoder features. Furthermore, the model 
with the attention mechanism was superior to that with the 
residual module for both U-Net and VGG16-UNet. This 
showed that the attention mechanism can integrate features 
from the encoder and decoder, while the residual module 
uses identity mapping to add the input to the output of the 
stacked layers. 

T h e  p r o p o s e d  V G G 1 6 - U N e t  c o m b i n e s  t h e 
characteristics of U-Net and VGG, which improves the 
performance of U-Net. Furthermore, the variants of 
VGG16-UNet outperformed the corresponding variants 
of U-Net, respectively, which confirmed the effectiveness 
of the proposed VGG16-UNet in median nerve ultrasound 
image segmentation.

Interestingly, this study found that AS-VGG16-
UNet outperformed AS-UNet, which indicated that 
VGG16 as the encoder can improve feature extraction for 
segmentation. However, the performance of AS-VGG16-
UNet was slightly lower than that of A-VGG16-UNet. 
The possible reason might be that the fusion of features in 
different scales in the encoder degrades the representation 
of the originally extracted features. It has been demonstrated 
that the features in different scales extracted by VGG-
like architecture greatly represent the characteristics of 
the corresponding level (53). Therefore, adding residual 
modules to the encoder of A-VGG16-UNet may influence 
its primarily extracted features, and consequently affect the 
performance of A-VGG16-UNet.

Finally, with a trained A-VGG16-UNet model, the 
automatic segmentation of the median nerve in the image 
sequence was obtained and used for 3D reconstruction. The 
morphology and travel direction of the median nerve was 
displayed in 3D visualization. Therefore, the corresponding 
alternations induced by nerve trauma or carpal tunnel 
syndrome could be detected. From this, the swelling or 
compression and the nerve continuity can be evaluated 
and provide information for diagnosis and follow-up 
rehabilitation (54,55).

Previous studies paid more attention to the median 
nerve in the carpal tunnel, and the images were acquired 
with the probe positioned at the carpal tunnel inlet. Many 
models, such as U-Net-shaped, FPN, Mask-R-CNN, and 

Figure 6 The 3D reconstruction and visualization of the 
median nerve image sequence. The plane formed by the red and 
green axes represents the transverse plane of the median nerve. 
The highlighted area illustrates the median nerve. 3D, three-
dimensional.

Distal        
 Proximal

Palmar

Dorsal

Longitudinal axis

Radial                   Ulnar

Lateral axis



Huang et al. Attention-VGG16-UNet for automatic segmentation of the median nerve3148

© Quantitative Imaging in Medicine and Surgery. All rights reserved.   Quant Imaging Med Surg 2022;12(6):3138-3150 | https://dx.doi.org/10.21037/qims-21-1074

DeepNerve, were used for segmentation of the median 
nerve. Few studies have applied VGG models in median 
nerve segmentation. Additionally, although the image 
sequences of the median nerve were originally acquired 
in (13-15), the segmentation results were displayed in 2D 
image frames without providing the 3D information of 
the nerve. In this study, we scanned the median nerve of 
the forearm by moving the probe from the distal to the 
proximal. We built VGG16-UNet models with/without 
the attention mechanism and/or the residual module for 
automatic segmentation of the median nerve in an image 
sequence, and then a 3D image of the median nerve was 
created to visualize morphology and the location of the 
median nerve from different perspectives. 

Although the results were promising, this study had 
limitations in accuracy and performance of the proposed 
networks. The data for model training was limited and only 
came from healthy participants, which might have resulted 
in overfitting of the model for less-represented features. 
The model would be less effective in the segmentation of 
ultrasound data from unhealthy participants. Therefore, 
expanding the dataset and including the data from a wider 
range of patients is required to improve the practicability of 
the models. In addition, only the ultrasound images of the 
median nerve on the forearm were used in the experiments, 
so it might be difficult to generalize these findings to other 
types of nerve. Therefore, the performance of the proposed 
networks should be evaluated and assessed with more types 
of healthy and injured nerves in future work. 
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