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Introduction

Accurate image segmentation plays an important role in 
both medical image analysis and computer-aided diagnosis 
(CAD). It is a prerequisite for many clinical applications, 
such as diabetes inspection and surgical planning. Recently, 
convolutional neural network (CNN)-based methods have 
achieved great success in many medical image segmentation 

tasks, such as liver segmentation (1-3), vessel segmentation 
(4-6), brain segmentation (7-9), and pancreas segmentation 
(10-13). However, these methods rely heavily on massive 
amounts of annotated data and inevitably encounter various 
imbalance problems in the training process. CNNs can be 
disrupted, and consequently, the final segmentation results 
become inaccurate, especially around the boundary regions.

Medical images include magnetic resonance imaging 
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(MRI), computed tomography (CT), and X-ray scans, 
among others, which are visual representations of the 
internal organs or tissue functions of the human body. Due 
to the continuity of human tissues and the differences in 
various medical image acquisition equipment, the boundary 
imaging of some tissues and organs is not obvious. In 
addition, the size and morphology of various tissues and 
organs are varied. For patients with certain diseases, their 
organ morphology on imaging is distinct, and image 
analysis of these cases is more difficult.

In this paper, we focus on two common imbalance 
problems in medical segmentation tasks: foreground-
to-background imbalance and hard-to-easy imbalance. 
Foreground-to-background imbalance manifests as an 
extreme inequality between the number of positive pixels 
and negative pixels, which is caused by an abundance of 
negative slices and small target regions in positive slices. To 
address these problems, some researchers (14) have used a 
coarse-to-fine strategy to remove abundant negative pixels 
(1,10,14). Regions of interest (ROIs) are cropped from 
coarse segmentation results to enhance the contribution 
rate of positive pixels in the fine stage (Figure S1). However, 
the fine segmentation results are independent of the coarse 
segmentation results. Omission or inaccurate segmentation 
of ROIs often leads to irreparable loss and degrades the 
final segmentation performance (15).

Different from foreground-to-background imbalance, 
distinguishing between hard samples and easy samples lacks 

suitable rules, and the segmentation difficulty of slices may 
vary according to different tasks (e.g., an easy slice in a liver 
segmentation task may be a hard one in a tumor segmentation 
task), so it is almost impossible to discriminate hard samples 
or easy samples before the training process. We observed that 
hard samples can give rise to self-defects (e.g., morphological 
variation, lesions, and tumors, among others). Therefore, 
accurate segmentation of these cases is of great significance 
in clinical application. To alleviate this problem, focal loss is 
used to enhance the contribution of hard pixels by adjusting 
their weight in loss function (16). However, these methods are 
unable to address the imbalance problem between hard slices 
and easy slices. Zhang et al. used the pretraining method to 
handle hard-to-easy imbalance in liver segmentation (17), but 
it required a two-stage training strategy and extra datasets.

To address the above problems, we propose two simple 
but effective sample balancing methods: positive-negative 
subset selection (PNSS) and hard-easy subset selection 
(HESS). Unlike traditional example mining-based methods 
such as online hard example mining (OHEM), they 
directly abandon most negative examples, which leads to 
an inefficient training effect (18). In PNSS, we gradually 
remove negative slices to enhance the contribution of 
positive pixels (Figure 1). In addition, it is observed that 
the majority of negative slices are easier to segment than 
positive ones (Figure 2); therefore, PNSS could also alleviate 
the hard-to-easy imbalance problem to a certain degree. 
Inspired by our previous study (17), we propose the HESS 

Figure 1 Example of the PNSS method. (A) The sample selection method on an individual 3D CT scan. (B) The sample selection method in 
the training process. (C) How L(α, β) regulates the r value in the training process. Red and green denote the positive slices and negative slices, 
respectively, while r represents the selected ratio on negative slices. PNSS, positive-negative subset selection; CT, computed tomography.
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method to alleviate the hard-to-easy imbalance problem, 
especially hard-to-easy imbalance between positive slices. 
HESS increases the iteration of hard slices to assist the 
model in paying greater attention to feature extraction. 
Unlike our research group’s previous work (17), PNSS 
and HESS emphasize dynamic adjustment. Especially for 
HESS, the threshold for distinguishing hard and easy slices 
between positive slices is automatically changed according 
to the training state instead of setting a fixed value.

Among different abdominal organ segmentation tasks, 
accurate pancreas segmentation is especially challenging, as 
it may suffer from serious sample imbalance problems. For 
example, the pancreas often occupies a very small portion 
(e.g., <0.5%) of the entire CT volume, and the abundant 
negative pixels may overwhelm the contribution of target 
pixels in batch-manner training epochs, which can then 
lead to inaccurate results, especially for the pixels around 
boundary areas (10). Moreover, the pancreas has high 
interpatient variability in terms of its shape, position, and 
size, which could hinder the performance of the model.

In this work, we evaluated the effectiveness of our 
proposed method on the National Institutes of Health 
(NIH) dataset, a widely used pancreas segmentation CT 
dataset (13). We found that our method greatly enhanced 

the segmentation performance of the model on the 
worst case in the NIH dataset and achieved competitive 
performance compared to other state-of-the-art methods. 
In addition, performance gains in different 2D networks 
[i.e., fully convolutional network (FCN) (19), U-Net (20), 
high-resolution network (HRNet) (21), and transformers-
based U-Net framework (TransUNet) (22)] and different 
segmentation tasks (i.e., liver and liver tumor segmentation 
from CT scans, brain tumor segmentation from MRI) 
validated its effectiveness and generalizability. We present 
the following article in accordance with the STARD 
reporting checklist (available at https://qims.amegroups.
com/article/view/10.21037/qims-21-798/rc).

Methods

The study was conducted in accordance with the 
Declaration of Helsinki (as revised in 2013).

Datasets and preprocessing

(I) The NIH (https://wiki.cancerimagingarchive.net/
display/Public/Pancreas-CT) dataset is a widely used 
pancreas segmentation CT dataset, which contains 
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Figure 2 DSC information of training slices in training epochs. (A) Overall DSC distribution varies with training epochs. (B) DSC 
distribution during the initial training phase. (C) The number of slices (DSC =1) in each training epoch. (D) The validation DSC in each 
epoch. DSC, dice similarity coefficient.
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82 contrast-enhanced abdominal CT scans with 
corresponding ground truth. The CT scans have a 
resolution of 512×512 pixels, the number of slices 
varies from 181 to 466, and the slice thickness is 
between 1.5 and 2.5 mm. The image intensity values 
for all CT scans are truncated to the range of −150 to 
250 Hounsfield units (HU) to remove the irrelevant 
details. We performed a 4-fold cross-validation in a 
random split from 82 patients for training and testing 
folds, where each testing fold had 21, 21, 20, and 20 
cases, respectively. In each round of 4-fold standard 
cross-validation, we employed 3 folds of data as 
training cases and the remaining fold for testing.

(II) The  L ive r  Tumor  Segmenta t ion  cha l l enge 
(LiTS) dataset (https://competitions.codalab.
org/competitions/17094) is available from the 
Medica l  Image  Comput ing  and  Computer-
Assisted Intervention (MICCAI) 2017 liver tumor 
segmentation challenge, providing 131 CT scans with 
manual annotation labels. For image preprocessing, 
intensity values for all CT scans are truncated to the 
range of −200 to 250 HU. We randomly selected 105 
CT scans for training and the remaining 26 volumes 
for testing.

(III) The Brain Tumors Task of Medical Segmentation 
Decathlon challenge (BT-MSD) dataset (http://
medicaldecathlon.com/) provides 484 multiparametric 
MRI scans with manually annotated brain tumor 
subregions (i.e., edema, enhancing, and nonenhancing 
tumor) (23). In our study, each multiparametric 
sequence included native (T1), post-Gadolinium (Gd) 
contrast T1-weighted (T1-Gd), native T2-weighted 
(T2), and T2 fluid-attenuated inversion recovery (T2-
FLAIR) volumes. All MRI scans were coregistered 
to a reference atlas space using the SRI24 brain 
structure template and resampled to an isotropic voxel 
resolution of 1 mm3. We randomly split the dataset 
with annotations into 436 MRI volumes for training 
and the remaining 48 volumes for testing.

In this paper, we employed the dice similarity coefficient 
(DSC), precision, and recall to evaluate the segmentation 
accuracy,
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Let Vg denote the voxel set of automatic segmentation 
volume, and Vg denote the voxel set of ground-truth 
volume.

Network architecture

The 2D network architecture [residual network (ResNet-34) 
variants] for pancreas segmentation was employed in this 
study (Figure 3). This included an encoder path with 5 
resolution steps on the left and a decoder path with 3 
resolution steps on the right. The left part employs 2D 
convolution layers and residual blocks to learn the low-
level features and high-level features of medical images. 
We performed a convolution operation with a stride of 2 
to reduce the spatial resolution of the feature map by half 
in the encoder path. Inspired by FCN-8s (19), we had the 
right part decompress the extracted high-level features 
into a finer resolution through deconvolution layers. In 
addition to encoder path and decoder path, we imposed a 
convolution block to bridge the skip connections between 
low-level features and high-level features. Moreover, the 
proposed network contained 3 auxiliary loss layers and 1 
main loss layer. For auxiliary loss layers, deconvolution 
layers were applied to upsample feature maps to have the 
same spatial resolution as the inputs.

Loss function

The following binary cross entropy function was employed 
in this work:

( ) ( )( )( )1

1ˆ ˆ ˆ, log 1 1 logN
i i i ii

L y y y y y y
N =

= − + − −∑  [4]

where y represents the ground truth, ŷ  denotes the 
predicted segmentation results, and yi and ˆiy  indicate the 
label and predicted probability for voxel i, respectively. The 
overall loss is formulated as follows:

( ) ( ) ( ) ( )1 1 2 2 3 3ˆ ˆ ˆ ˆ, , , ,total main aux aux auxL L y y L y y L y y L y yβ β β= + + +  [5]

where ( )ˆ, mainL y y ,  ( )1ˆ, auxL y y ,  ( )2ˆ, auxL y y ,  and ( )3ˆ, auxL y y  
denote the main loss and 3 auxiliary losses, respectively; and 
β1, β2, and β3 are the balanced weights and are set as 0.2, 0.4, 
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and 0.8, respectively.

Proposed sample balancing methods

PNSS
With the assumption that there are m cases in the training 
dataset, Xi denotes the i-th case, 1, ,i m= ⋅⋅⋅ , and n slices 
in Xi, xi, j denotes the j-th slices in Xi, 1, ,i n= ⋅⋅⋅ . As shown 
in Figure 1A, there are two types of slices in Xi: negative 
slices and positive slices. Generally, the positive slices are 
at the middle, denoted as Pi, while the negative slices are 
at both ends, denoted as Ni,1 and Ni,2, respectively. We 
assume that there are k positive slices in Xi, and xi,l is the 
first positive slice, { }, ,1, ,i j i nN X x= ⋅⋅⋅ , { }, , , 1, ,i j i l i l kP X x + −= ⋅⋅⋅ ,  

{ },2 , , ,i i l k nN x x+= ⋅⋅⋅ . In medical volumetric images, there is 
a strong correlation between adjacent slices, which is useful 
in information complementation. In order to effectively 
extract the feature information of positive slices, all positive 
slices and their adjacent continuous negative slices were 
selected in each CT scan (Figure 1A). We set the selected 

ratio on negative slices in CT scans as r, [ ]0,1r∈ . The 
selected negative slices are denoted as SNi,1 and SNi,2 along 
with slice number ni,1 and ni,2, respectively:

( ),1 1in l r= − ×    [6]

( ),2 1in n l k r= − − + ×    [7]

where { },1,1 , , 1, ,
ii i l n i lSN x x− −= ⋅⋅⋅  and { },2,2 , , 1, ,

ii i l k i l k nSN x x+ + + −= ⋅⋅⋅ .  
Selected samples in  Xi  are denoted as { },1 ,2, ,r

i i i iSX SN P SN= ,  
and all selected slices in the training dataset are denoted 
as { }1 , ,r r r

nD SX SX= ⋅⋅⋅ . As the selection is between positive 
slices and negative slices, the proposed method is named 
“positive-negative subset selection”. We introduced a 
function ( ),r L α β=  to regulate r in the training process, 
which represents the value of r reduced by α every β epochs 
until r=0 (Figure 1B).

HESS
Following our previous work (17), we used the DSC to 
assess the difficulty of slices in the training process, with a 
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Figure 3 Illustration of the 2D convolutional network architecture of our method. DeConv, deconvolution; Conv, convolution layer; BN, 
batch normalization; ReLU, rectified linear units; ConvBlock, convolutional block; ResBlock, residual block.
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higher DSC indicating easier segmentation. According to 
Eq. [1], if 0< DSC <1, the corresponding slice is a positive 
sample. If DSC =1, the corresponding slice is a negative 
sample. However, we cannot determine the corresponding 
slice if DSC =0, as the DSC of both positive and negative 
slices could reach 0.

In this paper, we propose the HESS method, which 
alleviates hard-to-easy imbalance by increasing the 
iteration of hard slices. We denote the training dataset 
at n-th epoch as r

nD  with m slices, { }1, ,r
n mD d d= ⋅⋅⋅  and 

their corresponding DSC score as { }1, ,r
n mS s s= ⋅⋅⋅ , with r 

representing the selection ratio on negative slices. As shown 
in Figure 4, after every epoch (called main epoch in this 
paper), we distinguished training slices by thresholding. 
Hard slices were selected as Hn and then randomly 
combined into a batch manner to participate in the training 
process (called mini epoch in this paper). For convenience, 
we defined samples as hard slices if 0.5< DSC < smed, where 
smed denotes the average DSC of training slices and is 
calculated as follows:

( )1
1

med ms s s
m

= + +  [8]

We considered slices with DSC <0.5 to be outliers due 
to the fact that they exist stably even when the model is 
converged (Figure 2A).

Implementation details

Our proposed networks were implemented in the public 

TensorFlow platform. During the training process, we used 
stochastic gradient descent (SGD) with a batch size of 6 
and a momentum of 0.9. Inspired by Li et al. (2), the initial 
learning rate was set at 10−4 and decayed by multiplying 

0.9

1 iterations
total iterations

 
− 

 
. We used the early-stop strategy in the 

training process, and the patience was set as 10 epochs. For 
data augmentation, we adopted random flip and mirror for 
all training slices to alleviate the overfitting problem.

The 3D network architecture for pancreas segmentation 
was employed in this work, which is the same as that used 
by Zhao et al. (14). We conducted experiments using a 
32×96×96 patch size. Two deep networks of the same 
architecture were trained with downsampled and original 
3D CT scans for the purpose of coarse ROI definition and 
refined segmentation.

Results

Analysis of hard-to-easy imbalance problems in the 
training process

To overcome the hard-to-easy imbalance problem, we 
recorded the DSC of training slices in each main training 
epoch. In the early training stage, approximately 92% 
of negative slices achieved perfect segmentation results  
(DSC =1), while most positive slices still had poor DSC 
results during this period (Figure 2B). The number of 
perfectly segmented slices continuously increased and 
tended to be stable in the later training stage (Figure 2C).
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Figure 4 Illustration of the pipeline of the HESS method. CNN, convolutional neural network; HESS, hard-easy subset selection.
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The hard-to-easy imbalance problem also exists between 
positive slices. As shown in Figure 2A, the DSC score 
of positive slices has a left-skewed distribution: most of 
positive slices gather into the high DSC region, some in the 
low DSC region (0.5< DSC < smed, hard samples), and just a 
few slices in the very low DSC region (DSC ≤0.5, outliers). 
With iteration increasing, a greater number of positive 
slices could obtain a high DSC. However, there were still 
some hard slices with under-segmentation even when the 
model was converged (Figure 2D).

The effectiveness of the PNSS method with different 
parameters

As shown in Table 1, rapidly taking away abundant negative 
slices could improve the minimum DSC, but the mean DSC 
and maximum DSC decreased. For example, at L(0.2, 1), 
the mean DCS and maximum DSC decreased by 2% and 
1%, respectively, while the minimum DSC improved by 6%. 
When β increased, which means that the removal speed of 
negative slices decreased, the mean DSC, maximum DSC, 
and minimum DSC improved compared to baseline, but 
the improvement effect of the minimum DSC decreased. 
However, when β gradually increased, there was almost 

no difference between baseline and HESS. At L(0.2, 5) 
we obtained the best segmentation performance, and the 
mean DSC, maximum DSC, and minimum DSC improved 
by 0.5%, 0.4%, and 5%, respectively. Therefore, we used  
L(0.2, 5) for medical segmentation experiments in this paper.

The effectiveness of the HESS method

In this paper, we propose HESS, which easily handles hard-
to-easy imbalance, especially for hard-to-easy imbalance 
between positive slices. HESS can enhance the contribution 
of hard slices by improving their iteration in the training 
stage. As shown in Table 2, we observed that using HESS 
alone could enhance the segmentation accuracy under the 
worst case, which outperformed the baseline by nearly 
4% in terms of the minimum DSC. Further performance 
gains could be obtained by applying HESS and PNSS 
simultaneously, and the mean DSC, maximum DSC, and 
minimum DSC improved by nearly 1%, 1%, and 5%, 
respectively. The mean values of the other two indices, 
namely precision and recall, increased from 81.74% 
to 83.60% and from 79.00% to 82.58%, respectively, 
compared to baseline.

Moreover, it was observed that applying both HESS and 
PNSS could speed up the convergence of the training model 
(Figure 5), which means that HESS and PNSS can help the 
model pay greater attention to the extraction of ROIs.

We also conducted experiments on the NIH dataset 
using the method in Zhang et al. (17). We set the threshold 
to 0.6783, the minimum dice score of baselines, to 
distinguish hard and easy samples.

As can be seen in Table 2, the method in Zhang et al. (17)  
was slightly better than the baseline. Although Zhang  
et al.’s (17) overall segmentation performance of the method 
was at the same level as that of HESS and PNSS, HESS and 
PNSS had better segmentation performance for the worst 
case. Moreover, the training set partition strategy of for 
Zhang et al.’s method (17) may render a few samples unable 
to participate in the training process, which may lead to the 
insufficient learning of some details for the model.

Results of the experiments on 2D models

To further verify the effectiveness of the proposed methods, 
we conducted experiments on different classical 2D 
CNN structures, including HRNet, DeepLabv3+, and 
TransUNet. To evaluate the segmentation performance,  
3 metrics (DSC, precision, and recall) were used. As shown 

Table 1 Effectiveness of the PNSS method

Method
DSC (%)

Mean ± std Max Min

ResNet (baseline) 82.70±7.01 88.76 67.92

ResNet + L(0.1, 1) 82.37±6.79 87.62 71.95

ResNet + L(0.1, 3) 83.03±6.33 88.85 71.52

ResNet + L(0.1, 5) 82.67±6.85 88.29 69.24

ResNet + L(0.1, 7) 82.79±7.83 88.93 67.69

ResNet + L(0.1, 9) 82.16±7.33 88.67 68.72

ResNet + L(0.2, 1) 81.29±8.53 87.95 72.12

ResNet + L(0.2, 3) 81.89±7.83 88.45 70.69

ResNet + L(0.2, 5) 83.12±6.21 89.13 71.64

ResNet + L(0.2, 7) 82.75±7.12 88.87 70.36

ResNet + L(0.2, 9) 82.03±6.53 89.05 69.05

L(α, β) means the value of r reduced by α every β epochs until it 
reaches zero, r represents the selected ratio on negative slices. 
PNSS, positive-negative subset selection; DSC, dice similarity 
coefficient; std, standard deviation; max, maximum; min, 
minimum; ResNet, residual network.
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in Table 3, HESS and PNSS could effectively improve the 
segmentation performance on various models, which was 
also observed on ResNet. For example, when using both 
PNSS and HESS methods simultaneously on TransUNet, 
the mean values of the DSC, precision, and recall increased 
from 81.72% to 83.52%, from 82.23% to 84.51%, and 
from 81.38% to 82.41%, respectively, especially for the 
worst case. The indices all increased by nearly 3%, which 
demonstrates the effectiveness of the proposed methods.

Results of the experiments on 3D models

The experiments were also conducted on 3D segmentation 
architecture (3D-ResUNet). As shown in Table 4, the 
values of the 3D-ResUNet using both PNSS and HESS 
were significantly higher than those of the 3D-ResUNet 
with PNSS/HESS and without our method, which 
demonstrates the effectiveness of our proposed method on 

3D-ResUNet.
We observed that the effect of HESS and PNSS in 

3D-ResUNet was different from that of ResNet (Tables 2,4).  
Compared with PNSS, HESS could improve the overall 
segmentation performance more significantly in 3D 
architecture, which may be due to the spatial continuity of 
the 3D patch. HESS focuses on the feature extraction of 
hard slices so that more independent connected domains 
can be connected. The 3D segmentation architecture 
has more opportunities to perform this operation on the 
z-axis, which makes the overall segmentation performance 
improvement more obvious.

Comparison with various imbalance strategies for pancreas 
segmentation

To further verify the effectiveness of our proposed methods, 
we performed experiments with various imbalance 
strategies, including focal loss, weighted cross entropy, and 
data oversampling for positive slices (the number of positive 
slices and negative slices were made equal). We set α=0.25, 
γ=2 for focal loss, and the best results were obtained. 
According to the proportion of positive and negative slices, 
we set the weight value as [0.75, 1.5] for weighted cross-
entropy.

The above imbalance strategies were not better than 
our method in improving the overall segmentation 
performance (Table 5). There was not only foreground-to-
background imbalance in medical images, but also hard-
to-easy imbalance in positive slices. The above methods 
can alleviate foreground-to-background imbalance to 
some extent, but they ignore the hard-to-easy imbalance in 
positive slices, which makes the model focus more on the 
feature extraction of easy slices in positive slices and ignore 
more details.

Table 2 Detailed performance of the proposed methods on the NIH dataset

Method DSC (%) Precision (%) Recall (%)

ResNet 82.53±6.84 [67.83, 88.71] 83.74±6.47 [69.23, 91.47] 79.00±8.11 [66.48, 92.17]

ResNet + methods (17) 82.84±6.49 [70.23, 89.24] 82.83±7.02 [71.64, 91.27] 82.15±8.34 [69.47, 92.31]

ResNet + PNSS 83.24±6.26 [71.79, 89.64] 83.10±6.13 [71.47, 90.42] 79.86±7.64 [71.93, 90.39]

ResNet + HESS 82.91±6.74 [70.72, 89.03] 84.49±5.25 [71.81, 91.11] 82.30±7.95 [69.66, 92.31]

ResNet + PNSS + HESS 83.67±4.71 [72.51, 90.04] 85.60±4.89 [72.11, 92.15] 82.58±7.05 [72.81, 94.57]

The performance is described by mean ± std [min, max]. NIH dataset, the public National Institutes of Health clinical center pancreatic 
segmentation dataset; DSC, dice similarity coefficient; ResNet, residual network; PNSS, positive-negative subset selection; HESS,  
hard-easy subset selection; std, standard deviation; max, maximum; min, minimum.
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Figure 5 Training losses of 2D ResNet with and without PNSS, 
2D ResNet with PNSS, and 2D ResNet with both methods. 
ResNet, residual network; PNSS, positive-negative subset 
selection; HESS, hard-easy subset selection.
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Table 3 Segmentation results on the NIH dataset with HRNet, DeepLabv3+, and TransUNet

Model PNSS HESS DSC (%) Precision (%) Recall (%)

HRNet – – 80.68±6.89 [67.28, 87.11] 80.62±6.68 [66.36, 87.96] 81.40±7.53 [68.22, 91.46]

√ – 81.04±6.93 [70.23, 88.34] 83.51±7.21 [69.17, 92.62] 79.69±6.76 [71.32, 89.16]

– √ 80.92±6.14 [69.47, 88.71] 83.92±6.82 [69.45, 91.92] 78.73±7.82 [69.49, 89.49]

√ √ 81.16±5.53 [71.47, 89.01] 83.74±6.21 [70.15, 92.47] 81.35±6.72 [72.84, 91.20]

DeepLabv3+ – – 79.15±7.37 [67.12, 85.92] 82.99±7.23 [74.65, 90.52] 76.96±8.15 [60.97, 89.90]

√ – 79.87±6.91 [70.02, 86.73] 81.69±5.38 [71.63, 93.04] 79.00±9.85 [68.48, 93.37]

– √ 80.03±6.11 [70.13, 86.93] 83.30±5.60 [71.69, 93.85] 78.12±8.7 [68.61, 91.89]

√ √ 80.87±6.14 [71.42, 87.45] 84.25±5.68 [76.10, 93.43] 77.75±6.43 [67.28, 91.72]

TransUNet – – 81.72±5.93 [70.68, 88.23] 83.83±4.82 [71.61, 93.21] 81.38±6.97 [69.77, 92.92]

√ – 82.57±5.27 [71.54, 89.97] 82.23±5.25 [71.52, 91.05] 82.30±7.95 [71.56, 94.91]

– √ 83.22±5.21 [72.15, 89.10] 83.10±4.54 [71.47, 90.22] 81.95±8.47 [72.84, 92.73]

√ √ 83.52±5.03 [72.47, 89.56] 84.51±5.39 [73.11, 92.15] 82.41±8.12 [73.83, 93.68]

The performance is described by mean ± std [min, max]. NIH dataset, the public National Institutes of Health clinical center pancreatic 
segmentation dataset; HRNet, high-resolution network; TransUNet, transformers-based U-Net framework; PNSS, positive-negative subset 
selection; HESS, hard-easy subset selection; DSC, dice similarity coefficient; std, standard deviation; max, maximum; min, minimum.

Table 4 Segmentation results on the NIH dataset with 3D models

Model PNSS HESS DSC (%) Precision (%) Recall (%)

3D-ResUNet – – 83.56±6.04 [69.54, 88.86] 83.64±6.21 [71.11, 90.15] 83.49±7.23 [68.04, 93.92]

√ – 83.81±6.71 [70.23, 88.34] 83.92±6.47 [71.26, 90.34] 82.53±7.14 [69.23, 93.71]

– √ 85.61±5.47 [71.34, 91.91] 85.92±7.11 [73.85, 90.39] 83.87±6.47 [70.83, 94.12]

√ √ 86.32±4.32 [72.92, 92.31] 85.52±6.03 [72.47, 92.41] 84.51±6.72 [73.37, 94.38]

The performance is described by mean ± std [min, max]. NIH dataset, the public National Institutes of Health clinical center pancreatic 
segmentation dataset; PNSS, positive-negative subset selection; HESS, hard-easy subset selection; DSC, dice similarity coefficient; 
3D-ResUNet, 3D residual U-Net framework; std, standard deviation; max, maximum; min, minimum.

Table 5 Segmentation results on the NIH dataset with various imbalance strategies

Strategy DSC (%) Precision (%) Recall (%)

ResNet + PNSS + HESS 83.67±4.71 [72.51, 90.04] 85.60±4.89 [72.11, 92.15] 82.58±7.05 [72.81, 94.57]

ResNet + focal loss 82.67±4.76 [70.98, 88.42] 86.23±6.82 [73.29, 94.97] 77.85±7.71 [66.28, 91.60]

ResNet + weighted cross entropy 82.57±4.82 [72.23, 87.93] 85.23±6.09 [71.63, 92.25] 80.37±7.77 [67.25, 89.74]

ResNet + data oversampling 82.51±5.87 [72.94, 88.31] 81.57±6.51 [71.85, 91.24] 80.64±6.23 [67.94, 91.45]

The performance is described by mean ± std [min, max]. NIH dataset, the public National Institutes of Health clinical center pancreatic 
segmentation dataset; DSC, dice similarity coefficient; PNSS, positive-negative subset selection; HESS, hard-easy subset selection; std, 
standard deviation; max, maximum; min, minimum; ResNet, residual network.
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Comparison with state-of-the-art methods

After coarse-to-fine processing, the 2D network results 
showed that the segmentation accuracy of the worst case 
compared to the best case was from 69.62% to 73.24%, 
which was more than a 5% advancement (Table 6). 
Moreover, compared with other 2D network results, our 
proposed methods outperformed previous state-of-the-
art methods by 2% in terms of the mean DSC. This may 
be attributable to the significantly improved segmentation 
accuracy of the worst cases.

Similarly, compared with other 3D methods, our 
methods also demonstrated a better segmentation 
performance on a 3D network. Table 6 shows that the 
mean DSC and maximum DSC of the proposed methods 
were slightly higher than those of the 3D state-of-the-
art method, which may be due to the improvement of the 
overall performance of the worst case and hard slices.

The segmentation results of 2D and 3D architecture are 
shown in Figures 6,7, respectively.

Generalizability of the proposed methods

Liver and liver tumor segmentation
Liver cancer is one of the most common malignancies 
worldwide and causes a massive number of deaths every 
year. Accurate segmentation of the liver and liver tumor 

from CT images is highly significant in clinical application, 
as it can assist doctors in making accurate disease condition 
assessments and surgical planning with precise contours. 
As shown in Tables 7,8, performance gains were observed 
on both FCN and UNet by adopting the proposed sample 
balancing methods. For liver segmentation, when both the 
PNSS and HESS methods were used simultaneously on 
FCN, the mean DSC and minimum DSC increased from 
93.87% and 75.03% to 94.71% and 84.29%, respectively. 
For liver tumor segmentation, the mean DSC and minimum 
DSC increased by 4.82% and 62.32%, respectively. These 
results indicate that the proposed data balancing methods 
are beneficial, especially for hard CT scans. Segmentation 
results are shown in Figure 8.

Brain edema segmentation
For convenience, we conducted brain edema segmentation 
in our study by using T1-Gd on the BT-MSD dataset. As 
shown in Table 9, using the proposed sample balancing 
methods  could  e f fect ive ly  improve  bra in  edema 
segmentation on both FCN and U-Net frameworks. For 
example, when PNSS and HESS were used simultaneously 
in the FCN framework, the mean DSC and minimum DSC 
increased from 70.69% and 22.77% to 71.58% and 32.03%, 
respectively. Segmentation results are shown in Figure 9.

Discussion

Findings and general discussion

Automatic medical image segmentation is crucial for 
clinical diagnosis, as it can provide the precise contour 
of organs and any lesion inside the anatomical segments 
of the organ, which assists doctors during the diagnosis 
process. In this work, we present two simple but effective 
sample balancing methods (PNSS and HESS) to address 
foreground-to-background imbalance and hard-to-easy 
imbalance problems in medical image segmentation. 
Through gradually removing negative slices and increasing 
the iteration of hard slices, segmentation performance for 
pancreas segmentation was improved, which demonstrates 
the effectiveness of the proposed methods. The performance 
gains in liver segmentation, liver tumor segmentation, and 
brain tumor segmentation with different CNN frameworks 
further validated the effectiveness and generalizability of the 
proposed methods.

Our proposed method makes the model focus more on 
hard slices and improves the overall performance of the 

Table 6 Evaluation of different methods on the NIH dataset 

Method
DSC (%)

Mean ± std Max Min

2D Roth et al. (13) 78.01±8.20 88.65 34.11

2D Zhou et al. (10) 82.65±5.47 90.85 63.02

2D Cai et al. (24) 82.40±6.70 90.10 60.00

3D Zhu et al. (25) 84.59±4.86 91.45 69.62

3D Zhao et al. (14) 85.99±4.51 91.20 57.20

3D Fang et al. (15) 85.46±4.80 92.24 67.03

2D ours (coarse) 83.67±4.71 90.04 72.51

2D ours (fine) 84.30±4.31 90.75 73.24

3D ours (coarse) 84.16±4.94 91.47 69.57

3D ours (fine) 86.32±4.32 92.31 72.92

NIH dataset, the public National Institutes of Health clinical 
center pancreatic segmentation dataset; DSC, dice similarity 
coefficient; std, standard deviation; max, maximum; min, 
minimum.
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model, especially the segmentation performance of some 
worst cases. Compared with various modifications of the 
model by other methods, our method focuses on data 
enhancement, which is simple but more effective.

In clinical needs, special lesions (hard slices) are more 
difficult to distinguish than are ordinary ones. By improving 
the segmentation performance of special lesions, our 
method provides more help to doctors in diagnosing 
diseases.

Limitations

There are still some limitations in this work. The proposed 
methods were implemented only on the NIH, LiTS, and 
BT-MSD datasets and have not been verified on a large-
scale dataset. Furthermore, the number of iterations of 
difficult samples is increased, which makes the training 
of the model relatively time-consuming. In addition, our 
method only focuses on the overall segmentation effect of 

difficult samples during training, ignoring the improvement 
of its boundary.

Future research

We observed that  negative s l ices  a lso have their 
contribution, especially in the early training stage. 
Furthermore, removing abundant negative slices could 
directly and rapidly lead to poor segmentation performance 
(Table 1 and Table S1). Therefore, it is necessary to explore 
the roles of negative slices in future work.

Recently, transformer-based architectures have been 
widely used in image segmentation (26). They can use 
the attention mechanism to capture global contextual 
information to establish a long-distance dependence on 
the target, thereby extracting more powerful features. 
Many scholars have proposed methods that combine the 
advantage of the convolution and transformer block, making 
it possible to train on medical image datasets and obtain 
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Figure 6 Examples of segmentation results of the proposed methods on the NIH dataset (2D segmentation architecture). (A,B) The 3D 
results of the ground truth and proposed methods, respectively. (C-E) The segmentation results on 2D slices, where red and yellow masks 
indicate the ground truth and prediction regions, respectively. DSC, dice similarity coefficient; NIH dataset, the public National Institutes 
of Health clinical center pancreatic segmentation dataset.

https://cdn.amegroups.cn/static/public/QIMS-21-798-Supplementary.pdf
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Figure 7 Examples of the segmentation results of the proposed methods on the NIH dataset (3D segmentation architecture). (A,B) The 3D 
results of the ground truth and proposed methods, respectively. (C-E) The segmentation results on 2D slices, where red and yellow masks 
indicate the ground truth and prediction regions, respectively. DSC, dice similarity coefficient; NIH dataset, the public National Institutes 
of Health clinical center pancreatic segmentation dataset.

Table 7 Segmentation results of the liver with different methods on the LiTS dataset

Model PNSS HESS
Liver, mean ± std [min, max]

DSC (%) Precision (%) Recall (%)

FCN – – 93.87±5.14 [75.03, 97.87] 92.54±6.23 [74.20, 98.12] 93.23±7.72 [75.88, 97.62]

√ – 94.19±4.29 [81.11, 98.13] 94.32±5.47 [83.41, 98.32] 93.91±7.53 [78.93, 98.10]

– √ 94.71±3.75 [83.73, 98.15] 93.74±5.14 [84.16, 98.62] 94.78±7.64 [83.30, 98.41]

√ √ 94.64±4.56 [84.29, 98.23] 94.49±5.05 [85.40, 98.71] 95.13±7.19 [83.20, 98.35]

U-Net – – 88.76±6.23 [68.73, 97.52] 89.42±7.13 [69.47, 96.71] 89.18±8.13 [68.00, 98.34]

√ – 89.57±6.74 [72.34, 98.23] 88.89±6.93 [71.40, 97.59] 89.26±7.88 [73.33, 98.71]

– √ 90.45±4.75 [80.15, 97.79] 90.13±6.83 [79.40, 98.13] 89.13±7.72 [80.91, 97.53]

√ √ 90.73±5.38 [80.06, 98.09] 90.52±6.12 [79.63, 98.15] 90.64±7.41 [80.49, 98.10]

LiTS dataset, MICCAI 2017 liver tumor segmentation challenge; PNSS, positive-negative subset selection; HESS, hard-easy subset 
selection; std, standard deviation; max, maximum; min, minimum; DSC, dice similarity coefficient; FCN, fully convolutional network.
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better performance gains (22,27-29). In our experiments, we 
trained TransUNet and combined it with our methods, and 
promising results were achieved on the experimental datasets. 

How to better combine our methods with various models 
will be a potential direction we can take into consideration. 
Some emerging data augmentation techniques, such as mix-

Table 8 Segmentation results of liver tumor on the LiTS dataset

Model PNSS HESS
Liver tumor, mean ± std [min, max]

DSC (%) Precision (%) Recall (%)

FCN – – 62.35±20.15 [20.92, 90.83] 63.14±19.24 [23.54, 92.15] 61.14±20.67 [18.82, 89.71]

√ – 63.43±18.57 [26.71, 89.97] 63.67±17.91 [30.15, 91.27] 63.14±18.63 [23.97, 90.15]

– √ 63.98±14.88 [35.73, 90.42] 62.91±14.29 [34.62, 91.24] 65.01±15.17 [36.91, 89.83]

√ √ 65.36±16.58 [33.96, 90.91] 66.03±15.30 [34.19, 91.32] 64.64±16.24 [33.73, 90.50]

U-Net – – 56.44±25.15 [16.64, 88.47] 58.15±24.67 [18.31, 89.54] 54.82±23.71 [15.24, 88.23]

√ – 57.63±26.68 [26.66, 89.05] 58.24±25.79 [28.47, 90.31] 58.13±24.30 [25.06, 88.92]

– √ 59.64±19.75 [30.62, 89.44] 60.06±17.61 [31.41, 91.23] 60.22±19.30 [29.87, 90.11]

√ √ 61.89±18.60 [32.47, 90.27] 62.39±16.15 [34.59, 92.31] 61.57±19.13 [30.59, 90.31]

LiTS dataset, MICCAI 2017 liver tumor segmentation challenge; PNSS, positive-negative subset selection; HESS, hard-easy subset 
selection; std, standard deviation; max, maximum; min, minimum; DSC, dice similarity coefficient; FCN, fully convolutional network.

A B C D E
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Caes 16
DSC 96.41%

Caes 40
DSC 97.21%

Figure 8 Examples of the segmentation results of the proposed methods on the LiTS dataset. (A,B) The 3D results of the ground truth and 
proposed methods, respectively. (C-E) The origin 2D slices, the ground truth, and the test result, respectively. The red and yellow masks 
indicate the liver and liver tumor, respectively. DSC, dice similarity coefficient; LiTS dataset, MICCAI 2017 liver tumor segmentation 
challenge.
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up (30), adversarial data augmentation (31), and latent space 
data augmentation (32), can be used to expand hard samples. 
A recent study focused on the choice of loss functions in 
medical image segmentation, providing a new perspective 

for us to implement the loss function (33). Moreover, the 
imbalance problem in the 3D method is more serious, 
especially when segmenting small targets.

Recently, a trend of incorporating shape models into 

Table 9 Brain edema segmentation on the BT-MSD dataset (DSC: %)

Model PNSS HESS DSC (%) Precision (%) Recall (%)

FCN – – 70.69±15.45 [22.77, 91.16] 71.37±14.21 [26.31, 92.31] 69.47±15.34 [20.07, 91.13]

√ – 70.46±16.22 [24.81, 92.18] 70.93±15.03 [25.67, 92.43] 69.59±15.82 [24.00, 92.30]

– √ 71.04±15.35 [32.03, 91.77] 72.30±14.11 [35.49, 92.65] 70.37±16.11 [29.28, 91.91]

√ √ 71.58±15.91 [30.73, 93.08] 71.91±13.59 [32.37, 93.85] 71.45±14.10 [29.24, 92.45]

U-Net – – 68.87±18.94 [21.97, 91.58] 68.54±17.32 [22.54, 91.39] 68.87±17.51 [21.43, 92.17]

√ – 69.14±16.49 [22.75, 92.53] 70.02±16.32 [23.24, 92.14] 68.64±16.92 [22.28, 92.92]

– √ 70.58±15.37 [29.85, 92.36] 71.64±14.17 [30.45, 92.57] 69.64±14.89 [29.27, 92.15]

√ √ 70.86±14.45 [30.38, 92.47] 71.53±15.13 [31.34, 93.02] 70.41±14.32 [29.47, 92.64]

The performance is described by mean ± std [min, max]. BT-MSD dataset, Brain Tumors Task of Medical Segmentation Decathlon 
challenge dataset; PNSS, positive-negative subset selection; HESS, hard-easy subset selection; DSC, dice similarity coefficient; FCN, fully 
convolutional network; std, standard deviation; max, maximum; min, minimum.

Caes 8
DSC 92.33%

Caes 202
DSC 83.17%

Caes 230
DSC 58.44%

A B C D E

Figure 9 Examples of the segmentation results of the proposed methods on the BT-MSD dataset. (A,B) The 3D results of the ground truth 
and proposed methods, respectively. (C-E) The segmentation results on 2D slices. Purple and yellow masks indicate the ground truth and 
prediction regions, respectively. DSC, dice similarity coefficient; BT-MSD dataset, Brain Tumors Task of Medical Segmentation Decathlon 
challenge dataset.
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CNNs to enhance boundary segmentation accuracy of the 
worst case has emerged (34,35). In future work, we intend 
to apply this mechanism to our sample balancing methods.

Conclusions

We present two simple but effective sample balancing 
methods (PNSS and HESS) to address foreground-
to-background imbalance and hard-to-easy imbalance 
problems in medical segmentation tasks. Our methods 
greatly improved the segmentation accuracy of the worst 
case and achieved competitive performance compared to 
state-of-the-art methods on the NIH dataset. Moreover, 
the proposed method can be applied to other CNNs (2D 
models and TransUNet) and improve their performance. 
Experimental results showed that the proposed sample 
ba lanc ing methods  could  improve  segmentat ion 
performance on different tasks including pancreas 
segmentation, liver segmentation, liver tumor segmentation, 
and brain tumor segmentation.
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Supplementary

Figure S1 Illustration of the coarse-to-fine strategy.

Table S1 Pancreas segmentation results (DSC: %)

Methods Mean ± std Max Min

AS 82.83±6.97 88.76 68.02

APS 81.73±4.42 87.43 73.53

DSC, dice similarity coefficient; AS, all samples, APS, all positive samples; std, standard deviation; max, maximum; min, minimum.


