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Background: Computer-aided diagnosis based on chest X-ray (CXR) is an exponentially growing 
field of research owing to the development of deep learning, especially convolutional neural networks 
(CNNs). However, due to the intrinsic locality of convolution operations, CNNs cannot model long-range 
dependencies. Although vision transformers (ViTs) have recently been proposed to alleviate this limitation, 
those trained on patches cannot learn any dependencies for inter-patch pixels and thus, are insufficient for 
medical image detection. To address this problem, in this paper, we propose a CXR detection method which 
integrates CNN with a ViT for modeling patch-wise and inter-patch dependencies.
Methods: We experimented on the ChestX-ray14 dataset and followed the official training-test set split. 
Because the training data only had global annotations, the detection network was weakly supervised. A 
DenseNet with a feature pyramid structure was designed and integrated with an adaptive ViT to model 
inter-patch and patch-wise long-range dependencies and obtain fine-grained feature maps. We compared the 
performance using our method with that of other disease detection methods.
Results: For disease classification, our method achieved the best result among all the disease detection 
methods, with a mean area under the curve (AUC) of 0.829. For lesion localization, our method achieved 
significantly higher intersection of the union (IoU) scores on the test images with bounding box annotations 
than did the other detection methods. The visualized results showed that our predictions were more accurate 
and detailed. Furthermore, evaluation of our method in an external validation dataset demonstrated its 
generalization ability.
Conclusions: Our proposed method achieves the new state of the art for thoracic disease classification and 
weakly supervised localization. It has potential to assist in clinical decision-making.
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Introduction

Chest X-ray (CXR) imaging is one of the most commonly 
available and widely applied radiological examinations at 
present, and is essential for screening and clinical diagnosis 
(1,2). In clinical practice, the reading of CXRs heavily 
depends on manual observation by radiologists with 
professional knowledge and experience. However, due to 
the complex pathologies of different lung lesions, even 
radiologists with long-term clinical training and professional 
guidance can make mistakes (3). The emergence and rapid 
progress of deep learning can improve disease diagnosis 
based on CXRs and lessen the chances of mistakes being 
made (4-6). As a fundamental task in medical image analysis, 
image detection allows for disease classification and lesion 
localization, which helps radiologists to work more efficiently 
and accurately. Therefore, it is crucial that a computer-
aided diagnosis system for thoracic disease classification and 
localization on CXR images is developed (7).

The development of deep learning methods for disease 
detection is heavily dependent on supervised learning 
with high-quality disease annotations, such as pixel-level 
labels, which can be costly. Large public chest radiography 
datasets such as ChestX-ray14 (8) and CheXpert (9), which 
do not provide pixel-wise annotations or coarse bounding 
boxes for most CXR images, are not suitable for training 
supervised disease detection models. Consequently, several 
unsupervised and weakly supervised learning methods 
have been proposed to handle tasks without pixel-level 
annotations (8,10,11). However, the established workflow 
of unsupervised methods is complex, challenging, and 
inefficient in clinical-aided analysis (12). Therefore, the 
development of automatic detection models for thoracic 
diseases must rely on weakly supervised methods with 
image-level labels and a minimal amount of bounding box 
annotations (3,8). 

Recently, convolutional neural networks (CNNs) have 
been widely adopted for weakly supervised thoracic disease 
detection (8,13-15). In CNNs, each kernel slides over the 
image and detects the same local pattern in each field. 
Convolution layers learn image features from small input 
patches and preserve the spatial relations between pixels. A 
recent study showed that CNNs can learn object detectors 
effectively, even when they are trained as classifiers using 
only global labels (16). The localization ability of CNNs is 
achieved by identifying the regions used for classification 
in the last convolutional layer of the network. However, 
CNN-based approaches generally carry limitations for the 

modeling of long-range dependencies that are present in an 
image; such limitations have been noted in computer vision 
tasks (17,18). In brain ventricle segmentation, for example, 
Valanarasu et al. (18) found that CNNs misclassified 
the background as a mask but long-range dependency 
learning could help to prevent the segmentation network 
from making this mistake. Due to the intrinsic locality of 
convolution operations, each CNN convolutional kernel 
pays attention to only several local pixels in the whole 
image, which forces the CNN to concentrate on local 
characteristics rather than learning the global patterns. 
Figure 1 visualizes an example of lesion localization results of 
a CNN-based method and our method in the ChestX-ray14 
dataset. In Figure 1A, the CNN misidentifies the lower lobe 
of the left lung as effusion. For a network to provide efficient 
localization, it should activate the class-specific image 
regions. However, due to the limitations in the modeling 
of long-range dependencies, the “lesions” identified by the 
CNN are only local abnormalities and not true lesions. 
Our proposed method does not make this mistake because 
it learns the long-range dependencies of the global context 
of the image, which helps the network to discriminate true 
abnormal regions and reduce false positives.

To address the problem of long-range dependencies, 
previous studies have proposed combining CNNs with, 
for example, attention mechanisms and bag-of-visual-
words model, to further input features from CNNs into 
the attention module or use such features to define visual 
dictionaries for extracting the semantic context (19-21). 
However, these studies focused on the semantic context 
and spatial relationship between regions of interest (ROIs) 
and the features of CNNs rather than global attention on 
full-size images. Moreover, no previous study has focused 
on modeling long-range dependencies to improve the 
performance of medical image localization tasks. Using 
a transformer derived from natural language processing 
(NLP) for sequence-to-sequence prediction is a possible 
solution with an innate global self-attention mechanism (22).  
Following its success in NLP, the transformer has very 
recently been applied to computer vision applications 
(17,23). Dosovitskiy et al. (23) proposed the vision 
transformer (ViT), which achieved the state of the art 
in ImageNet (24) classification. However, a ViT trained 
on patches alone limits the network’s ability to learn any 
dependencies for inter-patch pixels, which is insufficient for 
medical image detection (18).

Some existing research shows that the localization ability 
of a network is improved when the feature maps before 
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Figure 1 Visual localization results of a CXR from a case diagnosed with “effusion”. The bounding boxes in green represent the published 
ground truth, and the red represents the predicted results of our proposed method. (A) The lesion localized by DenseNet121 (a CNN-based 
method). (B) The lesion localized by our proposed method. CXR, chest X-ray; CNN, convolutional neural network. 

BA

the global pooling layer have high spatial resolution (25). 
However, most previous weakly supervised approaches have 
typically applied deep network structures. The feature maps 
generated by these approaches usually lack sufficient spatial 
resolution, which prevents accurate lesion localization. 
Therefore, CNN-based deep networks generally have 
weak performances, especially when target structures 
in pathological images exhibit significant inter-patient 
variation in texture, shape, and size.

To address the above limitations, this work proposes a 
weakly supervised deep learning model with the following 
merits. First, to obtain fine-grained saliency maps in which 
both large and small lesions can be accurately delineated, 
we used a pyramid structure to upsample and combine the 
low-resolution features from multiple layers of DenseNet, 
a CNN-based network (26). Second, we adjusted the ViT 
to generate features that capture the global context of the 
whole image. To integrate the features from the pyramid 
DenseNet and the adaptive ViT, we designed a fusion 
module, which forced the network to focus on patch-wise 
and inter-patch dependencies simultaneously. Our model 
jointly generates disease classification and lesion localization 
by relying on saliency map detectors (8,27) and Log-Sum-
Exp (LSE) pooling functions. Based on the official training 
and test set split, we experimented with our proposed 
method on the ChestX-ray14 dataset. Our proposed 
method achieved state-of-the-art disease classification and 
localization results in both quantitative and qualitative 
visual assessments. We also evaluated the generalization 
performance of our method in an external CXR dataset 
from the validation set of CheXpert. Our results suggest 
that weakly supervised object detection benefits from the 
transformer’s ability to model long-range dependencies. 
We present the following article in accordance with the 
TRIPOD reporting checklist (available at https://qims.
amegroups.com/article/view/10.21037/qims-21-1117/rc).

Methods

Datasets

This study was conducted in accordance with the 
Declaration of Helsinki (as revised in 2013).

To train and evaluate our proposed model in disease 
classification and lesion localization, we performed our 
experiments on the large public CXR dataset in the United 
States, ChestX-ray14 (8). The ChestX-ray14 dataset 
contains 112,120 frontal-view CXRimages of 30,805 
patients collected from the clinical picture archiving and 
communication system (PACS) database at the National 
Institutes of Health Clinical Center between 1992 and 
2015. The dataset has 14 disease image labels that were 
text-mined from the associated radiological reports using 
NLP (where each image can have multi-labels). The 14 
most common thoracic pathologies in the dataset are 
atelectasis, cardiomegaly, effusion, infiltration, mass, 
nodule, pneumonia, pneumothorax, consolidation, edema, 
emphysema, fibrosis, pleural thickening, and hernia. 
In the test set of this dataset, 880 images are annotated 
with bounding boxes relating to the first eight diseases 
mentioned above.

To externally evaluate the generalization performance 
of our method, we collected 123 CXR images from the 
validation set of another public CXR dataset, CheXpert (9).  
The CheXpert dataset consists of 224,316 chest radiographs 
of 65,240 patients that were collected from Stanford 
Hospital between October 2002 and July 2017. The dataset 
has 14 disease image labels which differ slightly from 
those of ChestX-ray14, including no finding, atelectasis, 
cardiomegaly, pleural effusion, pneumonia, pneumothorax, 
consolidation, edema, enlarged cardiomediastinum, lung 
opacity, lung lesion, pleural other, fracture, and support 
devices. The images selected for our study needed to 
contain at least one positive result for five diseases: 

https://qims.amegroups.com/article/view/10.21037/qims-21-1117/rc
https://qims.amegroups.com/article/view/10.21037/qims-21-1117/rc
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atelectasis, cardiomegaly, pleural effusion, pneumonia, 
and pneumothorax, which overlapped with the first 
eight diseases for the ChestX-ray14 dataset. Also, based 
on the ground truth of the cases from the CheXpert 
validation set, two board-certified chest radiologists by 
Shanghai Municipal Health Commission [with 8 and  
2 years of experience in computed tomography (CT) scan 
interpretation] performed a double-blind review to obtain 
bounding box annotations using the MarkMan software 
(http://www.getmarkman.com/).

Method overview 

This work aimed to establish a weakly supervised 
detection model for thoracic disease classification and 
lesion localization which performs localization by drawing 
bounding boxes on CXRs. The model was trained on 
CXRs with only image-wise labels of 14 diseases. Our 
proposed approach was shaped by three ideas. First, to 
solve the problem of insufficient resolution caused by the 
deep network, we designed a DenseNet with a feature 
pyramid structure to generate fine-resolution feature maps. 
The reasons for choosing DenseNet as our CNN-based 
network branch were as follows: (I) due to feature reuse, 
DenseNet has a small number of parameters and efficient 
calculation, which was crucial to the parallel training of 
our proposed two network branches (28); (II) DenseNet 
improves the information and gradient propagation with 
dense connections, which makes the training of very deep 
networks tractable (28). Second, we adjusted the ViT to 

encode the global context features of the whole image 
and combined them with the features from the pyramid 
DenseNet for training together. Third, we encoded the 
features from previous stages into class-specific saliency 
maps and used an LSE pooling structure to pool each 
saliency map into a single disease probability score. Disease 
localization was achieved by calculating saliency maps in 
the forward propagation of the trained model. Therefore, 
our proposed method generated the features with fine 
resolution, modelled the long-range and inter-patch pixels 
dependencies, and combined the context of two branches 
for training. The network structure is illustrated in Figure 2.

Pyramid DenseNet

Huang et al. (28) proposed the DenseNet, which introduces 
direct connections from any preceding layers to all 
subsequent layers with the same feature map size. For each 
layer, the inputs consist of feature maps from all previous 
convolution blocks, and the outputs generated by this layer 
are passed to all subsequent layers. However, the repeated 
downsampling processes in dense blocks diminish the 
spatial resolution of feature maps. After several dense blocks 
in the basic structure have encoded, the output feature maps 
significantly decrease in size compared to the input image, 
losing the detailed semantic information.

To improve the localization ability of the network, we 
designed a pyramid DenseNet to generate fine-resolution 
feature maps. We retained the structure of DenseNet 
before the fully connected layer as our basic structure and 

Figure 2 An overview of our proposed method. Our model comprises two branches and a fusion module. The classification score was 
acquired from the LSE layer, and the localization was obtained from the saliency maps before the LSE layer. ViT, vision transformer; CNN, 
convolutional neural network; LSE, Log-Sum-Exp.
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introduced the feature pyramid structure. Specifically, we 
upsampled the feature maps of the fourth dense block of 
DenseNet and fused them with the outputs of the third 
dense block. When the input image size was 512×512, the 
pyramid DenseNet output the feature maps with the spatial 
size of 64×64, which was much larger than the feature maps 
obtained after the final dense block of DenseNet (16×16). 
Figure 3 shows the pyramid DenseNet in detail. We used 
DenseNet121 as our primary structure in this study. Note 
that we did not continue to upsample the fused feature 
maps of previous outputs, because a size increase in the 
feature maps of the ViT—another branch of our model 
introduced in the next section—could lead to huge resource 
consumption. With the pyramid DenseNet, we obtained 
fine-resolution feature maps.

Adaptive ViT 

ViTs use a pure transformer model for image classification 
by embedding image patches that take on the role of words 
and extracting deep features of images (23). However, the 
patch-wise training of ViTs captures only the semantic 
information between patches and loses the information or 
dependencies for inter-patch pixels. 

To model the patch-wise and inter-patch dependencies 
of the whole image in the network, we designed an adaptive 
ViT to capture global features and a fusion module to 
integrate the local features from the pyramid DenseNet and 
the global features from the adaptive ViT. Details of our 
adaptive ViT and fusion module are shown in Figures 2,4.  

According to the work of Dosovitskiy et al. (23), several 
variants of ViT have been defined, and we used ViT-Base 
in our work. ViT-Base consists of a patch embedding layer, 
12 transformer encoder layers comprising an attention 
layer and a feed-forward layer, and a classification head 
implemented by a multilayer perceptron (MLP) with a 
single hidden layer (23). The adaptive ViT maintains the 
ViT-Base structure before the classification head as the 
basic structure to obtain the embedded patch sequence. For 
the purpose of localization, our adaptive ViT recovers the 
spatial order of the patch sequence by reshaping it into two-
dimension feature maps.

In the first stage, the adaptive ViT divides the image into 
non-overlapping square patches of size p2 pixels, where p 
refers to the side length of the square patch and is designated 
as 16 in our work. Then, the adaptive ViT flattens the 
patches into vectors and linearly projects them to embedded 
patches. Along with the position embedding, the embedded 
patches are passed through a transformer encoder with 12 
layers and obtained an embedded patch sequence. Finally, 
the patch sequence is reshaped into two-dimensional feature 
maps. Given the input image of size H×W×3, our adaptive 
ViT obtains the feature maps of size H/16×W/16×C, where C 
refers to the number of feature map channels.

Our designed fusion module receives the feature maps 
from the pyramid DenseNet and adaptive ViT as inputs. 
As shown in Figure 2, the fused features are passed through 
a convolutional block that produces K saliency maps (one 
map for each class). The global branch adaptive ViT focuses 
on deep context information, and the local branch pyramid 

Figure 3 The architecture of the pyramid DenseNet. The network receives the input image and passes it via the main structure, which 
consists of four dense blocks interspersed with three transition blocks. After being generated by the last dense block, low-resolution feature 
maps were upsampled and fused with the outputs of the previous third dense block to obtain the fine resolution feature maps.

Input image

Upsampling

DenseNet
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Figure 4 The architecture of the adaptive ViT. Norm, normalization; MLP, multilayer perceptron; ViT, vision transformer.

DenseNet focuses on fine-grained information. Our proposed 
method models patch-wise and inter-patch dependencies and 
combines the features of two branches for training.

LSE pooling

A specific weakly supervised learning technique was 
introduced into our method to accomplish accurate 
disease classification and lesion localization. The presence 
or absence of each pathology is denoted by y. As shown 
in Figure 2, we applied LSE pooling to pool each of the 
saliency maps into a single disease probability score, as 
denoted by  y . We trained our network with binary cross-
entropy loss between the prediction and the ground truth. 
The label distribution of our dataset was unbalanced, and 
there were many cases with no pathologies; therefore, we 
used positive and negative weight factors WP,WN∊RK to 
balance the label distribution for each disease. The loss 
function for each sample i is:

 ( ) ( ) ( ) ( )1 1i i P i i N i i, W log W log= − − − −  
 y y y y y y  [1]

Where WP(c)=1−Pc/|G|, WN(c)=Pc/|G|, Pc indicates the 
number of positive cases for class c and |G| indicates the 
training set size.

To obtain the bounding box of the disease, a thresholding 
technique was applied to segment the class-specific saliency 
maps generated by the CNN module in Figure 2. Based on 
ground-truth bounding box annotations, the thresholds used 
for segmentation were empirically determined and followed 
the criterion of previous approaches in this field (8,15). 
Therefore, our method is proposed for disease classification 
and lesion localization and requires only CXRs and coarse 

labeling of image-level annotations for network training.

Experiment

Dataset partition and experimental set-up
To maintain a fair comparison, we tested our proposed 
method in the ChestX-ray14 dataset and followed the 
official training-test set partitioning. For the selection 
of model parameters, we selected 10% of the training 
set as the validation set and repeated the random split 
10 times to improve the reliability of the results. For 
localization assessment, all 880 CXRs and their ground-
truth boundary boxes were used. The label distribution of 
the experimental data used for training and evaluation is 
shown in Table 1.

At the training stage, we used a learning rate of 0.00001 
and the optimization of Adam (29), with a momentum 
of 0.9, weight decay of 0.001, and a minibatch size of 16. 
To improve the computational performance, inputs of 
1,024×1,024 were downsampled to 512×512 and normalized 
using the ImageNet mean and standard deviation (24). 
During training, we applied simple image augmentation, in 
which each image was zoomed between 0 and 0.1, translated 
in four directions between −50 and 50 pixels, and rotated 
between −10 and 10 degrees.

Evaluation metrics 
To evaluate the classification performance of our method, 
we calculated the accuracy, precision, sensitivity, and F1-
score using the following equations:

 TP TNAccuracy
TP TN FP FN
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+ + +
 [2]
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Table 1 The label distribution of training and evaluation data

Disease Training set Test set for classification Test set for localization External dataset

Atelectasis 7,194 3,255 180 74

Cardiomegaly 1,499 1,065 146 66

Effusion 7,479 4,648 153 64

Infiltration 11,920 6,088 123 –

Mass 3,546 1,712 85 –

Nodule 4,064 1,615 79 –

Pneumonia 749 477 120 8

Pneumothorax 2,324 2,661 98 6

Consolidation 2,412 1,815 – –

Edema 1,172 925 – –

Emphysema 1,236 1,093 – –

Fibrosis 1,097 435 – –

Pleural thickening 1,964 1,143 – –

Hernia 130 86 – –

Total 46,786 27,018 984 218

 TPPrecision
TP FP

=
+

 [3]

 TPSensitivity
TP FN

=
+

 [4]

 
1 2 Presision SensitivityF score

Presision Sensitivity
×

= ×
+

 [5]

We also calculated the area under the curve (AUC) for 
each class and the average of all classes to compare our 
classification results with those of other state-of-the-art 
methods (8,30,31). To evaluate the localization accuracy, we 
computed the intersection of the union (IoU) between the 
predicted bounding boxes of our proposed approach and 
the provided ground truth. 

Results

Table 2 shows the classification performance of our proposed 
method for 14 diseases. Table 3 compares the AUCs for 
classification between our approach and several baselines. 
For all 14 diseases, our model achieved better classification 
results than the model of Wang et al. (8). Our model also 
performed significantly better than that of Ma et al. (31) in 
11 out of 14 diseases, and it outperformed Yao et al.’s (30) 

model in 9 out of 14 diseases. Furthermore, the AUCs of 
our model were more than 2% higher than those of the 
Yao et al. (30) and Ma et al. (31) models for “atelectasis”, 
“infiltration”, “nodule”, “pneumonia”, “pneumothorax”, 
“emphysema”, and “pleural thickening”.

Table 4 compares the localization performance of our 
method with that of previously published methods under 
different IoU thresholds (8,32). Our method achieved 
better localization results than that of Wang et al. (8) in 6 of 
8 diseases, which showed that the saliency maps were well 
fitted with the ground truth bounding boxes. For “atelectasis” 
and “nodule”, our model was only slightly inferior to the 
existing CNN-based methods, which indicated that focusing 
on more local information may activate more accurate 
image regions for those two diseases. Furthermore, when 
compared to the model of Zhou et al. (32), which is based on 
a CNN and consists of a customized pooling structure and an 
adaptive DenseNet front-end, our model showed significant 
improvements in the localization of all 14 diseases. The 
localization results of the above methods and our proposed 
method are visualized in Figure 5 (8,32). The “abnormalities” 
identified by Wang et al.’s method were usually multiple 
and covered large areas, and the results of Zhou et al. were 
small but incorrect. With CNNs as their backbone, these 
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Table 2 The classification performance of our proposed method for 14 diseases

Disease Accuracy Precision Sensitivity F1 score

Atelectasis 0.722±0.004 0.613±0.007 0.733±0.008 0.669±0.004

Cardiomegaly 0.865±0.003 0.727±0.014 0.810±0.013 0.766±0.011

Effusion 0.796±0.010 0.695±0.009 0.835±0.016 0.758±0.010

Infiltration 0.593±0.006 0.551±0.009 0.787±0.007 0.648±0.007

Mass 0.858±0.008 0.471±0.010 0.694±0.014 0.561±0.011

Nodule 0.850±0.005 0.622±0.012 0.664±0.012 0.642±0.010

Pneumonia 0.798±0.013 0.271±0.014 0.490±0.009 0.349±0.008

Pneumothorax 0.867±0.012 0.638±0.007 0.766±0.009 0.696±0.005

Consolidation 0.581±0.009 0.234±0.019 0.776±0.010 0.360±0.012

Edema 0.933±0.010 0.229±0.018 0.467±0.010 0.307±0.012

Emphysema 0.926±0.004 0.312±0.012 0.960±0.007 0.471±0.008

Fibrosis 0.886±0.005 0.153±0.012 0.367±0.018 0.216±0.016

Pleural thickening 0.867±0.007 0.275±0.008 0.630±0.014 0.383±0.012

Hernia 0.849±0.010 0.119±0.001 0.970±0.001 0.212±0.001

Mean 0.814±0.003 0.422±0.010 0.714±0.008 0.503±0.006

The results of mean ± standard deviation are reported by randomly splitting the training and validation sets for ten times.

Table 3 The AUC classification performance of our method (labeled as Ours) and several baselines for 14 diseases

Disease Wang et al. (8) Yao et al. (30) Ma et al. (31) Ours

Atelectasis 0.700 0.772 0.777 0.797±0.005*

Cardiomegaly 0.810 0.904* 0.894 0.872±0.016

Effusion 0.759 0.859* 0.829 0.852±0.004

Infiltration 0.661 0.695 0.696 0.711±0.008*

Mass 0.693 0.792 0.838 0.843±0.013*

Nodule 0.669 0.717 0.771 0.795±0.012*

Pneumonia 0.658 0.713 0.722 0.742±0.014*

Pneumothorax 0.799 0.841 0.862 0.894±0.006*

Consolidation 0.703 0.788* 0.750 0.779±0.008

Edema 0.805 0.882* 0.846 0.858±0.004

Emphysema 0.833 0.829 0.908 0.935±0.014*

Fibrosis 0.786 0.767 0.827* 0.825±0.014

Pleural thickening 0.684 0.765 0.779 0.800±0.007*

Hernia 0.872 0.914 0.934* 0.907±0.033

Mean 0.745 0.803 0.817 0.829±0.005*

The results of our method are reported with mean ± standard deviation by randomly splitting the training and validation sets for ten times. *, 
represents the best results. AUC, area under the curve.
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Table 4 Comparison of disease localization accuracy using T(IoU), which measures the proportion of test images with different IoU thresholds: 
0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7 

T(IoU) Model Atelectasis Cardiomegaly Effusion Infiltration Mass Nodule Pneumonia Pneumothorax

0.1 Wang 0.689* 0.938 0.660 0.707 0.400 0.139* 0.633 0.378

Zhou 0.411 0.966 0.595 0.813* 0.529 0.076 0.742 0.327

Ours 0.635 1.000* 0.748* 0.788 0.694* 0.070 0.786* 0.394*

0.2 Wang 0.472* 0.685 0.451 0.480 0.259 0.051* 0.350 0.235

Zhou 0.239 0.945 0.340 0.675 0.306 0.013 0.575 0.204

Ours 0.404 1.000* 0.664* 0.737* 0.429* 0.014 0.691* 0.277*

0.3 Wang 0.244* 0.459 0.301 0.277 0.153 0.038* 0.167 0.133

Zhou 0.144 0.925 0.144 0.520 0.153 0.000 0.442 0.143

Ours 0.205 1.000* 0.441* 0.525* 0.265* 0.000 0.548* 0.192*

0.4 Wang 0.094 0.281 0.203 0.122 0.071 0.013* 0.075 0.072

Zhou 0.089 0.877 0.059 0.358 0.118 0.000 0.258 0.112

Ours 0.103* 0.979* 0.273* 0.465* 0.184* 0.000 0.381* 0.128*

0.5 Wang 0.050* 0.178 0.111 0.065 0.012 0.013* 0.033 0.031

Zhou 0.044 0.781 0.013 0.252 0.059 0.000 0.142 0.051

Ours 0.045 0.873* 0.133* 0.343* 0.123* 0.000 0.333* 0.096*

0.6 Wang 0.022* 0.075 0.046 0.024 0.000 0.013* 0.017 0.031

Zhou 0.011 0.521 0.000 0.155 0.024 0.000 0.042 0.041

Ours 0.013 0.599* 0.063* 0.232* 0.061* 0.000 0.167* 0.043*

0.7 Wang 0.006 0.027 0.020 0.000 0.000 0.000 0.008 0.020

Zhou 0.006 0.233 0.000 0.073 0.012 0.000 0.017 0.010

Ours 0.006 0.261* 0.021* 0.101* 0.020* 0.000 0.095* 0.021*

T(IoU), different IoU thresholds; Wang, the results of Wang et al.’s (8); Zhou, the results of Zhou et al.’s (32); Ours, the results of our 
proposed method. *, best results among Wang et al.’s (8), Zhou et al.’s (32), and Ours.

methods focus on local patterns, which caused multiple of 
incorrect abnormalities to be identified. Both quantitative 
and qualitative experimental results showed that our method 
could effectively capture the lesions due to its learning of 
inter-patch and patch-wise dependencies and activation 
of the imaging regions used for classification globally. 
The localization results of our proposed method for some 
examples are visualized in Figure 6.

Discussion

In clinical procedures, it is insufficient that computer-
aided chest radiography diagnostic systems only predict 
disease classification. Spatial localization of disease lesions 

provides visual evidence for the classification result, which 
is indispensable for auxiliary diagnosis. Disease localization 
potentially decreases the number of false positives and 
improves the diagnostic efficiency. Our weakly supervised 
disease detection method was trained only on image-level 
annotations but can generate disease classifications and 
lesion spatial localization simultaneously. In contrast to the 
previous state of the art, our method can identify global 
abnormalities in whole images by integrating ViT and 
DenseNet121 with a pyramid structure, which improves the 
localization performance.

To evaluate the generalization performance of our 
method, we calculated the AUCs for disease classification 
and IoU localization results in 123 external test cases  
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Figure 5 Several visualized localization results of Wang et al. (8), Zhou et al. (32), and our proposed method. The bounding boxes in green 
represent the published ground truth, and the red represents the predicted results using different methods.

Figure 6 Examples of visual localization outcomes for eight diseases in the ChestX-ray14 dataset. The images on the left are the input 
CXRs and are labeled with two bounding boxes: the green shows the published ground truth, and the red is the predicted result obtained by 
a simple threshold method on the class-specific saliency maps, which are shown on the right. The IoU results calculated by ground truth and 
predicted bounding boxes are shown on the left. CXR, chest X-ray; IoU, intersection of the union.

Atelectasis

Infiltration

Effusion

Input Wang Zhou Ours

Atelectasis Cardiomegaly Effusion Infiltration

PneumothoraxPneumoniaNoduleMass
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(Table 5). The overall results showed that our method 
performed well in the external dataset, indicating 
its significant detection performance and excellent 
generalization ability. Interestingly, “pneumonia” only 

achieved an AUC of 0.571, which can be explained by our 
external dataset having only eight positive pneumonia cases; 
this makes this result biased and unreliable.

Table 6 shows the ablation study for the quantitative 

Table 5 The AUC classification and IoU localization results of our method on external 123 test cases

T(IoU) 0.1 0.2 0.3 0.4 0.5 0.6 0.7 AUC

Atelectasis 0.554 0.486 0.419 0.324 0.230 0.081 0.014 0.739

Cardiomegaly 0.909 0.848 0.758 0.470 0.288 0.151 0.076 0.818

Effusion 0.672 0.500 0.250 0.110 0.016 0.000 0.000 0.802

Pneumonia 0.750 0.375 0.375 0.250 0.250 0.250 0.000 0.571

Pneumothorax 0.167 0.167 0.167 0.167 0.167 0.000 0.000 0.742

AUC, area under the curve; T(IoU), different IoU thresholds.

Table 6 The ablation study on three different backbones: DenseNet121, ViT, and our network (DenseNet121 + ViT) 

T(IoU) Model Atelectasis Cardiomegaly Effusion Infiltration Mass Nodule Pneumonia Pneumothorax

0.1 DenseNet121 0.596 0.993 0.678 0.707 0.674* 0.113 0.786 0.418*

ViT 0.365 0.937 0.392 0.586 0.306 0.000 0.429 0.202

DenseNet121+ViT 0.673* 1.000* 0.713* 0.808* 0.633 0.127* 0.833* 0.330

0.2 DenseNet121 0.321 0.923 0.566 0.636 0.469 0.000 0.691 0.259*

ViT 0.179 0.887 0.147 0.374 0.102 0.000 0.286 0.149

DenseNet121+ViT 0.372* 1.000* 0.615* 0.737* 0.510* 0.000 0.738* 0.245

0.3 DenseNet121 0.160* 0.606 0.364 0.414 0.326 0.000 0.571 0.145

ViT 0.100 0.740 0.063 0.242 0.061 0.000 0.071 0.096

DenseNet121+ViT 0.160* 0.958* 0.420* 0.616* 0.347* 0.000 0.643* 0.160*

0.4 DenseNet121 0.064* 0.232 0.217 0.303 0.225* 0.000 0.500 0.103

ViT 0.058 0.486 0.014 0.172 0.020 0.000 0.071 0.032

DenseNet121+ViT 0.064* 0.704* 0.259* 0.535* 0.204 0.000 0.524* 0.106*

0.5 DenseNet121 0.013 0.070 0.105 0.222 0.123 0.000 0.309 0.053

ViT 0.032* 0.225 0.007 0.091 0.020 0.000 0.024 0.021

DenseNet121+ViT 0.006 0.409* 0.112* 0.424* 0.163* 0.000 0.381* 0.085*

0.6 DenseNet121 0.000 0.021 0.028 0.111 0.032 0.000 0.095 0.043*

ViT 0.006* 0.070 0.007 0.040 0.000 0.000 0.000 0.000

DenseNet121+ViT 0.006* 0.190* 0.042* 0.232* 0.041* 0.000 0.262* 0.043*

0.7 DenseNet121 0.000 0.007 0.007 0.061 0.020* 0.000 0.024 0.011

ViT 0.006* 0.014 0.006 0.010 0.000 0.000 0.000 0.000

DenseNet121+ViT 0.006* 0.049* 0.028* 0.162* 0.020* 0.000 0.119* 0.021*

*, the best results of our experiments. ViT, vision transformer; DenseNet121+ViT, our proposed method which includes two network 
branches, DenseNet121 and ViT; T(IoU), different IoU thresholds.
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Figure 7 Several qualitative results of different feature encoder backbones in the ChestX-ray14 dataset: DenseNet121, ViT, and our network 
(DenseNet121+ViT). The bounding boxes in green represent the published ground truth, and the red represents the predicted results. ViT, 
vision transformer; DenseNet121+ViT, our proposed method which includes two network branches, DenseNet121 and ViT.

localization results of different feature encoders with 
DenseNet121, ViT, and our network (DenseNet121+ViT) 
as backbones. Qualitative evaluation of these three networks 
is shown in Figure 7. The predicted bounding boxes show 
that our network captures long-range dependencies and 
generates fine-grained feature maps extremely well. For 
example, as shown in the first row of Figure 7, DenseNet121 
cannot detect real lesions because it only identifies locally 
suspected “abnormalities” and is confused about real 
lesions. However, as the ViT backbone encodes long-range 
dependencies, it learns to successfully localize in the whole 
image. As shown in the second and third rows, the ViT 
backbone network captures the lesion and its coarse location 
as the patch-wise training restricts the network in learning 
inter-patch and fine-grained information. As shown in the 
last column of Figure 7, our method takes long-range and 
inter-patch dependencies into account by integrating ViT 

and DenseNet121 with a pyramid structure, which makes 
its predictions accurate and detailed.

However, our method has some notable shortcomings. 
First, the image-level annotations in ChestX-ray14 were 
obtained using NLP technology rather than through 
manual observation by radiologists. The annotations used 
in our method training and validation are not completely 
correct. Therefore, we will explore advanced text mining 
methods to improve the accuracy of automatic tagging in 
our subsequent work (9). Second, due its integration of two 
network branches, our method requires much computing 
resources and exhibits low prediction efficiency. Therefore, 
another future improvement of our method is to develop 
a cascade network to encode patch-wise and inter-patch 
dependencies. Fewer parameters and simpler networks 
can improve the diagnosis efficiency of computer-aided 
diagnosis systems. Third, only a small external dataset with 

Infiltration

Pneumonia

Atelectasis

Input DenseNet121 ViT DenseNet121 + ViT
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123 CXR images was used for model validation, and the 
generalization ability of our method could not be effectively 
evaluated. Therefore, in our future work, we will collect 
more CXRs with annotations from clinical scenarios to 
expand the dataset for model validation and to evaluate the 
generalization of the model comprehensively and effectively.

Conclusions

Both quantitative and qualitative visual results showed 
that our proposed method achieves the new state-of-
the-art for disease classification and weakly supervised 
localization. Compared to previous methods, our method 
produced superior results by using ViT to learn long-
range dependencies between patches of the whole images, 
activating image regions used for classification globally, 
and avoiding mislocalization caused by the intrinsic 
locality of convolution operations. Furthermore, because 
ViTs can only learn inter-patch dependencies, we applied 
DenseNet121 along with a feature pyramid structure to 
encode high-resolution spatial information and learn inter-
patch dependencies in our network. As an alternative 
framework to the dominant CNN-based approaches for 
medical image detection, our method achieves a superior 
performance.
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