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Background: To use adversarial training to increase the generalizability and diagnostic accuracy of deep 
learning models for prostate cancer diagnosis.
Methods: This multicenter study retrospectively included 396 prostate cancer patients who underwent 
magnetic resonance imaging (development set, 297 patients from Shanghai Jiao Tong University Affiliated 
Sixth People’s Hospital and Eighth People’s Hospital; test set, 99 patients from Renmin Hospital of 
Wuhan University). Two binary classification deep learning models for clinically significant prostate cancer 
classification [PM1, pretraining Visual Geometry Group network (VGGNet)-16-based model 1; PM2, 
pretraining residual network (ResNet)-50-based model 2] and two multiclass classification deep learning 
models for prostate cancer grading (PM3, pretraining VGGNet-16-based model 3; PM4: pretraining 
ResNet-50-based model 4) were built using apparent diffusion coefficient and T2-weighted images. These 
models were then retrained with adversarial examples starting from the initial random model parameters 
(AM1, adversarial training VGGNet-16 model 1; AM2, adversarial training ResNet-50 model 2; AM3, 
adversarial training VGGNet-16 model 3; AM4, adversarial training ResNet-50 model 4, respectively). 
To verify whether adversarial training can improve the diagnostic model’s effectiveness, we compared 
the diagnostic performance of the deep learning methods before and after adversarial training. Receiver 
operating characteristic curve analysis was performed to evaluate significant prostate cancer classification 
models. Differences in areas under the curve (AUCs) were compared using Delong’s tests. The quadratic 
weighted kappa score was used to verify the PCa grading models. 
Results: AM1 and AM2 had significantly higher AUCs than PM1 and PM2 in the internal validation 
dataset (0.84 vs. 0.89 and 0.83 vs. 0.87) and test dataset (0.73 vs. 0.86 and 0.72 vs. 0.82). AM3 and AM4 
showed higher κ values than PM3 and PM4 in the internal validation dataset {0.266 [95% confidence interval 
(CI): 0.152–0.379] vs. 0.292 (95% CI: 0.178–0.405) and 0.254 (95% CI: 0.159–0.390) vs. 0.279 (95% CI: 
0.163−0.396)} and test set [0.196 (95% CI: 0.029–0.362) vs. 0.268 (95% CI: 0.109–0.427) and 0.183 (95% CI: 
0.015–0.351) vs. 0.228 (95% CI: 0.068−0.389)]. 
Conclusions: Using adversarial examples to train prostate cancer classification deep learning models can 
improve their generalizability and classification abilities.
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Introduction

In most countries, prostate cancer (PCa) is the second 
most commonly diagnosed malignancy among men. Its 
accurate classification is critical for selecting the appropriate 
treatment, leading to improved outcomes and ultimately 
reducing overtreatment and mortality (1). Currently, 
the mainstream clinical method for PCa identification is 
systematic biopsy under transrectal ultrasound (TRUS) 
guidance in case of suspicious PCa due to a high prostate-
specific antigen (PSA) level or an abnormal screening 
digital rectal examination. Since TRUS-guided biopsy 
for PCa detection has high false-negative results, and due 
to its invasiveness, it is not suitable for screening a large 
patient population for PCa detection. Therefore, over 
the past decade, multiparametric magnetic resonance 
imaging (mpMRI) has become increasingly important in 
PCa diagnosis because of its high sensitivity for detecting 
prostate lesions (2-4). However, the traditional assessment 
of prostate mpMRI is based on subjective visual assessment, 
leading to inter-reader variability and a suboptimal ability 
to assess lesion aggressiveness (5). In addition, manually 
interpreting mpMRI sequences requires substantial 
experience and labor, limiting its clinical applicability (6). 
Thus, how to effectively and efficiently interpret mpMRI 
data to achieve a satisfactory accuracy for PCa diagnosis in 
the clinic remains unresolved. 

Deep learning (DL) has provided new potential methods 
to solve these issues. Numerous DL approaches have been 
proposed for PCa diagnosis, leading to the performance 
of many PCa classification tasks with remarkable accuracy 
(1,5-15). However, despite the good performance of 
many DL models in terms of PCa classification, their 
practical application is still controversial as these artificial 
neural network-based methods are vulnerable to small 
perturbations in the images (16-20). These subtle 
perturbations can be caused by changes in noise (21,22) 
imperceptible to the human eye but which can easily 
deceive DL models. Images with such intentionally added 
perturbation are called adversarial examples (AEs). A 
previous study (23) proved that AEs can easily mislead the 
prediction of a neural network classifier, thereby resulting 
in the attacked model reporting high confidence in the 
wrong prediction. The existence of AEs raises questions 

about the generalizability of DL models and a number of 
social security concerns; however, because these AEs are 
only applicable in a very specific setting (i.e., the attacker 
knows the DL model & can control the input image), 
which generally do not exist in medical images, the practical 
clinical application of AEs for medical image classification 
should not be affected (23).

Recent studies (23-26) have shown that using AEs to 
train machine learning models [adversarial training (AT)] 
can significantly improve the ability of deep neural networks 
to resist adversarial noise (24-26). In addition, AT improves 
not only the classification accuracy of the target model, but 
also its accuracy for the original samples (27,28). Based on 
these studies, we hypothesized that AT might increase the 
robustness and generalizability of PCa classification DL 
models and improve their diagnostic accuracy in different 
validation datasets.

In this study, binary classification DL models for 
clinically significant PCa (csPCa) detection and multivariate 
classification DL models for PCa grading were built and 
then trained by AEs. The diagnostic performances of 
the DL models before and after AT were compared and 
evaluated. We present the following article in accordance 
with the STARD reporting checklist (available at https://
qims.amegroups.com/article/view/10.21037/qims-21-
1089/rc).

Methods 

Study design

This retrospective, multicenter study was approved by the 
local ethics committee of our institution. Informed consent 
was obtained from all patients. The study was conducted in 
accordance with the Declaration of Helsinki (as revised in 
2013).

Patients

We collected data from patients who underwent 3-T 
multiparametric prostate MRI and had a subsequent 
targeted MRI-TRUS fusion biopsy confirming PCa 
between November 2018 and December 2020. The 
inclusion criteria included the following: (I) complete 
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clinical information and pathologic examination results; (II) 
prostate lesions with definite boundaries on all magnetic 
resonance (MR) images. The exclusion criteria were as 
follows: (I) history of treatment for PCa, including surgery, 
hormone therapy, radiation therapy, or cryotherapy; 
(II) >2 weeks between MRI and the biopsy procedure; 
(III) unavailability of the final PCa diagnosis; and (IV) 
incomplete MRI sequence. 

Initially, a total of 420 consecutive participants satisfying 
the inclusion criteria were enrolled. Of these, 24 were 
excluded according to the exclusion criteria. The detailed 
reasons for exclusion are listed in Figure 1. Finally, a total 
of 396 patients at three different academic medical centers 
were recruited for our study. The development set consisted 
of 297 patients enrolled in two medical centers (Shanghai 
Jiao Tong University Affiliated Sixth People’s Hospital 
and Eighth People’s Hospital) between November 2018 
and November 2020. The development set was furtherly 
randomly divided into a training set and an internal 
validation set at a ratio of 4:1. The remaining 99 patients 
were collected from another medical center (Renmin 
Hospital of Wuhan University) between July 2018 and 
December 2020 and were used as a test set for the test of 
the PCa classification DL models before and after AT. 

The study included four steps: MRI examinations and 
image preprocessing, model pretraining, AT, and model 
evaluation (Figure 2).

MRI examinations 

All images were acquired using one of three 3.0-T 
imagers (MAGNETOM Verio, Skyra, or Prisma; Siemens 
Healthcare, Erlangen, Germany) and a pelvic phased-array 
coil. Each mpMRI scan included axial T2-weighted imaging 
(T2WI) (repetition time/echo time, 6,000/101 ms; section 
thickness, 3.5 mm; matrix, 320×256; in-plane resolution, 
0.625×0.625 mm2; number of averages, 1; field of view, 
200×200 mm2; bandwidth, 200 Hz/px; acquisition time,  
2:08 min) and diffusion-weighted imaging (DWI) (repetition 
time/echo time, 5,600/79 ms; section thickness, 3 mm; 
matrix, 178×178; in-plane resolution, 2.10×1.60 mm2; 
number of averages, 1/3/6; field of view, 380×281 mm2; 
bandwidth, 2,160 Hz/px; b-values, 50/1,000/1,500 s/mm2; 
acquisition time, 3:05 min). Apparent diffusion coefficient 
(ADC) maps were inline calculated by scanner software 
using linear fitting based on a mono-exponential model.

Datasets

Because T2WI and ADC sequences can provide different 
and complementary information and their fusion can 
improve the accuracy of PCa diagnosis (1,9,14), we 
used axial T2WI and ADC sequences selected for PCa 
classification. 

A radiologist with >20 years of experience in prostate 
MRI reviewed the T2WI sequences and ADC maps with 

Figure 1 Diagram for patient inclusion into the study. MRI, magnetic resonance imaging; PCa, prostate cancer.

Patients who underwent a 3T multiparametric 
prostate MRI at one of three different academic 

medical centers (n=420)

Patients recruited into the study (n=396)

Development cohort 
(C1 and C2, n=297)

Evaluation cohort 
(C3, n=99)

Incomplete MRI sequence (n=4)

Unavailability of the final PCa diagnosis (n=9)

Interval >2 weeks between MRI and the biopsy procedure (n=5)

History of treatment for PCa (n=6)
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the reference of ultrasound (US) fusion-guided biopsies 
results and other clinical information. When MRI-suspected 
PCa and the target lesion for MRI/transrectal US fusion-
guided biopsies were in the same sector, the image slice 
containing the largest lesion extent was selected and the 
lesion coordinates on the selected map slice were recorded. 

The Gleason score on base of biopsy result is the single 
most powerful predictor of PCa prognosis. A pathologist 
with >20 years of experience blind to clinical information 
analyzed biopsies and defined the Gleason grade grouping 
(GGG) of the selected lesions (29). A total of 571 lesions 
with definite coordinates on the images were identified. 
Two cohorts were generated for the two tasks: Cohort 1 
was used for csPCa classification, and Cohort 2 was used 
for PCa GGG grading. Specifically, for Cohort 1, the 
development set contained 429 lesions, including 99 lesions 
with a GGG of 1 and 330 lesions with a GGG >1. The test 
set had 69 lesions with a GGG of 1 and 73 lesions with a 
GGG >1. For Cohort 2, the development set contained 99, 
76, 95, 47, and 112 lesions with GGGs of 1, 2, 3, 4, and 5, 

respectively. The test set contained 69, 20, 22, 21, and 10 
lesions with GGGs of 1, 2, 3, 4, and 5, respectively.

Image preprocessing

Details on image preprocessing procedures are shown 
in Appendix 1. In brief, given the lesion coordinates, 
rectangular region of interest (ROI) patches around the 
lesions were cropped from T2WI sequences and ADC 
maps and resized to an image resolution of 224×224. Next, 
the ADC ROI patches were aligned to the T2WI patches. 
To avoid the imbalance of biased classification results 
toward the class with the most cases (9), we balanced the 
number of training images in the development cohorts for 
both binary and multivariate classification tasks by random 
translation and rotation to enhance the generalizability of 
the classification DL models (30,31). In addition, we flipped 
each ROI patch horizontally and vertically to augment the 
development sets. After data augmentation, there were 1,980 
ROI patches for each image sequence in the development set 

Figure 2 Overall study flow diagram. MRI, magnetic resonance imaging; ROI, region of interest; mpMRI, multiparametric MRI; ADC, 
apparent diffusion coefficient; T2WI, T2-weight imaging; ROC, receiver operating characteristic.
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for the csPCa detection task and 1,680 for the PCa grading 
task. Finally, the intensities of both ADC and T2WI patches 
were normalized to handle the problem of inhomogeneous 
intensities for each modality among patients.

Network architecture 

The workflow of the classification model for PCa diagnosis 
is shown in Figure 3A. Visual Geometry Group network 
(VGGNet)-16 (Figure 3B) and residual network (ResNet)-50 
(Figure 3C) were the two baseline network architectures 
used to train the models in this study. In contrast to the 
standard VGGNet-16 or ResNet-50, we designed two 
parallel subnetworks for extracting sub-features for ADC 
and T2WI sequences, respectively, by using multiple basic 
blocks of VGGNet-16 or ResNet-50. The two subnetworks 
were then connected to fuse sub-features from ADC and 
T2WI sequences. Multiple deep basic blocks and fully 
connected layers were used to further extract deep fusion 

features. Finally, the predicted probabilities of the input 
patch pair for the classification tasks were obtained using a 
softmax function.

The experiments were conducted on four NVIDIIA 
RTX 2080 GPUs, and all procedures were implemented 
using PyTorch. 

Model pretraining

Based on the two network architectures described above, 
we pretrained two binary classification DL models (PM1: 
pretraining VGGNet-16-based model 1 and PM2: 
pretraining ResNet-50-based model 2) for the detection 
of csPCa lesions (GGG =1 vs. GGG >1). Using the same 
training mechanism, we also trained two multivariate DL 
classification models (PM3: pretraining VGGNet-16-based 
model 3 and PM4: pretraining ResNet-50-based model 4)  
to identify the GGG of PCa lesions (GGG =1–5). The 
training process is described in Appendix 2. 

Figure 3 Illustration of our framework. (A) Workflow of the classification model for prostate cancer diagnosis based on dual-modal CNNs. 
We used VGGNet-based (B) and ResNet-based (C) basic blocks to extract deep features. ADC, apparent diffusion coefficient; CNNs, 
convolutional neural networks; ROI, region of interest; ReLU, rectified linear unit; T2WI, T2-weighted imaging; VGGNet, Visual 
Geometry Group network.
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Adversarial training 

After completing the model pretraining, we used AEs crafted 
by the decoupling direction and norm (DDN) method 
to implement AT. The DDN method, which won the 
Neural Information Processing Systems Adversarial Vision 
Challenge (2018) on non-targeted black-box attacks, can 
generate gradient-based AEs that induce misclassifications 
with small L2 norm distances by decoupling the direction 
and adding adversarial perturbations to the images (32). 

Examples of the AEs used for AT are shown in Figure 4.  
Using the DDN-based AEs as new training sets, we 
retrained the binary classification DL models (AM1: 
VGGNet-16-based AT model 1 and AM2: ResNet-50-
based AT model 2) and multivariate DL classification 
models (AM3: VGGNet-16-based AT model 3 and AM4: 
ResNet-50-based AT model 4) in the same manner as 
described in the model pretraining section. 

Model evaluation

To verify whether AT can improve the effectiveness of the 
diagnostic model, we compared the diagnostic effectiveness 
of the DL methods before and after AT in the internal 
validation set and the test set. In addition, we evaluated the 
differences in performance of the internal validation set 
and the test set for each model, and used this as an index to 

evaluate the generalizability of the model.

Statistical analyses 

A one-sample Kolmogorov-Smirnov test was used to check 
the assumption of normal distribution. An independent 
t-test was used for normally distributed data. A Mann-
Whitney U test was used to assess non-normally distributed 
continuous variables. To evaluate the binary classification 
DL models for csPCa detection, the area under the receiver 
operating characteristic curve (AUC) was calculated. Using 
the cutoff value at the top left corner of the ROC curve, 
the accuracies, specificities, and sensitivities were identified. 
A comparison of sensitivity and specificity was performed 
using McNemar test. Delong’s tests were conducted 
to compare differences in AUCs between models. The 
quadratic weighted kappa score κ (14) was used to verify the 
multivariate classification of DL models for PCa grading. 
This metric regards the GGG as the ordinal multiclass 
variable; an incorrectly estimated GGG, which is further 
from the ground truth, is more strongly penalized (7). The 
κ coefficients were assessed as follows: 0.01–0.20, slight 
agreement; 0.21–0.40, fair agreement; 0.41–0.60, moderate 
agreement; 0.61–0.80, substantial agreement; and 0.81–0.99, 
almost perfect agreement.

Statistical analyses were performed using R (version 

Figure 4 AEs generated for the proposed models. AEs were generated by adding subtle noise to correctly predicted images, which caused 
both the binary and multivariate classification models to incorrectly predict the classification. It is difficult to distinguish AEs from ground-
truth natural examples with the naked eye, but the produced AEs did cause the model to produce misleading predictions. AEs, adversarial 
examples; GGG, Gleason grade group. 
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4.0.1, R Project for Statistical Computing, Vienna, Austria). 
Statistical significance was set at P<0.05. 

Results

Patient characteristics

No adverse events occurred in this retrospective study. 
Patients in both development and test cohorts had no 
disease symptoms that could influence test accuracy. 
Detailed clinical and tumor characteristics, including age, 
PSA level, and lesion location, are summarized in Table 1. 
No significant differences in age or PSA level were found 
between the development and test cohorts (age: P=0.541; 
PSA: P=0.342). 

Performance of binary classification DL models

The performance of the binary classification DL models 
before and after AT is shown in Figure 5 and Table 2. 
For csPCa classification, the DL models after AT had 
significantly higher AUCs, sensitivities, specificities, 
and accuracies than those before AT in both the internal 
validation sets and test sets (P<0.001 for all comparisons). 
This suggests that AT can increase the diagnostic efficiency 
of the DL models for csPCa.

The diagnostic efficacies of PM1 and PM2 in the test 
set decreased by 10.6% and 4.6% in accuracy, 8.0% and 
3.8% in sensitivity, and 11.3% and 4.4% in specificity, 
respectively, compared with those in the internal validation 
set. The AUCs were both 11% lower than those in the 
internal validation dataset. Conversely, for AM1 and 
AM2, the diagnostic efficacy in the test set decreased by 
approximately 2.0% in accuracy for both, 2.3% and 2.8% 
in sensitivity, respectively, and 0.3% and 1.4% in specificity, 
respectively, compared with the internal validation set. The 
corresponding AUCs were 3% and 5% lower, respectively, 
than those in the internal validation set. 

Performance of the multivariate classification DL models

The performance of the multivariate classification DL 
models before and after AT is shown in Figure 6. In the 
internal validation set, the DL models before AT reached 
fair consistency between the predicted and true values {PM3: 
κ, 0.266 [95% confidence interval (CI): 0.152–0.379]; PM4: 
κ, 0.254 (95% CI: 0.159–0.390)}, whereas in the test set, 
these DL models only reached slight consistency between 
the predictions and the ground truth [PM3: κ, 0.196 (95% 
CI: 0.029–0.362); PM4: κ, 0.183 (95% CI: 0.015–0.351)]. 
The DL models after AT showed higher κ values than the 
DL models before AT in both the internal validation sets 
[AM3: 0.292 (95% CI: 0.178–0.405); AM4: 0.279 (95% CI: 
0.163−0.396)] and test sets [AM3: 0.268 (95% CI: 0.109–
0.427); AM4: 0.228 (95% CI: 0.068−0.389)].

The differences in κ values of AM3 and AM4 between 
the internal and test sets were much smaller than those of 
PM3 and PM4 (PM3: 0.070, PM4: 0.071, AM3: 0.024, and 
AM4: 0.051).

Discussion 

The main finding of our study is that using AEs to train 
PCa DL models can effectively improve their PCa 

Table 1 Patient characteristics

Variables
Development 

cohort (n=297)
Evaluation 

cohort (n=99)

Median age [IQR] (years) 62 [55–72] 61 [51–71]

Median PSA [IQR] (ng/mL) 6.7 [4.6–10.1] 6.9 [5.1–12.1]

Scanner

Verio 77 27

Skyra 175 58

Prisma 45 14

Number of patients with MRI-detected lesions

1 lesion 212 70

2 lesions 45 18

3 lesions 33 8

4 lesions 7 3

Number of MRI-detected lesions

Total 429 142

Peripheral zone 300 102

Transition zone 129 40

Gleason grade group (Gleason score) 

Gleason grade group 1 (GS 3 + 3) 99 69

Gleason grade group 2 (GS 3 + 4) 76 20

Gleason grade group 3 (GS 4 + 3) 95 22

Gleason grade group 4 (GS =8) 47 21

Gleason grade group 5 (GS >8) 112 10

PSA, prostate-specific antigen; IQR, interquartile range; MRI, 
magnetic resonance imaging; GS, Gleason score.
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Figure 5 Performance of the binary classification deep learning models (PM1: VGGNet-16-based pretraining model; PM2: ResNet-50-
based pretraining model; AM1: VGGNet-16-based AT model; AM2: ResNet-50-based AT model) in the internal verification (left) and 
external verification (right) datasets. AT, adversarial training; AUC, area under the curve; ResNet, residual network; VGGNet, Visual 
Geometry Group network.

Table 2 Performance of binary classification DL models

Datasets Method Positives Negatives TP TN FP FN Sensitivity (%) Specificity (%) Accuracy (%) AUC

Internal validation set 
(n=396)

PM1 238 158 190 134 48 24 88.8 73.6 81.8 0.84

AM1 229 167 194 147 35 20 90.7 80.8 86.1 0.89

PM2 225 171 175 132 50 39 81.9 72.5 77.8 0.83

AM2 213 183 176 145 37 38 82.2 79.7 80.8 0.87

Test set (n=142) PM1 85 57 59 43 26 14 80.8 62.3 71.2 0.73

AM1 78 64 65 56 13 8 88.4 80.5 84.5 0.86

PM2 79 63 57 47 22 16 78.1 68.1 73.2 0.72

AM2 73 69 58 54 15 15 79.5 78.3 78.9 0.82

DL, deep learning; TP, true positive; TN, true negative; FP, false positive; FN, false negative; AUC, area under the receiver operating 
characteristic curve; AM1, VGGNet-16-based AT model 1; AM2, ResNet-50-based AT model 2; PM1, pretraining VGGNet-16-based model 
1; PM2, pretraining ResNet-50-based model 2; ResNet, residual network; VGGNet, Visual Geometry Group network.

classification ability and generalizability.
In our study, AT-based DL models for PCa classification 

showed better performance than those without AT in both 
the internal and test sets. For csPCa classification, AM1 and 
AM2 had comparable AUCs of 0.86 and 0.82 on external 
evaluation, whereas for the task of PCa GGG, AM3 and 
AM4 had fair agreement, with κ values of 0.268 and 0.228, 
which are within the range of previously reported results 
(−0.245 to 0.277) in the PROSTATEx-2 2017 challenge 
specially designed for PCa GGG (6,7). 

Although various DL methods for PCa classification 

have been proposed (1,5,6,11,14,33,34), most studies only 
conducted internal validation of their proposed methods 
(1,5,14,34,35). Therefore, the generalizability of these 
models is unclear. Several studies performed external 
verification (6,33,36), but the training and test sets consisted 
of patients from the same medical center or images acquired 
from a single manufacturer, which does not consider 
potential differences in scanners or between medical centers. 
Thus, the generalizability of the proposed models may still 
be overestimated. In contrast to previous studies, to better 
evaluate the generalizability of our proposed models, our 
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study had both internal and external verifications that were 
performed to evaluate the performance of the DL models. 
Moreover, the development set data and test set data came 
from different medical centers; thus, both the diagnostic 
efficacy and generalizability of the model can be better 
evaluated.

We found that the DL models before AT, which 
performed well in the internal verification, had reduced 
diagnostic efficiencies in the external verification. This 
indicates that data augmentation and normalization 
strategies to improve the generalizability of DL models (35) 
are insufficient. Compared with those of the pretrained DL 
models, the performance differences between the internal 
validation and test sets of the DL models after AT were 
much smaller. This implies that AT can potentially improve 
the generalizability of PCa classification DL models. 

Since good generalizability is the premise by which 
these DL models can be applied in the clinic (23,37), 
improving the generalizability and robustness of DL 
models is a core issue not yet resolved (19). The quality of 
prostate MR images is easily affected by various factors, 
such as metal artifacts, magnetic field inhomogeneity, 
involuntary patient movement, and differences between 
software and hardware (38). All of these factors may cause 
noise (18) and are, therefore, potential disturbances to 

classification models that result in reduction in the PCa 
classification accuracy. Using adversarial attack methods 
can identify the noises that maximize the classification error 
loss and add them to the original examples to generate 
AEs (17-19). The target models retrained with these AEs 
may be able to more precisely classify test examples with 
different noises. In the present study, we chose a DDN 
attack to craft AEs. This method effectively and quickly 
crafts AEs to retrain the target model for improving the 
adversarial generalizability of DL models. Moreover, using 
this method, the L2 norm distances between the original 
images and their corresponding AEs are relatively small, 
largely avoiding affecting the retrained model’s predictions 
on examples without noise (32). This could be why AT can 
improve the generalizability of the PCa classification DL 
models.

As a tentative study, our study has several limitations. 
First, because of technical and equipment limitations, 
targeted biopsy was used as a reference in the development 
cohort rather than prostatectomy. Whole-mount serial 
sections may improve the accuracy of the agreement 
between MR images and histopathology, and minimize 
biases for the assessment of PCa detection performance 
of DL models. Second, various studies indicated that DL 
models, including DWI and DCE-MRI, can provide 

Figure 6 Performance of the multivariate classification deep learning models (PM3: VGGNet-16-based pretraining model; PM4: ResNet-
50-based pretraining model; AM3: VGGNet-16-based AT model; AM4: ResNet-50-based AT model) in the internal validation datasets 
(left) and test sets (right). The kappa calculation results range from −1 to 1, but κ ranges usually between 0 and 1 and is further divided into 
five groups to express different consistency levels (0–0.20: slight consistency, 0.21–0.40: fair consistency, 0.41–0.60: moderate consistency, 
0.61–0.80: substantial consistency, and 0.81–0.99: almost perfect consistency). Error bars show the standard error of κ values. AT, adversarial 
training; ResNet, residual network; VGGNet, Visual Geometry Group network.
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additional different and complementary information to 
improve the accuracy of PCa diagnosis. However, the 
optimal b-value of DWI and the best phase of DCE-MRI 
are unclear; therefore, for the choice of data, as in many 
previous studies, we selected ADC and T2WI sequences 
for model training and evaluation. Third, in the selection of 
the network framework and construction of the model, this 
study only examined the role of AT in 2D DL models for 
PCa classification based on VGGNet-16 and ResNet-50. 
The influence of AT on 3D models based on other 
types of networks for more tasks, such as PCa detection 
and segmentation, still requires further experimental 
demonstration. Finally, in the selection of AT methods, we 
used the representative L2-norm adversarial attack to craft 
adversarial noise without introducing additional constraints 
to simulate the unique noise of MR images, such as artifacts 
and deformation. In the future, we will consider adding 
style transfer supervision to craft MRI-specific adversarial 
noise, which may be used to further improve the adversarial 
robustness of the classification model.

Conclusions

Using adversarial samples to retrain machine learning 
models for PCa classification on MR images can effectively 
improve the generalizability of these models and improve 
their classification abilities.
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Appendix 1 Image preprocessing procedures

Cropping, resizing

The apparent diffusion coefficient (ADC) data has an original in-plane resolution of 2.10×1.60 mm2 and a matrix size of 
178×178, whereas T2-weighted imaging (T2WI) data has an in-plane resolution of 0.625×0.625 mm2 and a matrix size of 
320×256. The ADC data was first resampled to an in-plane resolution of 0.625×0.625 mm2 with a matrix size of 598×456. 
Then, a rectangular region of interest (ROI) region with a matrix size of 40×40 around the lesions was cropped from T2WI 
sequences and ADC maps according to the lesion coordinates and were scaled to an image resolution of 224×224. Next, ADC 
ROIs were aligned to those of T2WI images using the affine transformation implemented by the Advanced Normalization 
Tools (ANTs) (https://github.com/ANTsX/ANTs). 

Data augmentation

To avoid the imbalance issue of biased classification results toward the class with the most training samples, we balanced the 
number of training samples in the five classes by random translation and rotation. By this design, for multivariate classification 
task, all classes of the training sample had 112 ROI patches. For binary classification task, there are 330 ROI patches for the 
two classes of Gleason grade grouping (GGG) =1 and GGG >1. In addition, for each ROI patch, we flipped it horizontally 
and vertically to augment the training set. Therefore, by the above processes, we had a total of 1,680 (112×5×3) ROI patches 
in the training set for both modalities for multivariate classification task, and total of 1,980 (330×2×3) ROI patches in the 
training set for both modalities for the binary classification task. 

Normalization

Normalization transforms an n-dimensional grayscale image  { } { }: , ,nI Min Max⊆ →   with intensity values in the range 
(Min, Max), into a new image  { } { }: , ,n

NI newMin newMax⊆ →   with intensity values in the range (new Min, new Max).
The normalization of a grayscale digital image is performed according to the formula:

 
( )N

newMax newMinI I Min newMin
Max Min

−
= − +

−
 [1]

Where new Max is set to 1 and new Min is set to 0 in this paper.
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Appendix 2 The training process

The DL model first used a pair of ROI patches of ADC and T2WI as inputs to obtain two sub-features. Then, at the fusion 
stage, an element-wise summation was performed on the corresponding sub-features of ADC and T2WI. Next, fusion 
features were input into the fusion feature convolutional neural network (CNN) to obtain the final output. The training 
process could be formulated as follows:

Given a pair of ROI patches (xADC,xT2) of ADC and T2WI, we first obtained the sub-features fADC and fT2. Then, we fused 
the sub-features into fusion feature fF via an element-wise summation. Next, fF was further used to extract deep fusion feature 
to obtain the final output:

 ( )( )2ˆ ,ADC Ty softmax x xσ=   [2]

where  ( )⋅  denoted the DL classification model,  ( )softmax ⋅  represented the softmax function, and  ( )σ ⋅  the operation of 
selecting the item with the highest probability. 

We used a cross-entropy loss to supervise the training process:

 ( ) ( )ˆ ˆ1 1c ylogy y log y= − + − −    [3]

Where y denoted the ground-truth class label corresponding to the input (xADC,xT2). For training the AT model, we replaced 
ADC and T2WI data with their AEs and kept the other training settings unchanged.

Note that in our paper, both the AT and non-AT model are trained starting from random initial model parameters. 
The “retrain” in our paper means training the same model architecture starting from the initial model parameters with the 
same training settings. All models (i.e., VGG-16 and ResNet-50) for both AT and non-AT were trained using SGD with 
momentum 0.9 and weight decay 2×10−4. The training epoch number was 100 for both AT and non-AT model. The initial 
learning rate was 0.01, divided by 10 at the 75th and 90th epoch.

We drew the accuracy curve of the test set and the training set during the training process to observe whether the model 
was over-fitted. In the training process, as the number of iterations increases, the accuracy of the test set and the accuracy of 
the training set consistently increase, and eventually tend to be stable. This shows no overfitting.


