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Background: Routine clinical factors play an important role in the clinical diagnosis of focal liver lesions 
(FLLs); however, they are rarely used in computer-assisted diagnosis. Therefore, we developed a deep 
learning (DL) radiomics model, and investigated its effectiveness in diagnosing FLLs using long-range 
contrast-enhanced ultrasound (CEUS) cines and clinical factors.
Methods: Herein, 303 patients with pathologically confirmed FLLs after surgery at three hospitals were 
retrospectively enrolled and divided into a training cohort (n=203), internal validation (IV) cohort (n=50) 
from one hospital with the ratio of 4:1, and external validation (EV) cohort (n=50) from the other two 
hospitals. Four DL radiomics models, namely Four Stream 3D convolutional neural network (FS3DU) (trained 
with CEUS cines only), FS3DU+A (trained with CEUS cines and alpha fetoprotein), FS3DU+H (trained with 
CEUS cines and hepatitis), and FS3DU+A+H (trained with CEUS cines, alpha fetoprotein, and hepatitis), were 
formed based on 3D convolutional neural networks (CNNs). They used approximately 20-s preoperative 
CEUS cines and/or clinical factors to extract spatiotemporal features for the classification of FLLs and the 
location of the region of interest. The area under curve of the receiver operating characteristic and diagnosis 
speed were calculated to evaluate the models in the IV and EV cohorts, and they were compared with those 
of two radiologists. Two-sided Delong tests were used to calculate the statistical differences between the 
models and radiologists.
Results: FS3DU+A+H, which incorporated CEUS cines, hepatitis, and alpha fetoprotein, achieved the highest 
area under curve of 0.969 (95% CI: 0.901–1.000) and 0.957 (95% CI: 0.894–1.000) among radiologists and 
other models in IV and EV cohorts, respectively. A significant difference was observed when comparing 
FS3DU and radiologist 2 (all P<0.05). The diagnosis speed of all the models was the same (10.76 s per 
patient), and it was two times faster than those of the radiologists (radiologist 1: 23.74 and 27.75 s; radiologist 

3226

https://crossmark.crossref.org/dialog/?doi=10.21037/qims-21-1004


Liu et al. Deep learning for focal liver lesions diagnosis3214

© Quantitative Imaging in Medicine and Surgery. All rights reserved.   Quant Imaging Med Surg 2022;12(6):3213-3226 | https://dx.doi.org/10.21037/qims-21-1004

Introduction

Liver cancer is one of the most aggressive and frequent 
malignant tumors globally, with approximately 841,000 
new cases and 782,000 deaths per year, representing a 
significant challenge to human health, especially in China 
(1,2). In clinical procedures, the combination of alpha 
fetoprotein (AFP) and imaging examination play a crucial 
role in early screening and diagnosis (3-6). Contrast-
enhanced ultrasound (CEUS) plays an important role in 
the differential diagnosis of liver cancer from focal liver 
lesions (FLLs). Therefore, it has been recommended as 
one of the four imaging methods for the diagnosis of liver 
cancer (5,6). Studies show that compared with computed 
tomography (CT) and magnetic resonance imaging (MRI), 
it has the advantages of superior safety, fewer allergic 
reactions (7), lower cost, and real-time imaging (8,9). The 
diagnostic accuracy of CEUS can be higher or comparable 
to that of spiral CT, especially in characterizing <3 cm 
FLLs (10). However, the performance of CEUS is more 
complicated due to diverse types of FLLs, and significantly 
affects the application and popularization of CEUS in the 
differential diagnosis of FLLs (11-13). Particularly, routine 
clinical factors, such as hepatitis, AFP, and tumor markers, 
often affect the physiological and pathological changes of 
the liver, and should be taken into consideration during 
the analysis of CEUS in diagnosing liver cancer (8,14,15). 
However, they are often ignored, leading to unnecessary 
misdiagnosis and missed diagnosis. Simultaneously, 
comprehensive image analysis is challenging and requires 
tedious manual annotation by radiologists.

Deep learning (DL) with convolutional neural networks 
(CNNs) can automatically extract the hierarchy features of 
input data (16). It has been widely used for the analysis of 
FLLs in US (17,18), CT (19-22), and MRI (23-25). Former 
researchers have investigated computer technology in 

CEUS analysis, such as time intensity curves (TICs) (26-28) 
or intensity-based features (29,30). However, these features 
are relatively simple. In recent years, previous attempts 
have been made to algorithmically identify FLLs on CEUS 
with DL for extracting hierarchy features to improve the 
accuracy of diagnosis and postoperative prediction (31-35). 
However, these attempts mainly used CEUS images (30)  
or CEUS cines with two frames per second (33,34), 
i.e., not frame-to-frame, and did not take advantage of 
the spatiotemporal characteristics of CEUS. Moreover, 
routine clinical factors are rarely used in computer-assisted 
diagnosis (31-33,35).

Therefore, in this retrospective and multicenter 
study, we conducted DL radiomics to diagnose FLLs by 
simultaneously combining features from CEUS cines and 
clinical factors. Furthermore, we compared the classification 
accuracy and efficiency of the model with those of the 
radiologists in the internal and external validation (EV) 
cohorts. We present the following article in accordance with 
the TRIPOD reporting checklist (available at https://qims.
amegroups.com/article/view/10.21037/qims-21-1004/rc).

Methods

This retrospective study was approved by the institutional 
review board (No. KY2019129), and was conducted in 
accordance with the Declaration of Helsinki (as revised in 
2013). Requirement for patient consent was waived because 
of the retrospective nature of this study. 

Patients

A total of 1017 pathologically confirmed after-surgery 
patients were researched from institution 1, between 
February 2018 and August 2019, and institutions 2 and 3, 

2: 25.95 and 29.50 s in IV and EV cohorts, respectively).
Conclusions: The proposed DL radiomics demonstrated excellent performance on the benign and 
malignant diagnosis of FLLs by combining CEUS cines and clinical factors. It could help the individualized 
characterization of FLLs, and enhance the accuracy of diagnosis in the future.
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between February 2018 and August 2018. After applying 
the inclusion and exclusion criteria, 303 patients were 
enrolled (Figure 1), of which 253, 26, and 24 were from 
institution 1, 2, and 3, respectively. The inclusion criteria 
were (I) patient aged 18 years or older; (II) no ultrasound 
contrast allergy history; (III) ultrasound-found FLLs; and 
(IV) pathologically confirmed after-surgery patients. The 
exclusion criteria were (I) lack of complete CEUS imaging 
recording or clinical information; (II) poor quality of 
CEUS imaging; and (III) excessive motion during CEUS 
examination.

CEUS acquisition

CEUS examinations were performed by seven radiologists 
with more than five years of experience in liver CEUS 
using four ultrasound instruments (Table S1). First, the 
patient took the left lateral position, and the location of 
the lesion before CEUS was determined through B-mode 
US. Thereafter, the patient was observed for 5 min after 
injecting 2.4 mL of the second-generation contrast agents 
(SonoVue, Bracco Imaging, Italy) via the elbow vein 
followed by a 5-mL saline flush. For multiple tumors, 
patients received additional administrations of SonoVue to 
ensure each tumor was observed and the largest tumor was 
chosen in our study. 

For each patient, approximately 20 s arterial phase cines, 
two portal venous phase images, and two delayed phase 
images of the maximum width of the lesion were acquired. 

All the cines were stored in .wav or .avi formats, and the 
images were stored in .jpg format.

Clinical information acquisition

All the patients’ demographic and clinical data were 
recorded from the picture archiving and communication 
systems, including age, sex, pathological results, hepatitis, 
AFP, tumor location, and tumor size in B-mode US. 
Hepatitis includes hepatitis B virus infection, hepatitis C 
virus infection, fatty liver, and hepatic cirrhosis. If patients 
presented with hepatitis, it would be encoded to one, else 
zero. AFP was measured within one week before surgery, 
and its value was scaled to (0, 1) by log-normalization. 
Tumor location included the right lobe, left lobe, and caudal 
lobe, according to the anatomy. Tumor size was measured 
according to the largest boundary of the ROI of the lesion 
in clinical settings.

CEUS pre-processing

CEUS cines were collected with ultrasonic instruments, 
which usually include two parts, B mode and CEUS mode, 
which are in the RGB mode and are usually arranged in 
a left-right layout. First, the original CEUS cines were 
split into two separate parts: B mode and CEUS mode. 
Second, the optical flow for each cine was calculated using 
the Gunnar Farneback algorithm (36), which could help us 
better capture the hidden dynamic motion information of 

Figure 1 Flowchart of the study from data collection to evaluation. CEUS, contrast-enhanced ultrasound; IV, internal validation; EV, 
external validation; FS3D, Four-Stream three-dimensional.

Collect data (n=1,017)

Data processing (n=303)
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Excluded (n=714):
•	 Lack of complete CEUS imaging recording or 

clinical information (n=565)
•	 Poor quality of CEUS imaging (n=67)
•	 Excessive motion during CEUS examination (n=82)
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Figure 2 Pre-processing of CEUS cines. CEUS, contrast-enhanced ultrasound.

videos. Third, four cines for each patient, two RGB parts 
and two optical flow parts with the same width, height and 
frames, were cut into several short segments, known as 
four-stream segments with sixteen 224×224 frames, because 
of the limited graphics memory of GPUs. Finally, the pixels 
in each segment were normalized to (0, 1) (Figure 2).

The cines were processed using FFmpeg 4.2.2 (https://
ffmpeg.org/) and Python Imaging Library Pillow 3.3.1 
(https://pypi.python.org/pypi/Pillow/3.3.1).

DL radiomics model

A 3D CNN was trained on the four-stream cines above 
and named four-stream 3D (FS3D) CNN (Figure 3). These 
segments were fed sequentially into two independent 
CNNs, inflated 3D CNN (I3D) and channel-separated 
CNN (CSN) for feature extraction (37,38). The extracted 
features were then fused by channel concatenation to 
obtain a feature vector with a fixed length of 8192, and 
incorporated with clinical information. Finally, 544 of 
the most important features were selected by setting the 
importance threshold to 0.02, and combined with clinical 
factors to classify FLLs using a classification CNN (39).

The I3D network is a classical video-classification 
CNN with a 3×3×3 3D convolutional layer, 1×1×1 3D 
convolutional layer, and 3×3×3 3D Max-pooling layer. It 
gathers information from four different paths with different 
convolutional kernels and max pooling layers to aggregate 
spatial and temporal features at different scales. The CSN 
network is mainly composed of a 1×1×1 3D CNN and 
3×3×3 depthwise CNN, which are used to extract channel 

interactions and local interactions, respectively. This 
structure leads to improved video-classification accuracy 
and lower computation cost. The features extracted by 
I3D and CSN are complementary; they can be combined 
to obtain a complete feature representation of the dynamic 
CEUS cines.

Four models, FS3DU (trained with CEUS cines only), 
FS3DU+A (trained with CEUS cines and AFP), FS3DU+H 
(trained with CEUS cines and hepatitis history), and 
FS3DU+A+H (trained with CEUS cines, AFP, and hepatitis 
history) were investigated to analyze their diagnostic 
capabilities.

Experimental details

In the training stage, 3-fold cross-validation was used to 
adjust the network architecture (hyper-parameters, number 
of iterations, regularization method, and class weights). 
For each fold, one model was trained with a subset of 2/3 
of the training dataset, and the remaining 1/3 was used for 
validation. After three cycles, the model with the highest 
AUC was chosen, and the holdout internal validation 
(IV) and EV cohorts were used for the final evaluation  
(Tables S2-S4).

Transfer learning was used in this study. The parameters 
of the I3D and CSN were initialized with those from the 
Kinetics dataset (40) and fine-tuned with our dataset (41). 
Using pretrained weights helped the model converge 
faster on our smaller dataset. We downloaded parameters 
that were generated from the training DL model with the 
Kinetics dataset and initialized our model for training. We 
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Figure 3 Four-stream three-dimensional convolutional neural network composed of four steps: input, feature extraction, feature selection, 
and output. CEUS cines and images were normalized as input and predicted values of malignant lesions were calculated as output. I3D, 
inflated three dimentional; CSN, channel-separated convolutional networks; CNN, convolutional neural network; CEUS, contrast-
enhanced ultrasound; AFP, alpha fetoprotein.

trained 5,000 iterations with a learning rate of 0.001, batch 
size of one, and the learning optimizer was Adam.

The models were built using Python 3.5 (https://www.
python.org/downloads/release/python-350/) and Pytorch 
1.2 (https://pytorch.org/). All the experiments were run on 
an NVIDIA GeForce GTX 1080 GPU.

Comparative evaluation of diagnostic performance

Patients were stratified into three subgroups according to 
lesion size measured in the B-mode US (<20.0, 20.0–50.0, 
and >50.0 mm). Two radiologists with 12 years and 5 years 
of experience were invited to evaluate the IV and EV 
cohorts according to (3) based on the imaging characteristic 
and clinical factors. All the information, including 
approximately 20 s arterial phase cines, two portal venous 
phase images, two delayed phase images, and clinical data, 
except for pathological results, were presented to the 
radiologists in .ppt format. The start time was when the 
radiologists started to read the first page of the PPT.

Statistical analysis

Pearson’s chi-square tests were conducted for categorical 
clinical factors, which were described as percentages. For 
continuous clinical factors, Student’s t-tests were conducted.

The area under the receiver operating characteristic 
curve (AUC), accuracy (ACC), sensitivity (SEN), specificity 
(SPE), positive predictive value, negative predictive value, 
and receiver operating characteristic curve (ROC) for 
diagnosing each category were calculated for the IV and 
EV cohorts. Two-sided Delong tests were used to calculate 
statistical differences between AUC values. The statistical 
analyses were performed using Python 3.5 (https://www.
python.org/downloads/release/python-350/), and P<0.05 
was considered significant.

Results

Baseline characteristics

A total of 303 patients from three hospitals were enrolled 
according to the enrollment criteria. Up to 565 patients 
were excluded because of a lack of complete CEUS imaging 
or clinical data, and 67 and 82 patients were excluded 
because of poor imaging quality and excessive motion, 
respectively. All the enrolled patients were divided into a 
training cohort (n=203, 123 men and 80 women, mean age: 
48.5±13.3, 85 benign and 118 malignant lesions, 15 FLL 
types), an IV cohort (n=50, 30 men and 20 women, mean 
age: 52.6±10.8, 12 benign and 38 malignant lesions, 7 FLL 
types) with a ratio of 4:1 from institution 1, and an EV 
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cohort (n=50, 22 men and 28 women, mean age: 49.2±12.2, 
21 benign and 29 malignant lesions, 7 FLL types) from the 
other two institutions. The baseline characteristics of all the 
enrolled patients are summarized in Table 1. There were no 
significant differences in characteristics and demographics 
between the training, IV, and EV cohorts, except for the 
ultrasound equipment (P<0.05, Table 1). In total, 18 types of 
FLLs were enrolled in this study (Table S5).

Predictive performance of the models

The diagnostic performance of the FS3D models is shown 
in Table 2 and Figure 4. FS3DU+H+A, which incorporated 
CEUS cines, hepatitis, and AFP, achieved superior 
diagnostic performance, with AUC values of 0.969 (0.95% 
CI: 0.901–1.000) and 0.957 (0.95% CI: 0.894–1.000) in 
the IV and EV cohorts, respectively. The results were 

Table 1 Patient characteristics and demographics

Characteristic All patients (n=303) Training cohort (n=203) IV cohort (n=50) EV cohort (n=50)

Age (years), mean ± SD 52.31±13.0 48.5±13.3 52.6±10.8 49.2±12.2

Sex (%)

Male 175 (57.8) 123 (60.6) 30 (60.0) 22 (44.0)

Female 128 (42.2) 80 (39.4) 20 (40.0) 28 (56.0)

Chronic liver disease, n (%)

HBV 151 (49.8) 94 (46.3) 33 (66.0) 24 (48.0)

HCV 1 (0.3) 0 0 1 (2.0)

Fatty liver 13 (4.3) 9 (4.4) 2 (4.0) 1 (2.0)

Liver cirrhosis 65 (21.5) 49 (21.1) 14 (28.0) 2 (4.0)

Normal 141 (46.5) 103 (50.7) 16 (32.0) 22 (44.0)

Tumor, n (%)

Benign 118 (38.9) 85 (41.9) 12 (24.0) 21 (42.0)

Malignant 185 (61.1) 118 (58.1) 38 (76.0) 29 (58.0)

Tumor location, n (%)

Right lobe 206 (68.0) 133 (65.5) 38 (76.0) 35 (70.0)

Left lobe 92 (30.4) 67 (33.0) 10 (20.0) 15 (30.0)

Caudate 5 (1.6) 3 (1.5) 2 (4.0) 0

Equipment, n (%)*

512 155 (51.1) 122 (60.1) 28 (56.0) 5 (10.0)

E9 65 (21.5) 29 (14.3) 11 (22.0) 25 (50.0)

S2000 63 (20.8) 52 (25.6) 11 (22.0) 0 

iU22 20 (6.6) 0 0 20 (40.0)

AFP, n (%)

>200 ng/mL 57 (18.8) 29 (14.3) 16 (32.0) 13 (26.0)

<200 ng/mL 246 (81.2) 174 (85.7) 34 (68.0) 37 (74.0)

Tumor size (mm), mean ± SD 55.2±34.7 60.4±34.9 61.3±35.3 37.3.04±24.9

*, P<0.05 for comparison among training, IV, and EV cohorts. IV, internal validation; EV, external validation; AFP, alpha fetoprotein; HBV, 
hepatitis B virus; HCV, hepatitis C virus.

https://cdn.amegroups.cn/static/public/QIMS-21-1004-supplementary.pdf
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Figure 4 ROC curves of the final model in the (A) training dataset, (B) IV dataset, and (C) EV dataset. The red five-pointed star indicates 
the AUC values of a radiologist with 12 years of experience. The red dot indicates the AUC values of a radiologist with 5 years of experience. 
ROC, receiver operating characteristic curve; IV, internal validation; EV, external validation; AUC, area under the receiver operating 
characteristic curve.

Table 2 Identification performance of models in IV and EV cohorts

IV cohort EV cohort

FS3DU FS3DU+H FS3DU+A FS3DU+H+A FS3DU FS3DU+H FS3DU+A FS3DU+H+A

AUC  
(95% CI)

0.898*  
(0.780, 1.000)

0.938  
(0.844, 1.000)

0.950  
(0.865, 1.000)

0.969  
(0.901, 1.000)

0.798*  
(0.668, 0.928)

0.849*  
(0.734, 0.964)

0.892  
(0.793, 0.991)

0.957  
(0.894, 1.000)

ACC  
(95% CI)

0.840  
(0.709, 0.928)

0.940  
(0.835, 0.988)

0.920  
(0.808, 0.978)

0.960  
(0.863, 0.995)

0.800  
(0.663, 0.900)

0.880  
(0.757, 0.955)

0.920  
(0.808, 0.978)

0.940  
(0.835, 0.988)

SEN  
(95% CI)

0.838  
(0.680, 0.938)

0.946  
(0.818, 0.993)

0.919  
(0.781, 0.983)

0.973  
(0.858, 0.999)

0.862  
(0.683, 0.961)

0.966  
(0.822, 0.999)

0.966  
(0.822, 0.999)

0.966  
(0.822, 0.999)

SPE  
(95% CI)

0.846  
(0.546, 0.981)

0.923  
(0.640, 0.998)

0.923  
(0.640, 0.998)

0.923  
(0.640, 0.998)

0.714  
(0.478, 0.887)

0.762  
(0.528, 0.918)

0.857  
(0.637, 0.970)

0.905  
(0.696, 10.988)

PPV  
(95% CI)

0.939  
(0.798, 0.993)

0.972  
(0.855, 0.999)

0.971  
(0.851, 0.999)

0.973  
(0.858, 0.999)

0.806  
(0.625, 0.926)

0.848  
(0.681, 0.949)

0.903  
(0.743, 0.980)

0.933  
(0.779, 0.992)

NPV  
(95% CI)

0.647  
(0.383, 0.858)

0.857  
(0.572, 0.982)

0.800  
(0.519, 0.957)

0.923  
(0.640, 0.998)

0.789  
(0.544, 0.940)

0.941  
(0.713, 0.999)

0.947  
(0.740, 0.999)

0.950  
(0.751, 0.999)

Speed (sec) 10.76 10.76 10.76 10.76 10.76 10.76 10.76 10.76

Comparisons of the AUCs of model FS3DU+H+A among four subgroups were performed by Delong test. *, differences were significant 
when AUC of FS3DU+H+A were compared to other models (P<0.05). FS3DU = FS3DCEUS; FS3DU+A = FS3DCEUS+AFP; FS3DU+H = FS3DCEUS+Hepatitis; 
FS3DU+A+H = FS3DCEUS+AFP+Hepatitis. 95% CI, confidence interval of 95%; IV, internal validation; EV, external validation; AUC, the area under 
the receiver operating characteristic curve; ACC, accuracy; SEN, sensitivity; SPE, specificity; PPV, positive predictive value; NPV, negative 
predictive value; FS3D, Four-Stream three-dimensional.

statistically improved compared to FS3DU (P<0.05, Table 2)  
in the IV cohort as well as FS3DU (P<0.05, Table 2) and 
FS3DU+H (P<0.05, Table 2) in the EV cohort.

Compared to their performance in the EV cohort, the 
performance of all models in the IV cohort deteriorated. 
However, the Delong tests showed no significant differences 

among the four models in the IV and EV cohorts (P>0.05 
for all, Table 2; Table S6).

Stratification analysis of the models and radiologists

In the stratification analysis, the FS3DU+H+A model exhibited 
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Table 3 Stratification analyses among FS3DU+H+A model and radiologists in IV and EV cohorts according to tumor size (AUC)

IV cohort (n=50) EV cohort (n=50)

FS3DU+H+A R1 R2 FS3DU+H+A R1 R2

Total 0.969  
(0.901, 1.000)

0.935  
(0.839, 1.000)

0.867*  
(0.735, 0.999)

0.957  
(0.894, 1.000)

0.935  
(0.857, 1.000)

0.864*  
(0.754, 0.974)

<20 mm (n=26) 0.900  
(0.783, 1.000)

1.000  
(1.000, 1.000)

0.950  
(0.768, 1.000)

0.881  
(0.778, 0.984)

0.929  
(0.778, 1.000)

0.786  
(0.531, 1.000)

20–50 mm (n=34) 1.000  
(1.000, 1.000)

0.900  
(0.596, 1.000)

0.800  
(0.402, 1.000)

0.933  
(0.854, 1.000)

0.899  
(0.743, 1.000)

0.899  
(0.743, 1.000)

>50 mm (n=40) 0.956  
(0.852, 1.000)

0.938  
(0.816, 1.000)

0.879  
(0.713, 1.000)

0.983  
(0.943, 1.000)

1.000  
(1.000, 1.000)

0.917  
(0.751, 1.000)

Speed (sec) 10.76 23.74 25.95 10.76 27.75 29.50

Comparisons of the AUCs of model FS3DU+H+A to radiologists among three subgroups were performed by Delong test. FS3DU+A+H = 
FS3DCEUS+AFP+Hepatitis. *, differences were significant when AUC of FS3DU+H+A were compared to radiologists (P<0.05). 95% CI, confidence 
interval of 95%; IV, internal validation; EV, external validation; FS3D, Four-Stream three-dimensional; AUC, the area under the receiver 
operating characteristic curve.

statistically improved AUCs compared with R2 in the IV 
and EV cohorts (P<0.05 for all, Table 3). It also showed 
slightly improved AUCs compared with R1, while the 
improvement was not statistically significant.

Meanwhile, a hierarchical analysis was performed 
according to the tumor size measured in the US images 
(Table 3; Tables S7-S9). In the <20 mm subgroup (n=26, 
19 malignant lesions and 7 benign lesions), the AUCs of 
FS3DU+H+A were lowest in the IV cohort but higher than 
that of R2 in the EV cohort. In the 20–50 mm (n=34, 23 
malignant lesions and 11 benign lesions) and >50 mm (n=40, 
25 malignant lesions and 15 benign lesions) subgroups, the 
FS3DU+H+A model achieved the best performance compared 
to R1 and R2.

Predictive efficiency of the models compared to the 
radiologists

In terms of predictive efficiency, the four models, which 
achieved the same diagnosis speed (10.67 s per patient,  
Table 2), were almost three times faster than the radiologists 
in the IV cohort and approximately two times faster 
than the radiologists in the EV cohort. The experienced 
radiologist, R1, was faster than the young radiologist, R2.

Location performance of the model

To better understand the ability of the proposed models, 
the feature maps were converted into Gradient-weighted 

Class Activation Mapping (Grad-CAM) and visualized 
(Figure 5) (42). Each pixel in the maps was encoded using 
pseudo-color, and the warm color (red) represents a more 
substantial contribution to the predictive classification. By 
reading Grad-CAM heat-maps, we preliminarily concluded 
that the red/warm color regions occurred in patients with 
hyper-enhancement in the arterial phase. It indicates that 
our model is tracking the flow of CAs. Not only does it 
provide a visualization and interpretable capability for the 
network, but in future research we can also use Grad-CAM 
for ROI localization (43,44).

Here, we visualized and analyzed two samples: Sample [1],  
obtained from a 28-year-old man with liver cirrhosis, 
exhibited a malignant lesion of dimensions 38 mm × 35 mm 
(hepatocellular carcinoma, HCC) in the right liver, with an 
AFP concentration of 4.22 ng/mL. The imaging features 
showed rapid hyper-enhancement from the periphery to the 
center of the lesion in the artery phase and iso-enhancement 
in the portal venous phase. It is a case of HCC with atypical 
imaging, and the R1 misdiagnosed it; however, it was 
correctly diagnosed by the FS3DU+H+A model; Sample [2],  
obtained from a 32-year-old woman with no history 
of hepatitis, exhibited a benign lesion of dimensions  
41 mm ×27 mm (focal nodular hyperplasia, FNH) in the 
right liver, with an AFP concentration of 2.5 ng/mL. The 
imaging features showed slow hyper-enhancement from the 
center to the periphery in the late artery phase and wash-out 
in the late portal venous phase. It is a case of benign FLL 
with atypical imaging, and R2 misdiagnosed it, whereas the 

https://cdn.amegroups.cn/static/public/QIMS-21-1004-supplementary.pdf


Quantitative Imaging in Medicine and Surgery, Vol 12, No 6 June 2022 3221

© Quantitative Imaging in Medicine and Surgery. All rights reserved.   Quant Imaging Med Surg 2022;12(6):3213-3226 | https://dx.doi.org/10.21037/qims-21-1004

Figure 5 Feature visualization. There are two samples: the first and third rows show continuous frames of CEUS on a malignant lesion and 
a benign lesion, respectively. The lesions on the CEUS are marked by a white asterisk. The second and fourth rows show the corresponding 
feature maps of the lesions, marked by a white arrow. Sample [1], obtained from a 28-year-old man with liver cirrhosis, exhibited a malignant 
lesion of dimensions 38 mm × 35 mm (HCC) in the right liver, with an AFP concentration of 4.22 ng/mL. The imaging features showed 
rapid hyper-enhancement from the periphery to the center of the lesion in the artery phase and iso-enhancement in the portal venous phase. 
Sample [2], obtained from a 32-year-old woman with no history of hepatitis, exhibited a benign lesion of dimensions 41 mm × 27 mm (FNH) 
in the right liver, with an AFP concentration of 2.5 ng/mL. The imaging features showed slow hyper-enhancement from the center to the 
periphery in the late artery phase and wash-out in the late portal venous phase. CEUS, contrast-enhanced ultrasound; HCC, hepatocellular 
carcinoma; FNH, focal nodular hyperplasia.

FS3DU+H+A model correctly diagnosed it. 
In addition, the misclassified cases of our model were 

analyzed, and we found that they mainly presented atypical 
imaging characteristics in CEUS (Figure 6). Case A of 
hemangioma was misdiagnosed as a malignant tumor. It 
presented peripheral annular enhancement with obvious 
internal thrombosis, which was different from the typical 
nodular enhancement, and was hard to differentiate from 
hepatocellular carcinoma with partial internal necrosis. 
Case B of cholangiocarcinoma was misdiagnosed as a 
benign tumor. It showed inhomogeneous and slight 
hyper-enhancement, and an unclear boundary. It was 
not the typical annular enhancement, and was difficult to 
differentiate from inflammatory lesions. Case C of primary 
liver cancer was misdiagnosed as a benign tumor. The 
enhancement pattern in the arterial phase was annular and 
nodular hyper-enhancement because of the necrotic areas, 

and was difficult to differentiate from that of hemangioma.

Discussion

Rapid wash-in and wash-out is the typical imaging 
characteristic of liver cancer. The hepatocarcinogenesis 
is accompanied by decline in normal vascularity and 
the development of neoangiogenesis and sinusoidal 
capillarization. Microbubble contrast agents in CEUS can 
enhance the echo signals of the blood supply, and real-time 
perfusion information about the lesion can be analyzed 
frame-to-frame. Hence CEUS plays an important role 
in the early diagnosis of liver cancer in clinical practice. 
However, recent studies have shown that the imaging 
features of liver cancer can be presented through various 
features corresponding to clinicopathological characteristics. 
For example, small HCC or well-differentiated HCC could 

Sample [1], malignant lesion

Sample [2], benign lesion
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exhibit iso-enhancement for atypical imaging in the late 
phase, which is consistent with the imaging characteristic of 
dysplastic nodules, and is easily misdiagnosed. Therefore, 
combining the patient’s medical history and related 
laboratory examinations is of significant importance for the 
accurate identification of liver cancer.

DL has been shown to perform well in extracting 
features of medical imaging. 3D CNNs, in particular, can 
extract spatiotemporal information effectively. Therefore, 
the established the FS3DU+H+A model, incorporated long-
range CEUS cines with approximately 20 frames per second 
and clinical factors, and achieved the best performance in 
identifying FLLs among other models, and better than 
earlier studies (28,29,32), which only analyzed CEUS and 
reported an average accuracy of 94.3%, 93.1%, and 90.3%, 
respectively. The results indicate that clinical factors are 
important for computer-assisted diagnosis; this indication is 

consistent with clinical diagnosis investigation.
In stratif ied analysis,  the FS3DU+H+A model was 

significantly advantageous over the younger R2 and 
provided a better AUC than the more experienced R1 
for lesions in the ≥20 mm groups, while slightly worse in 
the <20 mm group. It may be because the rapid motion 
in CEUS cine may easily occlude lesions, resulting in the 
blood perfusion of small lesions in some key frames not 
being captured. However, the total AUC of the model was 
higher than that of the radiologists on CEUS in former 
reports, who achieved an average accuracy of 85% (9,45) 
and even in CT and MRI (9,45,46). Hence, our model 
learns discriminative spatiotemporal representations from 
long-range CEUS cines and clinical factors, and offers 
remarkable capabilities in the differential diagnosis of FLLs. 
The EV, 3-fold cross-validation, and variety of CEUS 
equipment proved the robustness of our models. 

Figure 6 The misclassified cases reported by the model. Case A of hemangioma was misdiagnosed as a malignant tumor. Case B of 
cholangiocarcinoma was misdiagnosed as a benign tumor. Case C of primary liver cancer was misdiagnosed as a benign tumor. The lesions 
on the CEUS are marked by a white asterisk. CEUS, contrast-enhanced ultrasound.
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It is worth mentioning that diagnosing liver cancer in 
liver cirrhosis is challenging in clinical practice. Our study’s 
IV and EV cohorts included 16 patients with liver cirrhosis, 
including 2 benign and 14 malignant lesions. The diagnostic 
accuracy of both R1 and FS3DU+H+A models were 100%, 
while that of the younger R2 was 93.75%. The results 
indicate that the model also performed well in diagnosis of 
liver cancer in liver cirrhosis. However, the comprehensive 
analysis of misclassified cases show that our model still lacks 
the differential diagnosis of patients with atypical imaging 
features, mainly due to the small number of cases included 
in this study.

In terms of diagnosis speed, our models took 10.76 s 
to diagnose each patient, which is faster than the manual 
assessment (9,45,46). Hence, our method could be widely 
applicable as a cost-effective and safe method in clinical 
practice, and may replace CT or MRI. In addition, feature 
maps generated by the algorithm can clearly indicate the 
location of the lesion and help radiologists focus on blood 
perfusion information, overcoming observable limitation 
factors such as breath motion. They can interpret the 
CNN results, which has important implications for clinical 
diagnosis and navigation in the future.

Our study has some limitations. First, although fully 
trained CNNs require a large dataset, the sample size and 
the number of medical centers in our study were smaller, 
and there is still an imbalance in the types of FLLs. 
We also need additional data to verify the performance 
of the model in the heterogeneity diagnosis of FLLs. 
Therefore, in subsequent research, more multicenter data 
with standard formats should be collected and applied. 
Second, a binary classification of FLLs was achieved, 
which is only the first step toward clinical applications. 
Therefore, the classification of different types of FLLs 
will be one of our future focus areas, especially for the 
accurate diagnosis of HCC. Third, CT and MRI also 
provide important information on the extent of the local 
tumor, which should be included for multimodal analysis 
in subsequent studies.

In conclusion, the proposed DL radiomics captured the 
dynamic perfusion information of liver cancer, and combined 
the patients’ AFP and hepatitis history, which is the key 
link of diagnosis in clinical practice. Finally, the strategy is 
more in line with the clinical diagnosis of liver cancer, and 
achieves an outstanding performance and higher speed in 
the diagnosis of FLLs, and is superior to skilled radiologists. 
Hence, it is promising for the wide application of CEUS as a 
time- and cost-effective imaging method in clinical settings, 

and could drive further innovation in medicine.
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Table S1 The ultrasound instruments 

Ultrasound manufacturers Ultrasound instrument probe Production country Width × Height 

Philips IU22 C5-1 American 800×600

GE LOGIQ  E9 CI-5 and CI-6 American 960×540

Siemens Acuson S2000 4C1 Germany 1,024×768

Siemens Sequoia 512 4C1 Germany 768×576

Supplementary

Table S2 Identification performance of the proposed models in IV and EV cohorts (3-fold CV, Fold1)

FS3DU FS3DU+H FS3DU+A FS3DU+H+A

Training IV and EV Training IV and EV Training IV and EV Training IV and EV

AUC 
(95% CI)

0.931 
(0.883,0.979)

0.710 
(0.585.0.835)

0.954 
(0.915,0.993)

0.883 
(0.797,0.969)

1.000 
(1.000,1.000)

0.923 
(0.857,0.993)

0.968 
(0.935,1.000)

0.931 
(0.864,0.998)

ACC 
(95% CI)

0.867 
(0.798,0.919)

0.725 
(0.604,0.825)

0.904 
(0.841,0.948)

0.841 
(0.733,0.918)

1.000 
(0.973,1.000)

0.870 
(0.767,0.939)

0.933 
(0.877,0.965)

0.899 
(0.802,0.958)

SEN 
(95% CI)

0.909 
(0.822,0.963)

0.744 
(0.579,0.870)

0.948 
(0.872,0.986)

0.872 
(0.726,0.957)

1.000 
(0.953,1.000)

0.897 
(0.758,0.971)

0.974 
(0.909,0.997)

0.849 
(0.827,0.994)

SPE 
(95% CI)

0.810 
(0.686.0.901)

0.700 
(0.506,0.853)

0.845 
(0.726,0.927)

0.800 
(0.614,0.923)

1.000 
(0.938,1.000)

0.833 
(0.653,0.944)

0.879 
(0.767,0.950)

0.833 
(0.653,0.944)

PPV 
(95% CI)

0.864 
(0.758,0.922)

0.763 
(0.598,0.886)

0.890 
(0.802,0.949)

0.850 
(0.702,0.943)

1.000 
(0.953,1.000)

0.875 
(0.732,0.958)

0.915 
(0.832,0.965)

0.881 
(0.744,0.960)

NPV 
(95% CI)

0.870 
(0.770,0.957)

0.677 
(0.486,0.833)

0.925 
(0.818,0.979)

0.828 
(0.642,0.942)

1.000 
(0.938,1.000)

0.862 
(0.683,0.961)

0.962 
(0.870,0.995)

0.926 
(0.757,0.991)

Speed 
(sec)

10.76 10.76 10.76 10.76 10.76 10.76 10.76 10.76

FS3DU= FS3DCEUS; FS3DU+A = FS3DCEUS+AFP; FS3DU+H = FS3DCEUS+Hepatitis; FS3DU+A+H = FS3DCEUS+AFP+Hepatitis. IV, internal validation; EV, external 
validation; CV, cross validation; AUC, the area under the receiver operating characteristic curve; ACC, accuracy; SEN, sensitivity; SPE, 
specificity; PPV, positive predictive value; NPV, negative predictive value; 95% CI, confidence interval of 95%; FS3D, Four-Stream three-
dimensional.
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Table S3 Identification performance of the proposed models in IV and EV cohorts (3-fold CV, Fold2)

FS3DU FS3DU+H FS3DU+A FS3DU+H+A

Training IV and EV Training IV and EV Training IV and EV Training IV and EV

AUC 
(95% CI)

0.950 
(0.910,0.990)

0.651 
(0.517,0.785)

0.969 
(0.937,1.000)

0.785 
(0.671,0.899)

1.000 
(1.000,1.000)

0.725 
(0.600,0.850)

0.966 
(0.933,0.999)

0.795 
(0.671,0.899)

ACC 
(95% CI)

0.904 
(0.842,0.948)

0.706 
(0.552,0.785)

0.927 
(0.869,0.964)

0.735 
(0.614,0.835)

1.000 
(0.973,1.000)

0.691 
(0.567,0.800)

0.927 
(0.869,0.964)

0.750 
(0.630,0.847)

SEN 
(95% CI)

0.987 
(0.930,1.000)

0.821 
(0.635,0.907)

0.961 
(0.890,0.992)

0.821 
(0.665,0.925)

1.000 
(0.953,1.000)

0.692 
(0.524,0.830)

0.922 
(0.838,0.971)

0.846 
(0.645,0.941)

SPE 
(95% CI)

0.797 
(0.672,0.890)

0.552 
(0.325,0.706)

0.881 
(0.771,0.951)

0.621 
(0.423,0.793)

1.000 
(0.939,1.000)

0.690 
(0.492,0.847)

0.932 
(0.835,0.981)

0.621 
(0.423,0.793)

PPV 
(95% CI)

0.864 
(0.774,0.928)

0.711 
(0.534,0.818)

0.914 
(0.830,0.965)

0.744 
(0.588,0.865)

1.000 
(0.953,1.000)

0.750 
(0.578,0.879)

0.947 
(0.869,0.985)

0.750 
(0.597,0.868)

NPV 
(95% CI)

0.979 
(0.889,1.000)

0.696 
(0.427,0.836)

0.946 
(0.849,0.989)

0.720 
(0.506,0.879)

1.000 
(0.939,1.000)

0.625 
(0.437,0.789)

0.902 
(0.798,0.963)

0.750 
(0.533,0.902)

Speed 
(sec)

10.76 10.76 10.76 10.76 10.76 10.76 10.76 10.76

FS3DU= FS3DCEUS; FS3DU+A = FS3DCEUS+AFP; FS3DU+H = FS3DCEUS+Hepatitis; FS3DU+A+H = FS3DCEUS+AFP+Hepatitis. IV, internal validation; EV, external 
validation; CV, cross validation; ACC, accuracy; SEN, sensitivity; SPE, specificity; PPV, positive predictive value; NPV, negative predictive 
value; AUC, the area under the receiver operating characteristic curve; 95% CI, confidence interval of 95%; FS3D, Four-Stream three-
dimensional. 

Table S4 Identification performance of the proposed models in IV and EV cohorts (3-fold CV, Fold3)

FS3DU FS3DU+H FS3DU+A FS3DU+H+A

Training IV and EV Training IV and EV Training IV and EV Training IV and EV

AUC 
(95% CI)

0.934 
(0.888,0.980)

0.795 
(0.683,0.907)

0.932 
(0.885,0.979)

0.930 
(0.862,0.998)

1.000 
(1.000,1.000)

0.886 
(0.800,0.972)

0.917 
(0.865,0.969)

0.924 
(0.853,0.995)

ACC 
(95% CI)

0.876 
(0.809,0.926)

0.746 
(0.625,0.845)

0.883 
(0.817,0.932)

0.851 
(0.743,0.926)

1.000 
(0.973,1.000)

0.851 
(0.743,0.926)

0.876 
(0.809,0.919)

0.866 
(0.760,0.937)

SEN 
(95% CI)

0.987 
(0.931,1.000)

0.895 
(0.752,0.971)

0.962 
(0.892,0.992)

0.921 
(0.786,0.983)

1.000 
(0.954,1.000)

0.895 
(0.752,0.971)

0.949 
(0.874,0.986)

0.947 
(0.823,0.994)

SPE 
(95% CI)

0.729 
(0.597,0.836)

0.552 
(0.357,0.736)

0.780 
(0.653,0.877)

0.759 
(0.565,0.897)

1.000 
(0.939,1.000)

0.793 
(0.603,0.920)

0.780 
(0.653,0.877)

0.759 
(0.564,0.897)

PPV 
(95% CI)

0.828 
(0.736,0.898)

0.723 
(0.574,0.844)

0.852 
(0.761,0.919)

0.833 
(0.686,0.930)

1.000 
(0.954,1.000)

0.850 
(0.702,0.943)

0.851 
(0.758,0.918)

0.837 
(0.693,0.932)

NPV 
(95% CI)

0.977 
(0.880,0.999)

0.800 
(0.563,0.943)

0.939 
(0.831,0.987)

0.880 
(0.688,0.975)

1.000 
(0.939,1.000)

0.852 
(0.663,0.958)

0.920 
(0.808,0.978)

0.917 
(0.730,0.990)

Speed 
(sec)

10.76 10.76 10.76 10.76 10.76 10.76 10.76 10.76

FS3DU= FS3DCEUS; FS3DU+A = FS3DCEUS+AFP; FS3DU+H = FS3DCEUS+Hepatitis; FS3DU+A+H = FS3DCEUS+AFP+Hepatitis. IV, internal validation; EV, external 
validation; CV, cross validation; ACC, accuracy; SEN, sensitivity; SPE, specificity; PPV, positive predictive value; NPV, negative predictive 
value; AUC, the area under the receiver operating characteristic curve; 95% CI, confidence interval of 95%; FS3D, Four-Stream three-di-
mensional. 
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Table S5 Number of lesion types in training, IV and EV cohorts

Lesion type Training cohort (n=203) IV cohort (n=50) EV cohort (n=50)

1 Malignant Hepatocellular carcinoma 87 28 24

2 Cholangiocellular carcinoma 12 5 4

3 Combined hepatocellular-cholangiocarcinoma 1

4 Metastatic cancers 15 5 1

5 Hepatoblastoma 1

6 Hepatic neuroendocrine tumors 1

7 Inflammatory pseudotumor-like follicular dendritic cell tumor 1

8 Benign Focal Nodular Hyperplasia 20 2 1

9 Inflammatory lesions 17

10 Hemangioma 20 6 18

11 Mucinous cystadenomas 1

12 Angiomyolipoma 24 3

13 Liver cirrhotic with dysplasia 1

14 Focal fatty sparing 1

15 Hepatic adenoma 1

16 Schwannomatosis 1

17 Granulomatous inflammatory 1

18 Hepatic cyst 1

IV, internal validation; EV, external validation. 
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Table S9 Stratification analysis among FS3DU+H+A and radiologists in IV and EV cohorts (>50 mm)

IV cohort(n=25) EV cohort(n=15)

FS3DU+H+A R 1 R 2 FS3DU+H+A R 1 R 2

AUC (95% CI) 0.956 (0.852,1.000) 0.938 (0.816,1.000) 0.879 (0.713,1.000) 0.983 (0.943,1.000) 1.000 (1.000,1.000) 0.917 (0.751,1.000)

ACC (95% CI) 0.920 (0.740,0.990) 0.960 (0.797,0.999) 0.880 (0.688,0.975) 0.9375 (0.698,0.998) 1.000 (0.794,1.000) 0.938 (0.698,0.998)

SEN (95% CI) 0.941 (0.713,0.999) 1.000 (0.805,1.000) 0.882 (0.636,0.985) 0.900 (0.555,0.998) 1.000 (0.692,1.000) 1.000 (0.692,1.000)

SPE (95% CI) 0.875 (0.474,0.997) 0.875 (0.474,0.997) 0.875 (0.474,0.997) 1.000 (0.541,1.000) 1.000 (0.541,1.000) 0.833 (0.359,0.996)

FS3DU+A+H = FS3DCEUS+AFP+Hepatitis. IV, internal validation; EV, external validation; ACC, accuracy; SEN, sensitivity; SPE, specificity; AUC, the 
area under the receiver operating characteristic curve; 95% CI, confidence interval of 95%; FS3D, Four-Stream three-dimensional.

Table S7 Stratification analysis among FS3DU+H+A and radiologists in IV and EV cohorts (<20 mm)

IV cohort(n=13) EV cohort(n=13)

FS3DU+H+A R1 R2 FS3DU+H+A R1 R2

AUC (95% CI) 0.900 (0.783,1.000) 1.000 (1.000,1.000) 0.950 (0.768,1.000) 0.881 (0.778,0.984) 0.929 (0.778,1.000) 0.786 (0.531,1.000)

ACC (95% CI) 0.923 (0.640,0.998) 1.000 (0.753,1.000) 0.923 (0.640,0.998) 0.846 (0.546,0.981) 0.923 (0.640,0.998) 0.769 (0.462,0.950)

SEN (95% CI) 1.000 (0.692,1.000) 1.000 (0.692,1.000) 0.900 (0.555,0.998) 1.000 (0.541,1.000) 1.000 (0.541,1.000) 1.000 (0.541,1.000)

SPE (95% CI) 0.667 (0.094,0.992) 1.000 (0.292,1.000) 1.000 (0.292,1.000) 0.714 (0.290,0.963) 0.857 (0.421,0.996) 0.571 (0.184,0.901)

FS3DU+A+H = FS3DCEUS+AFP+Hepatitis. IV, internal validation; EV, external validation; ACC, accuracy; SEN, sensitivity; SPE, specificity; AUC, the 
area under the receiver operating characteristic curve; 95% CI, confidence interval of 95%; FS3D, Four-Stream three-dimensional.

Table S8 Stratification analysis among FS3DU+H+A and radiologists in IV and EV cohorts (20–50 mm)

IV cohort (n=13) EV cohort (n=21)

FS3DU+H+A R1 R2 FS3DU+H+A R1 R2

AUC (95% CI) 1.000 (1.000,1.000) 0.900 (0.596,1.000) 0.800 (0.402,1.000) 0.933 (0.854,1.000) 0.899 (0.743,1.000) 0.899 (0.743,1.000)

ACC (95% CI) 1.000 (0.735,1.000) 0.833 (0.516,0.979) 0.667 (0.349,0.901) 0.857 (0.637,0.970) 0.905 (0.696,0.988) 0.905 (0.696,0.988)

SEN (95% CI) 1.000 (0.692,1.000) 0.800 (0.444,0.975) 0.600 (0.262,0.878) 0.923 (0.640,0.998) 0.923 (0.640,0.998) 0.923 (0.640,0.998)

SPE (95% CI) 1.000 (0.158,1.000) 1.000 (0.158,1.000) 1.000 (0.158,1.000) 0.750 (0.349,0.968) 0.875 (0.474,0.997) 0.875 (0.474,0.997)

FS3DU+A+H = FS3DCEUS+AFP+Hepatitis. IV, internal validation; EV, external validation; ACC, accuracy; SEN, sensitivity; SPE, specificity; AUC, the 
area under the receiver operating characteristic curve; 95% CI, confidence interval of 95%; FS3D, Four-Stream three-dimensional. 


