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Background and Objective: In an era of profound growth of medical data and rapid development of 
advanced imaging modalities, precision medicine increasingly requires further expansion of what can be 
interpreted from medical images. However, the current interpretation of cardiac computed tomography 
(CT) images mainly depends on subjective and qualitative analysis. Radiomics uses advanced image analysis 
to extract numerous quantitative features from digital images that are unrecognizable to the naked eye. 
Visualization of these features can reveal underlying connections between image phenotyping and biological 
characteristics and support clinical outcomes. Although research into radiomics on cardiovascular disease 
began only recently, several studies have indicated its potential clinical value in assessing future cardiac risk 
and guiding prevention and management strategies. Our review aimed to summarize the current applications 
of cardiac CT radiomics in the cardiovascular field and discuss its advantages, challenges, and future 
directions. 
Methods: We searched for English-language articles published between January 2010 and August 2021 in 
the databases of PubMed, Embase, and Google Scholar. The keywords used in the search included computed 
tomography or CT, radiomics, cardiovascular or cardiac. 
Key Content and Findings: The current applications of radiomics in cardiac CT were found to 
mainly involve research into coronary plaques, perivascular adipose tissue (PVAT), myocardial tissue, 
and intracardiac lesions. Related findings on cardiac CT radiomics suggested the technique can assist 
the identification of vulnerable plaques or patients, improve cardiac risk prediction and stratification, 
discriminate myocardial pathology and etiologies behind intracardiac lesions, and offer new perspective and 
development prospects to personalized cardiovascular medicine. 
Conclusions: Cardiac CT radiomics can gather additional disease-related information at a microstructural 
level and establish a link between imaging phenotyping and tissue pathology or biology alone. Therefore, 
cardiac CT radiomics has significant clinical implications, including a contribution to clinical decision-
making. Along with advancements in cardiac CT imaging, cardiac CT radiomics is expected to provide 
more precise phenotyping of cardiovascular disease for patients and doctors, which can improve diagnostic, 
prognostic, and therapeutic decision making in the future.
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Introduction 

As a non-invasive imaging tool, cardiac computed 
tomography (CT) has experienced a dramatic evolution 
from identifying anatomically significant coronary artery 
stenosis to become an advanced imaging tool that plays an 
increasingly important role in guiding clinical decision-
making in various fields of cardiovascular medicine (1-6).  
In particular, the development of coronary computed 
tomography angiography (CCTA) has advanced the 
assessment of suspected coronary artery disease (CAD) (7).  
Although advances in CT techniques have enabled 
radiological examinations to provide a wide variety 
of information, the current data-analysis and image 
interpretation techniques still mostly rely on qualitative 
evaluation determined by radiological experts (8). The 
rise of precision medicine requires us to provide more 
quantitative information in order to detect subtle changes 
related to underlying pathologic processes and improve the 
diagnostic acuity of imaging examinations, while reducing 
subjectivity and bias (9). 

Radiomics is contrary to the traditional practice of 
regarding medical images as pictures that can only be used 
for visual interpretation. Radiomics refers to the process of 
extracting vast amounts of data regarding the quantitative 
features of a given region of interest (ROI) to create 
large datasets that can be subsequently mined to reveal 
the relationships between distinct radiomics metrics to 
improve clinical decision making (8). So far, radiomics has 
been successfully applied to oncology research. Previous 
research has shown that radiomics can help with the precise 
diagnosis of tumors (10), prediction of clinical outcomes 
(11,12), monitoring of disease progression (13), and 
assessment of therapeutic response and prognosis (13-15). 
Since the development of the radiomics quality score and 
image biomarker standardization initiative, radiomics has 
become increasingly standardized (16,17).

Radiomics could provide a bridge between cardiac CT 
images and cardiovascular medicine. Although radiomics 
research based on cardiac CT began relatively recently, 
several proof-of-concept studies have found its incremental 
value in the cardiovascular field (18-25). The purpose of 
this review was to summarize the current applications of 
cardiac CT radiomics in the cardiovascular field and discuss 
its advantages, challenges, and future directions. We present 
the following article in accordance with the Narrative 
Review reporting checklist (available at https://qims.
amegroups.com/article/view/10.21037/qims-21-1022/rc). 

Methods

We searched the databases of PubMed, Embase, and 
Google Scholar for articles that had been published 
between January 2010 and August 2021. A combination 
of keywords, computed tomography or CT, radiomics, 
cardiovascular or cardiac, were used. Two investigators with 
an experience of 5 years in cardiovascular imaging diagnosis 
independently checked each identified article for inclusion 
criteria. Disagreements were discussed and resolved by 
consensus (Table 1). The inclusion criteria were as follows: (I) 
the articles reported the value of radiomics based on cardiac 
CT in the cardiovascular disease; (II) the articles were 
published in English. The exclusion criteria were as follows: 
(I) reviews, letters, editorials, comments, case reports and 
unpublished articles were excluded. Finally, a total of 17 
articles were selected. Then, the full articles were read 
carefully and the relevant information on the application 
value of cardiac CT radiomics were extracted. 

Radiomics characterization

Radiomics is the process of extracting vast amounts of 
data of quantitative features from tomographic images 
for the purpose of converting digital images to higher-
dimensional mineable data that can subsequently be used 
to improve clinical decision support (26). A common 
workflow of radiomics is composed of image acquisition 
and preprocessing, image segmentation, feature extraction 
and selection, model building and validation (16) (Figure 1). 
Radiomics data mainly contain first-order, second-order, 
and higher-order statistics that represent a massive number 
of features linked with the shape, attenuation, volume, 
and texture of a given lesion (26). The tomographic 
images collected with radiomics are more than pictures—
they are data (16,26). These data are calculated by 
complicated mathematical formulae and may recognize 
features that are undiscernible to the naked eye. Given its 
characteristics, radiomics may establish an undiscovered 
correlation between imaging features and significant 
clinical outcomes. 

Current applications of cardiac CT radiomics

The current applications of radiomics for cardiac CT 
mainly involve research surrounding coronary plaques, 
perivascular adipose tissue (PVAT), myocardial tissue, 
and intracardiac lesions (Figure 2). A comprehensive 

https://qims.amegroups.com/article/view/10.21037/qims-21-1022/rc
https://qims.amegroups.com/article/view/10.21037/qims-21-1022/rc
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Table 1 Summary of the literature search strategy 

Items Specification

Date of search (specified to date, month, and year) 10 August, 2021

Databases and other sources searched PubMed, Embase, and Google Scholar 

Search terms used (including MeSH and free text search 
terms and filters) 

Computed tomography or CT; radiomics; cardiovascular or cardiac

Timeframe January 2010 to August 2021

Inclusion and exclusion criteria (study type, language 
restrictions etc.)

Inclusion criteria: (I) the articles reported the value of radiomics based on cardiac 
CT in the cardiovascular disease; (II) the articles were published in English. 
Exclusion criteria: (I) reviews, letters, editorials, comments, case reports and 
unpublished articles were excluded

Selection process (who conducted the selection, whether 
it was conducted independently, how consensus was 
obtained, etc.)

Study selection was conducted by two investigators. Disagreements were 
discussed and resolved by consensus

Any additional considerations, if applicable

overview of current applications of cardiac CT radiomics in 
cardiovascular disease is presented in Table 2.

Radiomics phenotyping of coronary plaques

As a first-line diagnostic tool to detect and characterize 
coronary atherosclerosis, CCTA is used to evaluate coronary 
luminal stenosis and visualize coronary atherosclerosis 
changes including plaque composition, distribution, and 
burden. Although increasing evidence suggests that the 
presence of high-risk plaque (HRP) confers an increased 
risk of major adverse cardiac events (MACE) and provides 

additional prognostic information, identification of 
HRP features still relies on expert experience and tends 
to vary between different observers or intra-observers  
(37-43). Furthermore, HRP characteristics derived from 
CCTA are only suitable to identify visible atherosclerosis 
at advanced stages, but it would be desirable to visualize 
the early pathophysiological process of atherosclerosis 
including inflammation, apoptosis, or cell migration (44). 
Radiomics might provide us with more objective parameters 
to overcome limitations of subjective visual assessment 
and describe the nature changes of a given plaque, such as 
texture and spatial complexity (8). 

Image acquisition and 
processing Image segmentation Features extraction and 

selection Model building and validation

Figure 1 A common workflow of radiomics. Radiomics workflow is commonly composed of image acquisition and preprocessing, image 
segmentation, feature extraction and selection, model building and validation. The yellow arrow and frame refer to the coronary plaques in 
the axial and multiplanar reconstruction images based on CCTA, respectively.
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Pericoronary adipose tissue

Myocardium tissue Coronary plaques

Intracardiac lesions

Figure 2 The current applications of cardiac CT radiomics. The current applications of radiomics on cardiac CT mainly focus on coronary 
plaques, pericoronary adipose tissue, myocardial tissue, and intracardiac lesions. CT, computed tomography. The white arrow above refers 
to the lesion of left atrium. The white arrow below refers to the coronary plaque.

Identification of plaque vulnerability
In an initial study exploring the potential of radiomics 
in atherosclerosis plaques, Kolossváry et al. (18) used the 
radiomics approach to extract 4,440 radiomic parameters 
from coronary plaques with and without the napkin-
ring sign (NRS) (Figure 3). They compared them with 8 
conventional quantitative parameters and found that more 
than 20% of radiomic features were significantly different 
between plaques with or without NRS. This suggested 
that radiomics features can potentially identify a qualitative 
NRS feature. Another study by Kolossváry et al. (20) 
demonstrated that a radiomics-based machine learning 
model of CCTA displayed superior diagnostic performance 
[area under the curve (AUC) =0.73] in the identification 
of advanced atherosclerotic plaques compared with that 
of visual assessment (AUC =0.65; P=0.04) and compared 
with histogram-based measurements of areas with low 
CT attenuation (AUC =0.55; P=0.01) and an average 

Hounsfield unit (HU; AUC =0.53; P=0.004). Additionally, 
an analysis of 44 plaques from 25 patients with suspected 
CAD who underwent multiple imaging examinations 
showed that CCTA-based radiomic analyses had superior 
diagnostic accuracy than conventional plaque features 
to identify invasive and radionuclide imaging markers of 
plaque vulnerability (21). 

Identification of significant myocardial ischemia
To explore the superiority of CCTA-based coronary plaque 
radiomics in the identification of myocardial ischemia, 
Hu et al. (19) extracted 1,409 radiomics features from 105 
coronary plaques of 88 patients who underwent CCTA 
and invasive fractional flow reserve (FFR), simultaneously 
compared them with conventional CCTA features. 
They found that 3 quantitative wavelet features were 
closely related to myocardial ischemia, and the CCTA-
based radiomics model (AUC =0.762) outperformed the 
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A

B
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F

Figure 3 Representative examples of plaques with and without the NRS. Volume-rendered and cross-sectional images of plaques with NRS 
in the top (A, C, and E) and their matched plaques in the bottom (B, D, and E) are shown. Green dashed lines indicate the location of cross-
sectional planes. Colors indicate different computed tomographic attenuation values [reproduced with permission from reference (18)]. 
NCP, non-calcified plaque; NRS, napkin-ring sign.

conventional model in identifying myocardial ischemia 
(AUC =0.631; P=0.058). Qian et al. (35) also confirmed 
that CCTA-based radiomic analysis of plaques was 
superior to conventional plaques assessment in identifying 
hemodynamically significant coronary stenosis.

The above studies suggest that radiomics for coronary 
plaques greatly increases the amount of information 
obtained from CCTA images, which may reveal the 
underlying pathophysiological processes of coronary 
atherosclerosis. Quantitative radiomics analysis has unique 
advantages over conventional methods in improving the 
diagnostic performance of CCTA. However, the ability of 
quantitative radiomics to predict MACE is still controversial 
as it is influenced by multiple factors and requires a larger 
dataset for validation (19).

Radiomics phenotyping of perivascular adipose tissue

Vascular inflammation is recognized as the key factor in 
the development of atherogenesis, which is the formation 

and rupture of vulnerable plaques that subsequently 
cause acute coronary syndrome (ACS) (45,46). Several 
studies have found that vascular inflammation shifts lipid 
content of PVAT in a paracrine manner via inflammatory 
cytokines released from the inflamed vascular wall (47-50).  
Antonopoulos et al. (47) proposed a novel imaging 
biomarker, the perivascular fat attenuation index (FAI), 
that could identify early coronary inflammation by tracking 
CT attenuation changes of PVAT. Recent advances have 
confirmed that perivascular FAI could indicate dynamic 
changes in local inflammatory status after ACS events and 
track the effects of anti-inflammatory interventions for 
coronary diseases (47,51,52), which has potential clinical 
value in cardiac risk prediction and stratification (53). 
However, perivascular FAI relies solely on CT attenuation 
to identify changes in PVAT composition without 
considering complex spatial information among voxels, 
which might lead to overlaps between pathologies. These 
studies highlighted that radiomics can provide quantitative 
spatial and textural properties to evaluate the heterogeneity 
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of PVAT, which may reveal underlying pathologic processes 
related to clinical outcomes (8). 

Detection of PVAT phenotypic changes
The changes in PVAT composition are not only related 
to coronary inflammation, but also dysfunctional adipose 
tissue remodeling characterized by fibrosis and vascularity 
(54,55). Oikonomou et al.  (23) primarily applied a 
radiotranscriptomic approach to explore the correlation 
between radiomics features and the biology of PVAT. 
By measuring relative gene expression in adipose tissue 
biopsies from 167 patients undergoing cardiac surgery, 
they detected that wavelet-transformed mean attenuation 
was associated with adipose tissue inflammation (TNFA 
expression) and that radiomic texture features were 
related to adipose tissue fibrosis (COL1A1 expression) 
and vascularity (CD31 expression). Therefore, radiomic 
phenotyping of PVAT was shown to capture biological 
characteristics of dysfunctional adipose tissue that are 
closely related to chronic vascular inflammation and 
atherosclerosis through a comprehensive analysis of 
attenuation, texture, and volumetric parameters. 

Identification of acute myocardial infarction 
Recently, a prospective case-control study Lin et al. (24) 
evaluated the ability of CCTA-based radiomic analysis of 
PCAT (PCAT refers to all the voxels between −190 and 
−30 HU range located within a radial distance from the 
outer vessel wall equal to the average diameter of the target 
vessel) to identify patients with acute myocardial infarction 
(MI). The study revealed that PCAT radiomic phenotypes 
were significantly different between patients with acute MI 
and those with stable or no CAD, particularly for textural 
and geometric radiomic features that provided additional 
disease-related information. A radiomic-based machine 
learning model was shown to have superior diagnostic 
performance in distinguishing patients with acute MI (AUC 
=0.87) compared with the PCAT attenuation-based model 
(AUC =0.77; P=0.001) and the clinical model (AUC =0.76; 
P<0.001). These findings showed that PCAT CT attenuation 
could only indicate a fraction of the available information 
by evaluating average density, which led to a rather crude 
variable that had an overlap of diseased patients and healthy 
controls. On the contrary, radiomics offered more spatial 
information about PCAT at a deeper level, and produced 
more specific radiomics phenotype that may further reveal 
pathophysiological changes of PCAT, which improved the 
ability of imaging to recognize vulnerable patients.

Improvement of cardiac risk prediction and prognosis
To evaluate the ability of PVAT radiomic phenotyping to 
identify patients with increased risk for MACE, Oikonomou 
et al. (23) applied a radiomics-based machine learning 
approach that developed a radiomic signature (fat radiomic 
profile; FRP) (Figure 4). The signature discriminated 
MACE from non-MACE cases within 5 years of CCTA. 
They also validated that FRP significantly improved MACE 
risk prediction in patients with CAD beyond the current 
state-of-the-art. In further analysis, they found that FRP did 
not predict non-cardiac mortality but was an independent 
predictor of a composite endpoint of MACE or late 
revascularization that confirmed the cardiac specific nature 
of the biomarker. This showed that FRP could provide 
incremental prognostic information beyond traditional risk 
stratification tools. More recently, in a retrospective case-
control study, Shang et al. (28) developed and validated 
a radiomics-based integrated score that significantly 
outperformed the plaque score to identify future ACS 
within 3 years (AUC =0.826 vs. 0.640; P=0.009). This 
further shows the important role of radiomics information 
in PCAT surrounding plaques for the prediction of ACS. 

Monitoring progression of post-acute MI
In a study that tested the FRP’s ability to track perivascular 
changes over 6 months post-acute MI, Oikonomou et al. (23)  
found that FRP showed no significant changes in patients 
who underwent CCTA within 96 hours of acute MI and 
6 months later, while FAI changed during 6 months of 
optimal medical therapy (23). These findings imply that 
FAI can capture the reversible and dynamic changes in 
PVAT composition in response to coronary inflammation, 
whereas FRP can detect more irreversible changes (such 
as fibrosis and vascularity) that are conducive to risk 
stratification. The above findings also suggest that FRP may 
become a powerful imaging biomarker to screen individuals 
undergoing CCTA for the first time. On the basis of 
Oikonomou et al.’s research (23), Lin et al. (24) extended 
to a larger population at per-patient and per-lesion level. 
They also found that there were no significant changes in 
radiomics phenotypes of PCAT in response to standard 
treatment within 6 months post-MI, which may further 
indicate that irreversible morphological changes in PCAT 
composition respond to coronary inflammation (54).

From the above results, it has been recognized that 
PVAT-based radiomics has the potential to enhance the 
ability to detect PVAT changes, identify vulnerable patients, 
improve cardiovascular risk prediction for future MACE, 
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arteries (left main and proximal of left anterior descending artery) is used to segment and calculate radiomic statistics (A). A correlation 
plot with hierarchical clustering of 1,391 stable radiomic features in 1575 SCOT-HEART patients, revealing distinct clusters of radiomic 
variance (B). Heat map of scaled radiomic features in the SCOT-HEART population revealing between-patient variance across the cohort (C) 
[reproduced with permission from reference (23)]. LCA, left coronary artery; PVAT, perivascular adipose tissue; RCA, right coronary artery; 
SCOT-HEART, the Scottish computed tomography of the heart.

and provide additional risk stratification. Nonetheless, 
future testing in independent cohorts from multiple centers 
is still needed to refine and calibrate the radiomic models.

Radiomics phenotyping of myocardial tissue

Uneven myocardial density indicates that the arrangement 

of myofibrils in the myocardial tissue is irregular, which 
may reflect underlying myocardial pathological changes. 
However, non-contrast-enhanced cardiac CT is not usually 
applied to the diagnosis of cardiac abnormalities, except 
for calcium scoring of coronary arteries, because of the 
restrictions of intravenous contrast media and low radiation 
dose (56,57). Several studies have shown that texture 
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analysis of the left ventricle on non-contrast-enhanced 
cardiac CT can differentiate acute MI from healthy areas 
and detect high-risk phenotypes of future ACS or heart 
failure in participants with left ventricular hypertrophy 
(22,29,30). This method could further provide a clinical tool 
for cardiovascular risk screening. In addition, myocardial 
texture phenotypes on delayed iodine enhanced cardiac CT 
can distinguish scared tissue from normal myocardium in 
patients with myocarditis and detect left ventricle dilatation 
and systolic or diastolic function in patients with recurrent 
ventricular tachycardia (31,32). Furthermore, given that 
CCTA cannot identify and locate the target blood vessels 
and so cannot show a correlation between coronary 
stenosis and blood flow changes in the myocardium, it 
is of great importance to combine CCTA with other 
functional tests to assess chronic myocardial ischemia (MIS)  
comprehensively (58). Shu et al. (33) developed a CCTA-
based radiomics nomogram that extracted radiomics features 
from myocardial tissue and validated the model’s underlying 
advantages of objective and quantitative evaluation in the 
identification of MIS, which may assist clinicians’ decision 
making on the diagnosis and treatment of MIS patients. All 
these studies show that the current application of radiomic 
analysis in left ventricle and myocardial tissue can identify 
myocardial abnormalities including ischemia, infarction, 
and scar formation. Despite these interesting results, they 
are only a few preliminary explorations, and the proposed 
radiomic phenotypes need to be further validated in 
independent cohorts.

Radiomics phenotyping of intracardiac lesions

It is essential to accurately differentiate the etiologies 
behind intracardiac lesions with a non-invasive method 
because different etiologies require different treatment 
strategies. However, the current assessment methods 
remain limited by the low specificity of clinical and imaging 
manifestations of intracardiac lesions. Nam et al. (34), in a 
single-center retrospective study of differentiation of the 
etiologies behind prosthetic valve obstruction, found that 
the radiomic score of the periprosthetic mass outperformed 
visual analysis when differentiating pannus from other 
abnormalities in patients with suspected prosthetic valve 
obstruction. Qian et al. (35) developed a radiomics signature 
based on contrast-enhanced CT images and verified that it 
performed better than the conventional clinical model at 
differentiating cardiac myxomas from thrombi. Moreover, 
Chun et al. (36) showed that radiomic features from single-

phase cardiac CT performed better when discriminating left 
atrial appendage thrombus from circulatory stasis in patients 
with valvular heart disease than left atrial appendage/
ascending aorta values. These studies imply that radiomics 
could establish a link between imaging phenotyping and 
etiology of lesions in patients with valvular heart disease, 
improve diagnostic accuracy for the presence of filling 
defect or periprosthetic mass, and contribute to guiding 
effective treatment strategy. 

Overall, the current applications of cardiac CT radiomics 
in cardiovascular disease highlight its value in identifying 
vulnerable plaques or vulnerable patients, improving 
cardiac risk prediction and stratification, and discriminating 
myocardial pathology and etiologies behind intracardiac 
lesions. Recent research progress in coronary PVAT 
radiomics has further expanded the potential of cardiac 
CT radiomics and offered a new perspective for further 
development of personalized cardiovascular medicine.

Radiomics challenges

The process of radiomics has limitations that impact 
its implementation in clinical practice. Although the 
Quantitative Imaging Biomarkers Alliance founded by 
Radiological Society of North America and the European 
Imaging Biomarkers Alliance established by European 
Society of Radiology proposed to facilitate the development 
of radiomics and improve the performance of quantitative 
parameters, current radiomic technologies still need to 
overcome the technical complexity that affects their daily 
clinical applications (8). The standardization of acquisition 
protocols and data analysis techniques needs to be further 
established to offer a robust framework for radiomic  
analysis (24). Furthermore, the reproducibility of radiomic 
features is affected by a series of factors including image 
acquisition, reconstruction, and analysis (59-61). The 
generalizability of developed radiomics models may also be 
limited due to radiomic metrics from the same CT scanner 
and protocol in a single center. Therefore, large clinical 
trials with different protocols from multi-center studies are 
still essential to verify the results derived from radiomic 
analysis (26). 

There are some urgent problems related to cardiac 
CT imaging limited the development of cardiovascular 
radiomics. First, oncology research can easily obtain 
pathological results, but cardiovascular research is usually 
based on invasive FFR or follow-up results as the gold 
standard, which limits the development of cardiovascular 
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radiomics to a certain extent. Second, tumor segmentation 
can be performed by delineating the ROI along the edge 
of the tumor, yet the boundaries of some lesions in cardiac 
CT images are relatively blurred. Manual segmentation 
may cause higher interobserver variability and lower 
efficiency because the success of the procedure depends 
on the expertise of radiologists. Although fully automatic 
segmentation can reduce the heterogeneity of lesions 
and improve efficiency to some extent, it still cannot 
guarantee accuracy of interpretation (62). Moreover, 
regarding the segmentation process of cardiac CT images, 
some limitations remain because the process has not been 
standardized yet. Establishing a widely recognized and 
accepted segmentation method aimed at cardiac CT images 
will help to address the current challenges.

Future directions

Although radiomic phenotyping has the potential to 
identify the anatomic and metabolic characteristics of 
vulnerable plaques, the current research is still a long way 
from guiding clinical decision-making. Recently, some 
scholars committed to developing automatic segmentation 
software for coronary plaques, which are expected to detect 
more novel imaging biomarkers that are closely associated 
with future MACE in CAD patients. Furthermore, with 
the advancements of computational techniques, further 
studies are needed to explore the differences of radiomic 
phenotyping between culprit and non-culprit plaques to 
detect vulnerable patients. Moreover, Eslami et al. (63) 
extracted radiomic features from coronary artery calcium 
(CAC) based on non-contrast cardiac CT. They developed 
a radiomic-based score including the complex properties 
of CAC and showed that it improved the ability to identify 
individuals at risk for MACE. Future studies may further 
explore its potential value to evaluate drug effects, guide 
revascularization, and improve prognosis (62). 

Developing automatic segmentation software will 
further provide more possibilities for PCAT radiomics to 
explore more novel biomarkers for diagnostic, prognostic, 
and therapeutical decisions. Given the variable anatomy 
and small caliber of the left circumflex coronary artery, as 
described previously in the CRISP-CT study (53), current 
studies have mainly extracted radiomics features from 
PVAT surrounding the left anterior descending artery 
and right coronary artery (23). Subsequent research could 
introduce PVAT radiomics surrounding the left circumflex 
artery to evaluate its value for cardiac risk prediction and 

stratification. Additionally, radiomics analysis on PCAT 
at the per-patient and per-lesion level can capture the 
persistent structural remodeling of PCAT in patients with 
acute MI and 6 months after MI (23,24). Future directions 
can assess whether PCAT radiomics could provide 
significant prognostic information for recurrent MACE in 
patients with acute MI after revascularization. Some studies 
have shown that epicardial fat dysfunction may be linked to 
early plaque formation and inflammation (64). Therefore, 
epicardial fat radiomics based on cardiac CT is likely to be a 
future hotspot in the cardiovascular field. 

Cardiac magnetic resonance (CMR) radiomics has 
prominent advantages over conventional cardiac CT when 
identifying myocardial abnormalities (65). However, the 
application of radiomics for delayed enhancement cardiac 
CT may provide more information about myocardial 
characterization and promote the transition of imaging 
methods from CMR to cardiac CT to a certain degree. 
Therefore, future research should expand on this and 
further probe the value of cardiac CT radiomics in the 
myocardium. To date, CT perfusion radiomics has not 
been deeply explored in the cardiovascular field, but this 
is urgently required. Finally, the current research trend 
of radiomics is beginning to combine with deep learning. 
Using the extracted radiomics features to build a deep 
learning network or extracting deep learning features 
and substituting them into the machine learning model 
of radiomics will be the hotspots and trends of future 
development.

Study strengths and limitations

This narrative review provides an update on the current 
applications of cardiac CT radiomics, which contributes 
to future research in the diagnosis and prognosis of 
cardiovascular diseases. Nonetheless, there were still some 
limitations to this narrative review: It is illustrative instead 
of exhaustive. Some of the opinions in this review may also 
be subjective to interpretations based on our own clinical 
and research experience about cardiovascular radiomics 
and should be considered as references rather than clinical 
recommendations. Furthermore, the findings are subject 
to change in line with the rapid development of radiomics 
technology and clinical applications.

Conclusions

Cardiac CT radiomics can detect disease-related additional 
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information at a microstructural level and establish a link 
between imaging phenotyping and tissue pathology or 
biology. This has significant clinical implications and can 
contribute to clinical decision-making. However, cardiac CT 
radiomics is still in its infancy and has many challenges to 
overcome before it can be applied to clinical practice. With 
advancements of cardiac CT imaging, the standardization 
of the radiomics process, and the development of automatic 
segmentation software, cardiac CT radiomics is expected to 
provide more precise phenotyping of cardiovascular disease 
for patients and doctors, which will improve diagnostic, 
prognostic, and therapeutical decisions in the future.
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