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Background and Objective: In an era of profound growth of medical data and rapid development of
advanced imaging modalities, precision medicine increasingly requires further expansion of what can be
interpreted from medical images. However, the current interpretation of cardiac computed tomography
(CT) images mainly depends on subjective and qualitative analysis. Radiomics uses advanced image analysis
to extract numerous quantitative features from digital images that are unrecognizable to the naked eye.
Visualization of these features can reveal underlying connections between image phenotyping and biological
characteristics and support clinical outcomes. Although research into radiomics on cardiovascular disease
began only recently, several studies have indicated its potential clinical value in assessing future cardiac risk
and guiding prevention and management strategies. Our review aimed to summarize the current applications
of cardiac CT radiomics in the cardiovascular field and discuss its advantages, challenges, and future
directions.

Methods: We searched for English-language articles published between January 2010 and August 2021 in
the databases of PubMed, Embase, and Google Scholar. The keywords used in the search included computed
tomography or CT, radiomics, cardiovascular or cardiac.

Key Content and Findings: The current applications of radiomics in cardiac CT were found to
mainly involve research into coronary plaques, perivascular adipose tissue (PVAT), myocardial tissue,
and intracardiac lesions. Related findings on cardiac CT radiomics suggested the technique can assist
the identification of vulnerable plaques or patients, improve cardiac risk prediction and stratification,
discriminate myocardial pathology and etiologies behind intracardiac lesions, and offer new perspective and
development prospects to personalized cardiovascular medicine.

Conclusions: Cardiac CT radiomics can gather additional disease-related information at a microstructural
level and establish a link between imaging phenotyping and tissue pathology or biology alone. Therefore,
cardiac CT radiomics has significant clinical implications, including a contribution to clinical decision-
making. Along with advancements in cardiac CT imaging, cardiac CT radiomics is expected to provide
more precise phenotyping of cardiovascular disease for patients and doctors, which can improve diagnostic,

prognostic, and therapeutic decision making in the future.
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Introduction

As a non-invasive imaging tool, cardiac computed
tomography (CT) has experienced a dramatic evolution
from identifying anatomically significant coronary artery
stenosis to become an advanced imaging tool that plays an
increasingly important role in guiding clinical decision-
making in various fields of cardiovascular medicine (1-6).
In particular, the development of coronary computed
tomography angiography (CCTA) has advanced the
assessment of suspected coronary artery disease (CAD) (7).
Although advances in CT techniques have enabled
radiological examinations to provide a wide variety
of information, the current data-analysis and image
interpretation techniques still mostly rely on qualitative
evaluation determined by radiological experts (8). The
rise of precision medicine requires us to provide more
quantitative information in order to detect subtle changes
related to underlying pathologic processes and improve the
diagnostic acuity of imaging examinations, while reducing
subjectivity and bias (9).

Radiomics is contrary to the traditional practice of
regarding medical images as pictures that can only be used
for visual interpretation. Radiomics refers to the process of
extracting vast amounts of data regarding the quantitative
features of a given region of interest (ROI) to create
large datasets that can be subsequently mined to reveal
the relationships between distinct radiomics metrics to
improve clinical decision making (8). So far, radiomics has
been successfully applied to oncology research. Previous
research has shown that radiomics can help with the precise
diagnosis of tumors (10), prediction of clinical outcomes
(11,12), monitoring of disease progression (13), and
assessment of therapeutic response and prognosis (13-15).
Since the development of the radiomics quality score and
image biomarker standardization initiative, radiomics has
become increasingly standardized (16,17).

Radiomics could provide a bridge between cardiac CT
images and cardiovascular medicine. Although radiomics
research based on cardiac CT began relatively recently,
several proof-of-concept studies have found its incremental
value in the cardiovascular field (18-25). The purpose of
this review was to summarize the current applications of
cardiac CT radiomics in the cardiovascular field and discuss
its advantages, challenges, and future directions. We present
the following article in accordance with the Narrative
Review reporting checklist (available at https://qims.
amegroups.com/article/view/10.21037/qims-21-1022/rc).
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Methods

We searched the databases of PubMed, Embase, and
Google Scholar for articles that had been published
between January 2010 and August 2021. A combination
of keywords, computed tomography or CT, radiomics,
cardiovascular or cardiac, were used. Two investigators with
an experience of 5 years in cardiovascular imaging diagnosis
independently checked each identified article for inclusion
criteria. Disagreements were discussed and resolved by
consensus (7able 1). The inclusion criteria were as follows: (I)
the articles reported the value of radiomics based on cardiac
CT in the cardiovascular disease; (II) the articles were
published in English. The exclusion criteria were as follows:
(I) reviews, letters, editorials, comments, case reports and
unpublished articles were excluded. Finally, a total of 17
articles were selected. Then, the full articles were read
carefully and the relevant information on the application
value of cardiac CT radiomics were extracted.

Radiomics characterization

Radiomics is the process of extracting vast amounts of
data of quantitative features from tomographic images
for the purpose of converting digital images to higher-
dimensional mineable data that can subsequently be used
to improve clinical decision support (26). A common
workflow of radiomics is composed of image acquisition
and preprocessing, image segmentation, feature extraction
and selection, model building and validation (16) (Figure I).
Radiomics data mainly contain first-order, second-order,
and higher-order statistics that represent a massive number
of features linked with the shape, attenuation, volume,
and texture of a given lesion (26). The tomographic
images collected with radiomics are more than pictures—
they are data (16,26). These data are calculated by
complicated mathematical formulae and may recognize
features that are undiscernible to the naked eye. Given its
characteristics, radiomics may establish an undiscovered
correlation between imaging features and significant
clinical outcomes.

Current applications of cardiac CT radiomics

The current applications of radiomics for cardiac CT
mainly involve research surrounding coronary plaques,
perivascular adipose tissue (PVAT), myocardial tissue,
and intracardiac lesions (Figure 2). A comprehensive
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Table 1 Summary of the literature search strategy
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ltems Specification

Date of search (specified to date, month, and year)

Databases and other sources searched

10 August, 2021

PubMed, Embase, and Google Scholar

Search terms used (including MeSH and free text search Computed tomography or CT; radiomics; cardiovascular or cardiac

terms and filters)
Timeframe

Inclusion and exclusion criteria (study type, language
restrictions etc.)

January 2010 to August 2021

Inclusion criteria: (l) the articles reported the value of radiomics based on cardiac
CT in the cardiovascular disease; (Il) the articles were published in English.

Exclusion criteria: (l) reviews, letters, editorials, comments, case reports and
unpublished articles were excluded

Selection process (who conducted the selection, whether Study selection was conducted by two investigators. Disagreements were

it was conducted independently, how consensus was
obtained, etc.)

Any additional considerations, if applicable

discussed and resolved by consensus

Image segmentation

- J

Features extraction and - -
Model building and validation

N -

Figure 1 A common workflow of radiomics. Radiomics workflow is commonly composed of image acquisition and preprocessing, image

segmentation, feature extraction and selection, model building and validation. The yellow arrow and frame refer to the coronary plaques in

the axial and multiplanar reconstruction images based on CCTA, respectively.

overview of current applications of cardiac CT radiomics in
cardiovascular disease is presented in Table 2.

Radiomics phenotyping of coronary plaques

As a first-line diagnostic tool to detect and characterize
coronary atherosclerosis, CCTA is used to evaluate coronary
luminal stenosis and visualize coronary atherosclerosis
changes including plaque composition, distribution, and
burden. Although increasing evidence suggests that the
presence of high-risk plaque (HRP) confers an increased
risk of major adverse cardiac events (MACE) and provides

© Quantitative Imaging in Medicine and Surgery. All rights reserved.

additional prognostic information, identification of
HRP features still relies on expert experience and tends
to vary between different observers or intra-observers
(37-43). Furthermore, HRP characteristics derived from
CCTA are only suitable to identify visible atherosclerosis
at advanced stages, but it would be desirable to visualize
the early pathophysiological process of atherosclerosis
including inflammation, apoptosis, or cell migration (44).
Radiomics might provide us with more objective parameters
to overcome limitations of subjective visual assessment
and describe the nature changes of a given plaque, such as
texture and spatial complexity (8).
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Intracardiac lesions

Pericoronary adipose tissue

Myocardium tissue

Figure 2 The current applications of cardiac CT radiomics. The current applications of radiomics on cardiac CT mainly focus on coronary

plaques, pericoronary adipose tissue, myocardial tissue, and intracardiac lesions. CT, computed tomography. The white arrow above refers

to the lesion of left atrium. The white arrow below refers to the coronary plaque.

Identification of plaque vulnerability

In an initial study exploring the potential of radiomics
in atherosclerosis plaques, Kolossviry er a/l. (18) used the
radiomics approach to extract 4,440 radiomic parameters
from coronary plaques with and without the napkin-
ring sign (NRS) (Figure 3). They compared them with 8
conventional quantitative parameters and found that more
than 20% of radiomic features were significantly different
between plaques with or without NRS. This suggested
that radiomics features can potentially identify a qualitative
NRS feature. Another study by Kolossviry ez al. (20)
demonstrated that a radiomics-based machine learning
model of CCTA displayed superior diagnostic performance
[area under the curve (AUC) =0.73] in the identification
of advanced atherosclerotic plaques compared with that
of visual assessment (AUC =0.65; P=0.04) and compared
with histogram-based measurements of areas with low
CT attenuation (AUC =0.55; P=0.01) and an average

© Quantitative Imaging in Medicine and Surgery. All rights reserved.

Hounsfield unit (HU; AUC =0.53; P=0.004). Additionally,
an analysis of 44 plaques from 25 patients with suspected
CAD who underwent multiple imaging examinations
showed that CCTA-based radiomic analyses had superior
diagnostic accuracy than conventional plaque features
to identify invasive and radionuclide imaging markers of
plaque vulnerability (21).

Identification of significant myocardial ischemia

To explore the superiority of CCTA-based coronary plaque
radiomics in the identification of myocardial ischemia,
Hu et al. (19) extracted 1,409 radiomics features from 105
coronary plaques of 88 patients who underwent CCTA
and invasive fractional flow reserve (FFR), simultaneously
compared them with conventional CCTA features.
They found that 3 quantitative wavelet features were
closely related to myocardial ischemia, and the CCTA-
based radiomics model (AUC =0.762) outperformed the
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High attenuation NCP

Figure 3 Representative examples of plaques with and without the NRS. Volume-rendered and cross-sectional images of plaques with NRS

in the top (A, C, and E) and their matched plaques in the bottom (B, D, and E) are shown. Green dashed lines indicate the location of cross-

sectional planes. Colors indicate different computed tomographic attenuation values [reproduced with permission from reference (18)].

NCP, non-calcified plaque; NRS, napkin-ring sign.

conventional model in identifying myocardial ischemia
(AUC =0.631; P=0.058). Qian et al. (35) also confirmed
that CCTA-based radiomic analysis of plaques was
superior to conventional plaques assessment in identifying
hemodynamically significant coronary stenosis.

The above studies suggest that radiomics for coronary
plaques greatly increases the amount of information
obtained from CCTA images, which may reveal the
underlying pathophysiological processes of coronary
atherosclerosis. Quantitative radiomics analysis has unique
advantages over conventional methods in improving the
diagnostic performance of CCTA. However, the ability of
quantitative radiomics to predict MACE is still controversial
as it is influenced by multiple factors and requires a larger
dataset for validation (19).

Radiomics phenotyping of perivascular adipose tissue

Vascular inflammation is recognized as the key factor in
the development of atherogenesis, which is the formation

© Quantitative Imaging in Medicine and Surgery. All rights reserved.

and rupture of vulnerable plaques that subsequently
cause acute coronary syndrome (ACS) (45,46). Several
studies have found that vascular inflammation shifts lipid
content of PVAT in a paracrine manner via inflammatory
cytokines released from the inflamed vascular wall (47-50).
Antonopoulos et al. (47) proposed a novel imaging
biomarker, the perivascular fat attenuation index (FAI),
that could identify early coronary inflammation by tracking
CT attenuation changes of PVAT. Recent advances have
confirmed that perivascular FAI could indicate dynamic
changes in local inflammatory status after ACS events and
track the effects of anti-inflammatory interventions for
coronary diseases (47,51,52), which has potential clinical
value in cardiac risk prediction and stratification (53).
However, perivascular FAI relies solely on CT attenuation
to identify changes in PVAT composition without
considering complex spatial information among voxels,
which might lead to overlaps between pathologies. These
studies highlighted that radiomics can provide quantitative
spatial and textural properties to evaluate the heterogeneity

Quant Imaging Med Surg 2022;12(6):3436-3453 | https://dx.doi.org/10.21037/qims-21-1022
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of PVAT, which may reveal underlying pathologic processes
related to clinical outcomes (8).

Detection of PVAT phenotypic changes

The changes in PVAT composition are not only related
to coronary inflammation, but also dysfunctional adipose
tissue remodeling characterized by fibrosis and vascularity
(54,55). Oikonomou et al. (23) primarily applied a
radiotranscriptomic approach to explore the correlation
between radiomics features and the biology of PVAT.
By measuring relative gene expression in adipose tissue
biopsies from 167 patients undergoing cardiac surgery,
they detected that wavelet-transformed mean attenuation
was associated with adipose tissue inflammation (TNFA
expression) and that radiomic texture features were
related to adipose tissue fibrosis (COLIAI expression)
and vascularity (CD31 expression). Therefore, radiomic
phenotyping of PVAT was shown to capture biological
characteristics of dysfunctional adipose tissue that are
closely related to chronic vascular inflammation and
atherosclerosis through a comprehensive analysis of
attenuation, texture, and volumetric parameters.

Identification of acute myocardial infarction

Recently, a prospective case-control study Lin er al. (24)
evaluated the ability of CCTA-based radiomic analysis of
PCAT (PCAT refers to all the voxels between -190 and
-30 HU range located within a radial distance from the
outer vessel wall equal to the average diameter of the target
vessel) to identify patients with acute myocardial infarction
(MI). The study revealed that PCAT radiomic phenotypes
were significantly different between patients with acute MI
and those with stable or no CAD, particularly for textural
and geometric radiomic features that provided additional
disease-related information. A radiomic-based machine
learning model was shown to have superior diagnostic
performance in distinguishing patients with acute MI (AUC
=0.87) compared with the PCAT attenuation-based model
(AUC =0.77; P=0.001) and the clinical model (AUC =0.76;
P<0.001). These findings showed that PCAT CT attenuation
could only indicate a fraction of the available information
by evaluating average density, which led to a rather crude
variable that had an overlap of diseased patients and healthy
controls. On the contrary, radiomics offered more spatial
information about PCAT at a deeper level, and produced
more specific radiomics phenotype that may further reveal
pathophysiological changes of PCAT, which improved the
ability of imaging to recognize vulnerable patients.

© Quantitative Imaging in Medicine and Surgery. All rights reserved.

Improvement of cardiac risk prediction and prognosis
To evaluate the ability of PVAT radiomic phenotyping to
identify patients with increased risk for MACE, Oikonomou
et al. (23) applied a radiomics-based machine learning
approach that developed a radiomic signature (fat radiomic
profile; FRP) (Figure 4). The signature discriminated
MACE from non-MACE cases within 5 years of CCTA.
They also validated that FRP significantly improved MACE
risk prediction in patients with CAD beyond the current
state-of-the-art. In further analysis, they found that FRP did
not predict non-cardiac mortality but was an independent
predictor of a composite endpoint of MACE or late
revascularization that confirmed the cardiac specific nature
of the biomarker. This showed that FRP could provide
incremental prognostic information beyond traditional risk
stratification tools. More recently, in a retrospective case-
control study, Shang ez 4/. (28) developed and validated
a radiomics-based integrated score that significantly
outperformed the plaque score to identify future ACS
within 3 years (AUC =0.826 vs. 0.640; P=0.009). This
further shows the important role of radiomics information
in PCAT surrounding plaques for the prediction of ACS.

Monitoring progression of post-acute MI

In a study that tested the FRP’ ability to track perivascular
changes over 6 months post-acute MI, Oikonomou ez 4l. (23)
found that FRP showed no significant changes in patients
who underwent CCTA within 96 hours of acute MI and
6 months later, while FAI changed during 6 months of
optimal medical therapy (23). These findings imply that
FAI can capture the reversible and dynamic changes in
PVAT composition in response to coronary inflammation,
whereas FRP can detect more irreversible changes (such
as fibrosis and vascularity) that are conducive to risk
stratification. The above findings also suggest that FRP may
become a powerful imaging biomarker to screen individuals
undergoing CCTA for the first time. On the basis of
Oikonomou et al.’s research (23), Lin et 4. (24) extended
to a larger population at per-patient and per-lesion level.
They also found that there were no significant changes in
radiomics phenotypes of PCAT in response to standard
treatment within 6 months post-MI, which may further
indicate that irreversible morphological changes in PCAT
composition respond to coronary inflammation (54).

From the above results, it has been recognized that
PVAT-based radiomics has the potential to enhance the
ability to detect PVAT changes, identify vulnerable patients,
improve cardiovascular risk prediction for future MACE,

Quant Imaging Med Surg 2022;12(6):3436-3453 | https://dx.doi.org/10.21037/qims-21-1022
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+  Original image and
PVAT segmentation
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B Correlation plot C Population “radiomic” heatmap

Pericoronary radiomic features
uoneindod | HYIH100S

Pericoronary radiomic features

PVAT radiomic features
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Figure 4 Radiomic phenotyping of coronary perivascular adipose tissue. The perivascular adipose tissue of the right and left coronary
arteries (left main and proximal of left anterior descending artery) is used to segment and calculate radiomic statistics (A). A correlation
plot with hierarchical clustering of 1,391 stable radiomic features in 1575 SCOT-HEART patients, revealing distinct clusters of radiomic
variance (B). Heat map of scaled radiomic features in the SCOT-HEART population revealing between-patient variance across the cohort (C)
[reproduced with permission from reference (23)]. LCA, left coronary artery; PVAT, perivascular adipose tissue; RCA, right coronary artery;
SCOT-HEART, the Scottish computed tomography of the heart.

and provide additional risk stratification. Nonetheless, of myofibrils in the myocardial tissue is irregular, which
future testing in independent cohorts from multiple centers may reflect underlying myocardial pathological changes.
is still needed to refine and calibrate the radiomic models. However, non-contrast-enhanced cardiac CT is not usually

applied to the diagnosis of cardiac abnormalities, except
. . o for calcium scoring of coronary arteries, because of the
Radiomics phenotyping of myocardial tissue o ] ) o

restrictions of intravenous contrast media and low radiation

Uneven myocardial density indicates that the arrangement dose (56,57). Several studies have shown that texture
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analysis of the left ventricle on non-contrast-enhanced
cardiac CT can differentiate acute MI from healthy areas
and detect high-risk phenotypes of future ACS or heart
failure in participants with left ventricular hypertrophy
(22,29,30). This method could further provide a clinical tool
for cardiovascular risk screening. In addition, myocardial
texture phenotypes on delayed iodine enhanced cardiac CT
can distinguish scared tissue from normal myocardium in
patients with myocarditis and detect left ventricle dilatation
and systolic or diastolic function in patients with recurrent
ventricular tachycardia (31,32). Furthermore, given that
CCTA cannot identify and locate the target blood vessels
and so cannot show a correlation between coronary
stenosis and blood flow changes in the myocardium, it
is of great importance to combine CCTA with other
functional tests to assess chronic myocardial ischemia (MIS)
comprehensively (58). Shu ez 4/. (33) developed a CCTA-
based radiomics nomogram that extracted radiomics features
from myocardial tissue and validated the model’s underlying
advantages of objective and quantitative evaluation in the
identification of MIS, which may assist clinicians’ decision
making on the diagnosis and treatment of MIS patients. All
these studies show that the current application of radiomic
analysis in left ventricle and myocardial tissue can identify
myocardial abnormalities including ischemia, infarction,
and scar formation. Despite these interesting results, they
are only a few preliminary explorations, and the proposed
radiomic phenotypes need to be further validated in
independent cohorts.

Radiomics phenotyping of intracardiac lesions

It is essential to accurately differentiate the etiologies
behind intracardiac lesions with a non-invasive method
because different etiologies require different treatment
strategies. However, the current assessment methods
remain limited by the low specificity of clinical and imaging
manifestations of intracardiac lesions. Nam ez 4/. (34), in a
single-center retrospective study of differentiation of the
etiologies behind prosthetic valve obstruction, found that
the radiomic score of the periprosthetic mass outperformed
visual analysis when differentiating pannus from other
abnormalities in patients with suspected prosthetic valve
obstruction. Qian ez a/. (35) developed a radiomics signature
based on contrast-enhanced CT images and verified that it
performed better than the conventional clinical model at
differentiating cardiac myxomas from thrombi. Moreover,
Chun ez 4l. (36) showed that radiomic features from single-

© Quantitative Imaging in Medicine and Surgery. All rights reserved.

phase cardiac CT performed better when discriminating left
atrial appendage thrombus from circulatory stasis in patients
with valvular heart disease than left atrial appendage/
ascending aorta values. These studies imply that radiomics
could establish a link between imaging phenotyping and
etiology of lesions in patients with valvular heart disease,
improve diagnostic accuracy for the presence of filling
defect or periprosthetic mass, and contribute to guiding
effective treatment strategy.

Overall, the current applications of cardiac CT radiomics
in cardiovascular disease highlight its value in identifying
vulnerable plaques or vulnerable patients, improving
cardiac risk prediction and stratification, and discriminating
myocardial pathology and etiologies behind intracardiac
lesions. Recent research progress in coronary PVAT
radiomics has further expanded the potential of cardiac
CT radiomics and offered a new perspective for further
development of personalized cardiovascular medicine.

Radiomics challenges

The process of radiomics has limitations that impact
its implementation in clinical practice. Although the
Quantitative Imaging Biomarkers Alliance founded by
Radiological Society of North America and the European
Imaging Biomarkers Alliance established by European
Society of Radiology proposed to facilitate the development
of radiomics and improve the performance of quantitative
parameters, current radiomic technologies still need to
overcome the technical complexity that affects their daily
clinical applications (8). The standardization of acquisition
protocols and data analysis techniques needs to be further
established to offer a robust framework for radiomic
analysis (24). Furthermore, the reproducibility of radiomic
features is affected by a series of factors including image
acquisition, reconstruction, and analysis (59-61). The
generalizability of developed radiomics models may also be
limited due to radiomic metrics from the same CT scanner
and protocol in a single center. Therefore, large clinical
trials with different protocols from multi-center studies are
still essential to verify the results derived from radiomic
analysis (26).

There are some urgent problems related to cardiac
CT imaging limited the development of cardiovascular
radiomics. First, oncology research can easily obtain
pathological results, but cardiovascular research is usually
based on invasive FFR or follow-up results as the gold
standard, which limits the development of cardiovascular

Quant Imaging Med Surg 2022;12(6):3436-3453 | https://dx.doi.org/10.21037/qims-21-1022



3448

radiomics to a certain extent. Second, tumor segmentation
can be performed by delineating the ROI along the edge
of the tumor, yet the boundaries of some lesions in cardiac
CT images are relatively blurred. Manual segmentation
may cause higher interobserver variability and lower
efficiency because the success of the procedure depends
on the expertise of radiologists. Although fully automatic
segmentation can reduce the heterogeneity of lesions
and improve efficiency to some extent, it still cannot
guarantee accuracy of interpretation (62). Moreover,
regarding the segmentation process of cardiac CT images,
some limitations remain because the process has not been
standardized yet. Establishing a widely recognized and
accepted segmentation method aimed at cardiac CT images
will help to address the current challenges.

Future directions

Although radiomic phenotyping has the potential to
identify the anatomic and metabolic characteristics of
vulnerable plaques, the current research is still a long way
from guiding clinical decision-making. Recently, some
scholars committed to developing automatic segmentation
software for coronary plaques, which are expected to detect
more novel imaging biomarkers that are closely associated
with future MACE in CAD patients. Furthermore, with
the advancements of computational techniques, further
studies are needed to explore the differences of radiomic
phenotyping between culprit and non-culprit plaques to
detect vulnerable patients. Moreover, Eslami er /. (63)
extracted radiomic features from coronary artery calcium
(CAC) based on non-contrast cardiac CT. They developed
a radiomic-based score including the complex properties
of CAC and showed that it improved the ability to identify
individuals at risk for MACE. Future studies may further
explore its potential value to evaluate drug effects, guide
revascularization, and improve prognosis (62).

Developing automatic segmentation software will
further provide more possibilities for PCAT radiomics to
explore more novel biomarkers for diagnostic, prognostic,
and therapeutical decisions. Given the variable anatomy
and small caliber of the left circumflex coronary artery, as
described previously in the CRISP-CT study (53), current
studies have mainly extracted radiomics features from
PVAT surrounding the left anterior descending artery
and right coronary artery (23). Subsequent research could
introduce PVAT radiomics surrounding the left circumflex
artery to evaluate its value for cardiac risk prediction and

© Quantitative Imaging in Medicine and Surgery. All rights reserved.
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stratification. Additionally, radiomics analysis on PCAT
at the per-patient and per-lesion level can capture the
persistent structural remodeling of PCAT in patients with
acute MI and 6 months after MI (23,24). Future directions
can assess whether PCAT radiomics could provide
significant prognostic information for recurrent MACE in
patients with acute MI after revascularization. Some studies
have shown that epicardial fat dysfunction may be linked to
early plaque formation and inflammation (64). Therefore,
epicardial fat radiomics based on cardiac CT is likely to be a
future hotspot in the cardiovascular field.

Cardiac magnetic resonance (CMR) radiomics has
prominent advantages over conventional cardiac CT when
identifying myocardial abnormalities (65). However, the
application of radiomics for delayed enhancement cardiac
CT may provide more information about myocardial
characterization and promote the transition of imaging
methods from CMR to cardiac CT to a certain degree.
Therefore, future research should expand on this and
further probe the value of cardiac CT radiomics in the
myocardium. To date, CT perfusion radiomics has not
been deeply explored in the cardiovascular field, but this
is urgently required. Finally, the current research trend
of radiomics is beginning to combine with deep learning.
Using the extracted radiomics features to build a deep
learning network or extracting deep learning features
and substituting them into the machine learning model
of radiomics will be the hotspots and trends of future
development.

Study strengths and limitations

This narrative review provides an update on the current
applications of cardiac CT radiomics, which contributes
to future research in the diagnosis and prognosis of
cardiovascular diseases. Nonetheless, there were still some
limitations to this narrative review: It is illustrative instead
of exhaustive. Some of the opinions in this review may also
be subjective to interpretations based on our own clinical
and research experience about cardiovascular radiomics
and should be considered as references rather than clinical
recommendations. Furthermore, the findings are subject
to change in line with the rapid development of radiomics
technology and clinical applications.

Conclusions

Cardiac CT radiomics can detect disease-related additional
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information at a microstructural level and establish a link
between imaging phenotyping and tissue pathology or
biology. This has significant clinical implications and can
contribute to clinical decision-making. However, cardiac CT
radiomics is still in its infancy and has many challenges to
overcome before it can be applied to clinical practice. With
advancements of cardiac CT imaging, the standardization
of the radiomics process, and the development of automatic
segmentation software, cardiac CT radiomics is expected to
provide more precise phenotyping of cardiovascular disease
for patients and doctors, which will improve diagnostic,
prognostic, and therapeutical decisions in the future.
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