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Background: The registration of computed tomography (CT) and cone-beam computed tomography 
(CBCT) plays a key role in image-guided radiotherapy (IGRT). However, the large intensity variation 
between CT and CBCT images limits the registration performance and its clinical application in IGRT. In 
this study, a learning-based unsupervised approach was developed to address this issue and accurately register 
CT and CBCT images by predicting the deformation field.
Methods: A dual attention module was used to handle the large intensity variation between CT and CBCT 
images. Specifically, a scale-aware position attention block (SP-BLOCK) and a scale-aware channel attention 
block (SC-BLOCK) were employed to integrate contextual information from the image space and channel 
dimensions. The SP-BLOCK enhances the correlation of similar features by weighting and aggregating 
multi-scale features at different positions, while the SC-BLOCK handles the multiple features of all channels 
to selectively emphasize dependencies between channel maps.
Results: The proposed method was compared with existing mainstream methods on the 4D-LUNG data 
set. Compared to other mainstream methods, it achieved the highest structural similarity (SSIM) and dice 
similarity coefficient (DICE) scores of 86.34% and 89.74%, respectively, and the lowest target registration 
error (TRE) of 2.07 mm.
Conclusions: The proposed method can register CT and CBCT images with high accuracy without 
the needs of manual labeling. It provides an effective way for high-accuracy patient positioning and target 
localization in IGRT.
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Introduction

In clinical practice, physicists usually make treatment plans 
based on computed tomography (CT) images, and then 
verify patient positions in the treatment room based on 
cone-beam computed tomography (CBCT) images. Due to 
positioning errors and anatomy changes, there are certain 
offsets between the real position and the planned position 
of target in treatment room. Therefore, registration 
between CT and CBCT images is important that it can 
provide the offset of treatment site when patient is on the 
treatment couch, which is crucial for the success of modern 
radiotherapy. 

Traditional registration methods usually employed 
iterative optimization algorithms to search for the best 
displacement vector (1). These include elastic models (2,3), 
deformable registration via attribute matching and mutual-
saliency weighting (DRAMMS) (4), statistical parametric 
mapping (SPM) (5), Demons algorithm (6), standard 
symmetric normalization (SyN) (2,7), large diffeomorphic 
distance metric mapping (LDDMM) (8), diffeomorphic 
registration using B-splines (9). These algorithms are mostly 
time-consuming due to the large amount of iterations in 
data manipulation.

Recently several deep-learning-based deformable image 
registration methods were proposed (10). They roughly 
fall into three categories, i.e., supervised registration, semi-
supervised registration, and unsupervised registration. 
Supervised registration requires the deformation field 
generated by traditional algorithms as a teaching signal  
(11-13), or the images transformed by the deformation field 
as training samples (14). The semi-supervised registration 
method deals with the problem of the insufficient number 
of medical image labels and uses part of the data as the 
supervising information (15). In order to make the best use 
of the unlabeled image data, several unsupervised registration 
networks have been proposed. In (16), a method based 
on Generative Adversarial Network (GAN) is developed, 
which replace the similarity function with a discriminator. 
Compared with GAN, U-Net-like architecture is easier to 
converge with fewer data. For example, VoxelMorph (17) and 
VTN (18) have achieved excellent results in medical image 
registration. These unsupervised registration networks are 
similar to U-Net. However, due to the inherent locality of 
convolutional operations, the architecture of convolutional 
networks is often limited in modeling explicit long-range 
spatial relationships present in images (19). 

Although U-Net-like frameworks overcome this 
limitation, the influence from distant voxels decays rapidly as 
the number of convolutional layers deepens (20). There is a 
large voxel difference between CT and CBCT, so we expect 
the convolutional network to see long-range relationships 
between voxels in the two images. Therefore, some 
researchers hope to improve this problem through attention 
mechanism. For multi-modal image registration tasks, the 
required accuracy is hardly met due to the large variation of 
image intensity. Therefore, several researchers introduced 
the attention mechanism to assist convolution in the cross-
modal registration problem. The cross-attention mechanism 
was used to realize the information exchange between 
multi-modal images (21,22). The convolutional block 
attention module (CBAM) was integrated into VTN (23). 
The spatial attention was introduced to further enhance the 
prominent areas of the feature map (24). And the binary 
spatial attention module (BSAM) was introduced to the 
spatial information extraction in the jump connection (25).  
Compared with the conventional deep learning network, 
the network with attention mechanism achieved better 
results.

In this study, an unsupervised dual attention network 
(UDAN) is proposed for CT-CBCT image registration. 
The U-Net-like encoder and decoder are used to extract 
and fuse features. Besides, a dual attention module (DAM) 
is placed between the encoder and decoder. DAM mainly 
consists of two parts: a scale-aware position attention block 
(SP-BLOCK) and a scale-aware channel attention block 
(SC-BLOCK). Dilated convolution and residual structure 
are first used to obtain multi-scale position and multi-
scale channel features, respectively. Then these features are 
weighted using a non-linear combination to weaken the 
influence of intensity differences between the two image 
modalities.

This paper is organized as follows. In section Methods, 
details of the proposed unsupervised dual attention 
registration network are introduced. In section Results, 
performance of our method and the other six methods, 
i.e., ANTs (7), ELASTIX (26), B-spline (9), VTN (18), 
VoxelMorph (17), and CycleMorph (27) are summarized. 
In addition, the ablation studies of the proposed method 
are also reported. In section Discussion, the advantages and 
disadvantages of the proposed method are discussed. We 
present the following article in accordance with the MDAR 
checklist (available at https://qims.amegroups.com/article/
view/10.21037/qims-21-1194/rc).

https://qims.amegroups.com/article/view/10.21037/qims-21-1194/rc
https://qims.amegroups.com/article/view/10.21037/qims-21-1194/rc
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Methods

The overall network structure is shown in Figure 1. First, 
the CT and CBCT images are passed to the encoder, DAM, 
and decoder. Then, the deformation field is generated 
and the input CT image is warped using the spatial 
transformation function. Next, the similarity between the 
transformed CT image and the CBCT image is calculated 
as the loss function. Finally, the similarity and regularization 
terms of the deformation field are back-propagated to 
update the network parameters.

Assuming there are a moving image IM and a fixed image 
IF. In a d-dimensional space Ω, the goal of deformable 
image registration is to find optimal parameters ϕ to align 
IM and IF. For IM and IF, ϕ can be obtained via a network g(·),

( )= ,M Fg I Iφ  [1]

As shown in Figure 1, the input of the network is the 
concatenation of IM and IF, the output of network is the 
deformation field ϕ in dimension of 3×48×512×512. In the 
encoder, six consecutive convolution layers with kernels size 
of 3×3 are used to extract different levels of information, and 
an activation function ReLU is used after each convolutional 
layer. The dimension of the encoder output is 512×3×32×32. 
Then these outputs are sent to DAM for attention calculation. 
In the decoder, the convolution layer with kernels size of 3×3 
followed by ReLU is used again to process feature mapping. 
The feature maps of each layer of the encoder are spliced into 
the feature maps of the symmetrical layer in the encoder. 

Dual attention module

DAM is introduced to adaptively utilize images’ high-
dimensional features with different scales. To better 
integrate the features obtained by DAM and improve 
efficiency, DAM is placed between the encoder and the 
decoder. DAM consists of two parts, SP-BLOCK and SC-
BLOCK. A detailed introduction of these two parts is given 
below.

SP-BLOCK
The SP-BLOCK enhances the correlation of similar 
features by weighting and aggregating multi-scale features 
at different positions. The structural details of SP-BLOCK 
are shown in Figure 2. Given a feature map ( ), , ,C X Y Z

P ∈  , 
inspired by the success of the residual structure (28), three 
discriminative consecutive residual blocks are used to obtain 
Pa, Pb and Pc with multi-scale position information. The 
sizes of C, X, Y, and Z are 512, 3, 32, and 32, respectively. 
Moreover, in addition to the necessary layer jump 
connections in each residual block, dilated convolution (29) 
with different dilation rates is added. The dilation rates in 
the three-layer residual blocks are 1, 2 and 3, respectively. 
This structure can expand the receptive field without 
introducing additional parameters, obtain information 
of different scales, and enhance the network’s ability to 
perceive different scales. Then Pa, Pb and Pc are reshaped 
to (C,X×Y×Z). Given Pa and Pb, a position attention map, 

( ),X Y Z X Y Z
S

× × × ×∈  , is obtained via a Softmax operation,

Spatial
transform
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Figure 1 Overview of the registration network. DAM, dual attention module; SP-BLOCK, scale-aware position attention block;  
SC-BLOCK, scale-aware channel attention block; g(·), the network for computing the deformation field ∅, including Encoder and 
Decoder.
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where sji measures the correlation from ith position to jth 
position. Next, the matrix product of Pc and S is made, and 
reshape the result to (C,X,Y,Z). Finally, the output of SP-
BLOCK is obtained,

1
( )

X Y Z
P c
j ji i j

i
P s P Pα

× ×

=

= +∑  [3]

where α is a scale parameter. It is initially set to 0 and gradually 
increased. As shown in Eq. [3], for each position, a weighted 
sum of the features from all positions, i.e., the multi-scale global 
context, is selectively integrated into the multi-scale features.

SC-BLOCK
The SC-BLOCK acquires multi-scale channel features, 
then weights these channel features to selectively enhance 
the correlation between different channels. The structural 
details of SC-BLOCK are shown in Figure 3. Unlike the 

Figure 2 The detailed architecture of SP-BLOCK. DC, dilated convolution; SP-BLOCK, scale-aware position attention block.

Figure 3 The detailed architecture of SC-BLOCK. DC, dilated convolution; SC-BLOCK, scale-aware channel attention block.
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SP-BLOCK, the consecutive residual block is executed 
only once for P because the channel attention took the 
dependence between channels into account. We denote 
the output of the consecutive residual block as Pd, which 
is reshaped into (C,X×Y×X). The channel attention map 

( ),C C
C ∈   is obtained by performing matrix multiplication 
between Pd and the transpose of Pd,

( )
( )

1

exp

exp

d d
i j

ji C
d d

i j
i

P P
C

P P
=

⋅
=

⋅∑
  [4]

where cji measures the correlation from ith channel to jth 
channel. After that, the matrix product of the transformed 
Pd and C is obtained in the dimension of (C,X×Y×X). Finally, 
the output of SC-BLOCK is calculated,

( )
1

C
C d
j ji i j

i
P c P Pβ

=

= +∑
  

[5]

where β is a scale parameter. Eq. [5] shows that each channel’s 
features are the weighted sum of the global channel features 
and the original input of the multi-scale features. It allows the 
network to integrate the features of different channels with 
consideration of the structural relationship among channels.

Spatial transformation function

The spatial transformation function is used to warp IM to 
ϕ(IM) (30), which allows the evaluation of the similarity 
between ϕ(IM) and IF. Denoting the voxel of IM as p, the voxel 
ϕ(p) after transformation can be achieved. Since image values 
are only defined at integer positions, linear interpolation is 
performed based on eight neighboring voxels: 

( )( ) ( )
( )( ) { }

( )( )
, ,

1M M d d
d x y zq N p

I p I p p q
φ

φ φ
∈∈

= ∏ − −∑    
[6]

where N(ϕ(p)) represent the neighbors of ϕ(p).

Loss function

The loss function consists of two parts: Lsim, which 
penalizes the difference between a fixed image and a 
moving image after the deformation field, and Lsmooth, which 
penalizes the local spatial variation of the deformation 
field. Lsim is the normalized cross-correlation (NCC) (17), 
and its definition is:
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where FI
∧

 and MI
∧

 are normalized images with mean 
intensities removed, and ϕ(IM) is the image transformed 
by the deformation field. The regularization term is used 
to punish the excessive deformation and the unsmooth 
deformation field, the definition is:

2
smooth

V
L φ

Ω∈

= ∇∑    [8]

The overall loss function is:

all sim smoothL L Lλ= − + [9]

where λ represents the regularization term coefficient.

Ethical statement

The study was conducted in accordance with the 
Declaration of Helsinki (as revised in 2013). This study was 
approved by the Institutional Ethics Committee of The 
Affiliated Cancer Hospital of Zhengzhou University, Henan 
Cancer Hospital. And the informed consent was waived in 
this retrospective study.

Experiments data

The 4D-lung dataset was used for the test (31,32). This 
data set includes four-dimensional fan beam CT (4D-FBCT) 
and cone-beam CT (4D-CBCT), which were obtained 
during chemotherapy of 20 patients with locally advanced 
non-small-cell lung cancer during radiotherapy. The 
planned CT image was obtained using a 16-slice spiral CT 
scanner (Brilliance Big Bore, Philips Medical Systems), with 
a slice thickness of 3 mm and an axial resolution of 512×512 
(in-plane spacing approximately 1 mm). The CBCT image 
was obtained on a commercial CBCT system (On-Board 
ImagerTM, Varian Medical Systems, Inc.), and the size was 
512×512×50. Two operations were performed before CT 
and CBCT image registration:

(I) Pair the data. All images were resampled to the same 
pixel spacing and slice thickness. The slice thickness 
was 2.34 mm and pixel spacing was 1.16 mm.  
The field of view (FOV) of the CT irradiation area 
was larger than that of CBCT, the FOV of CT was 
cropped to match the FOV of CBCT.
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(II) Align the data (18). The lung in both CT and 
CBCT images were aligned. Rigid registration was 
performed using ANTs (7) to reduce the excessive 
deformation.

Experiment settings

To evaluate the effectiveness of UDAN, two experiments 
were performed (The code of the network structure and 
the pre-trained model can be found in https://github.com/
Eric-Hu88/UDAN). The first experiment was to compare 
our method with three traditional widely-used deformable 
registration algorithms [ANTs (7), ELASTIX (26), B-Spline 
non-rigid registration (9)], and three deep-learning-base 
deformable registration algorithms [VoxelMorph (17),  
VTN (18) and CycleMorph (27)]. In the second experiment, 
the effectiveness of SC-BLOCK and SP-BLOCK was 
investigated by six variants of UDAN:

(I) Baseline: UDAN’s backbone network without dual 
attention module;

(II) Baseline with P-BLOCK: UDAN’s backbone network 
with position attention block (P-BLOCK) (33);

(III) Baseline with C-BLOCK: UDAN’s backbone network 
with channel attention block (C-BLOCK) (33);

(IV) Baseline with SP-BLOCK: UDAN’s backbone 
network with SP-BLOCK;

(V) Baseline with SC-BLOCK: UDAN’s backbone 
network with SC-BLOCK;

(VI) UDAN: The proposed registration network. 
P-BLOCK and C-BLOCK were simplified versions 

of SP-BLOCK and SC-BLOCK that did not use dilated 
convolution and residual structure.

Implementation details 

CT and CBCT images of total 20 patients were used. Due 
to the limited number of patients in the dataset, directly 
using a portion of the data as a validation set will reduce 
the generalization of the model. In the process of cross-
validation, 50% patients were used for training and 25% 
patients were used for validation to tune hyper-parameters, 
50% of patients for training and 25% of patients for 
validation were synthesized into the final training set, then 
trained the model by the proposed network with pre-tuned 
hyper-parameters and the remaining 25% of patients were 
used for testing. The total amount of data was 86 pairs of 
CT and CBCT images. The number of slices per one set of 

CT and CBCT images was 48. The network was trained for 
1,000 epochs. ADAM optimizer with the initial learning rate 
of 4×10−4 was used and multiplied by 0.5 after 400 epochs. 
Regularization parameter λ was set to 0.9. The networks 
were trained and tested on a computer cluster equipped with 
NVIDIA Tesla V100 GPU with 32 GB of memory.

Evaluation metric 

Following previous study (17,18), five metrics, dice similarity 
coefficient (DICE), target registration error (TRE), 
structural similarity index (SSIM), TIME, and negative 
Jacobian percentage were used to evaluate the registration 
performance. They are:

(I) Dice similarity coefficient (DICE): experienced 
radiologists manually delineated the position 
of tumor in the data and calculated the DICE 
coefficient of the tumor before and after registration.

(II) Target registration error (TRE) of anatomical: for 
each pair of CT and CBCT data, a professional 
radiologist manually marked around 23 significant 
anatomical landmarks, which were distributed 
throughout the lungs.

(III) Structural similarity index (SSIM): the structural 
similarity between the registered image and the 
fixed image.

(IV) TIME: the time spent on registering a pair of CT 
and CBCT images.

(V) Negative Jacobian percentage |Jϕ|≤0(%): in the 
deformation field generated by the network, areas 
with negative Jacobian determinants were considered 
folding, and the percentage of the area to the whole 
was the negative Jacobian percentage (34).

Results

Table 1 showed the results of performance comparison 
between our method and the six existing methods. Our 
method achieved 2.07 mm on TRE, 86.34% on SSIM, 
and 89.74% on DICE. Compared to the six existing 
methods, our method obtained the best performance on 
four metrics. Figure 4A showed the visual comparison 
between our method and the six existing methods, red 
regions indicated the warped tumor labels in CBCT after 
registration, it can be seen that the proposed UDAN yields 
the tumor label that was closer to the CT tumor label. 
The checkerboard overlaps between the CT image and 

https://github.com/Eric-Hu88/UDAN
https://github.com/Eric-Hu88/UDAN
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Table 1 Performance comparison of the proposed UDAN with six mainstream deformable image registration methods

Method TRE (mm) ↓ SSIM (%) ↑ DICE (%) ↑ TIME (s) ↓ |Jϕ|≤ 0(%) ↓

Affine 4.27 68.17 64.38 – –

ANTs 2.32 74.43 79.27 1123 0.16

ELASTIX 2.45 73.56 75.24 265 0.09

B-spline 3.27 69.49 70.49 943 0.06

VTN 2.12 85.48 88.61 16 0.12

VoxelMorph 2.17 85.34 87.94 14 0.34

CycleMorph 2.14 85.73 87.81 23 0.16

UDAN 2.07 86.34 89.74 18 0.28

The best results are shown bold font. The line of affine is the result of rigid registration before the application of deformable registration. 
UDAN, unsupervised dual attention network; TRE, target registration error; SSIM, structural similarity; DICE, dice similarity coefficient;  
|Jϕ|≤ 0(%), areas with negative Jacobian determinant are considered folding, the folded area as a percentage of the total area.

the CBCT image were provided in Figure 4B. Apparently, 
the proposed UDAN reduced the dislocation of organ 
boundaries and bone structure compared to the other six 
existing methods. Also, the registered image pairs were 
fused and presented in Figure 4C. The R channel was the 
CT image and presented in red color, while the B channel 
was the deformed CBCT image and presented in blue color. 
When the two images match perfectly, a purple image was 
displayed. In the example shown in Figure 4C, the results of 
ANTs (7), Elastix (26), and B-splines (9) displayed several 
red or blue areas. Compared with traditional algorithms, 
the VoxelMorph (17), VTN (18), and CycleMorph (27) 
algorithms based on deep learning achieved excellent 
results. However, our method was more competitive for 
the details of the parts where artifacts exist. CycleMorph 
maintained a low percentage of negative Jacobian using 
cyclic consistency, but did not show better performance in 
the other metrics. Paired t-tests indicated that the decrease 
of TRE, the increases of DICE and SSIM in our method 
were statistically significant (P<0.05) compared to those of 
the other methods tested. Although the B-Spline algorithm 
achieved the lowest negative Jacobian percentage, it was 
worse in the other metrics. 

The effect of several important elements in our framework 
was investigated through a set of ablation experiments. Table 
2 listed the results of the comparison between the proposed 
method and its five variants. The best scores were shown in 
boldface. When using the proposed UDAN, TRE, SSIM, 
and DICE reached the highest level. TIME increased but 

was close to the average. As shown in Figure 5, with the 
application of the DAM, the dislocation of organ boundaries 
and bone structure was reduced in Figure 5B, and red 
and blue areas were less in Figure 5C. In addition, we also 
performed paired t-tests for different variants. The results 
showed that when the complete DAM module was added to 
the baseline network, the TRE, DICE, and SSIM indicators 
achieved the best results with statistical significance. The 
negative Jacobiavn percentage indicator was not the best, but 
its value was second to the best.

Discussion

In this paper, we have proposed an unsupervised registration 
network with a dual attention module. Compared with the 
other six existing methods, the slice junction of our method 
was relatively smooth, and there were fewer dislocation 
boundaries. While presented in the overlay of the red and 
blue channels, the proposed method displayed more purple 
areas than the other six existing methods. In summary, 
our method provided high accuracy in registering CT and 
CBCT images in the tested cases.

With the introduction of SC-BLOCK and SP-BLOCK, 
the registration accuracy is improved apparently. SP-
BLOCK and SC-BLOCK are the enhanced versions of 
P-BLOCK and C-BLOCK that use dilated convolution 
and residual structure. By using dilated convolutions 
with different dilation rates, the high-dimension feature 
receptive field is gradually increased and the search space of 
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Figure 4 The comparison of registration results between our method and the other mainstream methods. (A) The registered images, where 
the red area is the CBCT tumor segmentation label deformed by the deformation field; (B) the checkerboard display of registered images; 
(C) the red and blue channel overlay of the registered images, zoomed in on the lungs and parts of the surrounding area. CT, computed 
tomography; CBCT, cone-beam computed tomography.
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Table 2 Performance comparison of the proposed UDAN with its six variations

Method TRE (mm) ↓ SSIM (%) ↑ DICE (%) ↑ TIME (s) ↓ |Jϕ|≤ 0(%) ↓

Baseline 2.25 83.92 86.54 14 0.34

Baseline with P-BLOCK 2.21 84.27 87.15 17 0.29

Baseline with C-BLOCK 2.09 84.72 87.56 16 0.31

Baseline with SP-BLOCK 2.13 85.13 87.43 16 0.25

Baseline with SC-BLOCK 2.11 85.08 88.57 17 0.33

UDAN 2.07 86.34 89.74 18 0.28

The best results are shown bold font. TRE, target registration error; SSIM, structural similarity; DICE, dice similarity coefficient; |Jϕ|≤ 0(%),  
areas with negative Jacobian determinant are considered folding, the folded area as a percentage of the total area; P-BLOCK, position 
attention block; SP-BLOCK, scale-aware position attention block; SC-BLOCK, scale-aware channel attention block; UDAN, unsupervised 
dual attention network.

feature matching is reduced. This can effectively alleviate 
the problem of inaccurate feature matching caused by the 
different voxel intensities between CT and CBCT images. 
When all blocks are added to the network, the registration 
accuracy reaches the best value. 

High-dimension features usually contain rich detailed 
information. For the complex high-dimension features, 
DAM is effective to process them. DAM not only takes 
both low-dimension features and high-dimension detailed 
information into account but also processes the semantic 
information of the high-level features while maintaining 
the integrity of the low-level location information. DAM 
weights features in different levels which makes them 
adaptively match the corresponding structural information 
in fixed and moving images.

There are certain problems in the current study. One is 
the limited data used for training. In future work, we plan 
to take advantage of unsupervised registration and make 
more use of unlabeled clinical data. Another problem is that 
the output could be affected considerably by the quality of 
CBCT images. The registration accuracy of the proposed 
model with high-quality CBCT images is better than that 
with low-quality CBCT images. We plan to improve the 
quality of CBCT images by preprocessing them while 
preserving the anatomical structure of CBCT. Enhancing 

the image quality of CBCT might be a feasible way to 
obtain higher registration accuracy. 

The proposed method is not limited to the CT and 
CBCT medical image registration. It would be applied in 
other clinical registration tasks, such as 4DCT registration 
with automatically detected landmarks. Also, it would 
be beneficial to compare our proposed method with the 
advanced deep-learning based methods proposed in the 
other medical image processing fields (35). In the future, 
comparing the proposed method with various advanced 
registration methods and testing it in other clinical 
scenarios will be our next work.

Conclusions

An unsupervised CT-CBCT medical image registration 
model for CT and CBCT images is developed and evaluated 
based on publicly available data. The proposed method 
shows an apparent advantage over the existing methods. 
The introduction of SP-BLOCK and SC-BLOCK in the 
DAM can enhance the capability of capturing high-level 
semantic information and low-level spatial information in 
CT and CBCT image pairs. It provides an effective way to 
accelerate the automated image registration between CT 
and CBCT images in routine clinics.
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Figure 5 The comparison of registration results among UDAN variants. (A) The registered images; (B) the checkerboard display of 
registered images; (C) the red and blue channel overlay of the registered images, zoomed in on the lungs and parts of the surrounding area. 
CT, computed tomography; CBCT, cone-beam computed tomography; UDAN, unsupervised dual attention network.
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