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Background: Bone age assessment (BAA) is a crucial research topic in pediatric radiology. Interest in 
the development of automated methods for BAA is increasing. The current BAA algorithms based on 
deep learning have displayed the following deficiencies: (I) most methods involve end-to-end prediction, 
lacking integration with clinically interpretable methods; (II) BAA methods exhibit racial and geographical 
differences. 
Methods: A novel, automatic skeletal maturity assessment (SMA) method with clinically interpretable 
methods was proposed based on a multi-region ensemble of convolutional neural networks (CNNs). This 
method predicted skeletal maturity scores and thus assessed bone age by utilizing left-hand radiographs and 
key regional patches of clinical concern.
Results: Experiments included 4,861 left-hand radiographs from the database of Beijing Jishuitan Hospital 
and revealed that the mean absolute error (MAE) was 31.4±0.19 points (skeletal maturity scores) and 
0.45±0.13 years (bone age) for the carpal bones-series and 29.9±0.21 points and 0.43±0.17 years, respectively, 
for the radius, ulna, and short (RUS) bones series based on the Tanner-Whitehouse 3 (TW3) method. 
Conclusions: The proposed automatic SMA method, which was without racial and geographical influence, 
is a novel, automatic method for assessing childhood bone development by utilizing skeletal maturity. 
Furthermore, it provides a comparable performance to endocrinologists, with greater stability and efficiency. 
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Introduction 

Skeletal maturation occurs through a series of discrete 
phases, particularly in the wrists and hands. Pediatric 
medicine uses progressive skeletal growth to assign a bone 
age and correlate it with the chronological age of the 
child. Discrepancies in these data facilitate the diagnosis of 
possible endocrine or metabolic disorders (1). Currently, 
the left-hand radiograph is widely used for bone age 
assessment (BAA). The morphological characteristics 
of bones such as the wrist and phalanges have a vital 
significance in BAA (2). Over the past decades, BAA has 
been performed manually using either the Greulich and 
Pyle (GP) method (3) or the Tanner-Whitehouse 3 (TW3) 
method (4). In the GP method, BAA is performed by 
comparing the left-hand radiograph with the GP atlas and 
evaluating the bone age by identifying the most visually 
similar bone samples in the atlas. However, interpretations 
may vary due to the subjective nature of this method (5). 
In the TW3 method, the maturity levels of 20 regions 
of interest (ROIs), comprising 13 radius, ulna, and short 
(RUS) bones and 7 carpal (C) bones are evaluated, and 
skeletal maturity scores are assigned to individual ROIs 
(Figure 1). These scores are then summed to obtain the 
total RUS maturity score and total C maturity score. Then, 
the scores are finally converted into a bone age using a 
bone age table. Therefore, the TW3 method is widely used 
for BAA due to its higher accuracy and interpretability. 
In the TW3 method, skeletal maturity is an intermediate 
variable for bone age; it describes the bone development 
level and is not affected by distinct racial and geographical 
differences. However, manual skeletal maturity assessment 
(SMA) is inefficient and depends greatly on the professional 
experience of radiologists. Therefore, an automatic method 
for SMA is urgently needed to aid clinicians.

In recent years, the development and application of deep 
learning techniques based on artificial neural networks 
has increased rapidly. Deep learning techniques have 
particularly exhibited superior results in medical image 
analysis (6-12). The present study established a novel, 
fully automated SMA method based on the deep learning 
algorithm that automated the entire process of the TW3 
(both of RUS-series and C-series) BAA method.

In this paper, an SMA method was designed that 
incorporated the TW3 local ROIs with the overall image 
features of the left-hand radiographs. This method 
automatically assessed the skeletal maturity of the samples 
and derived a skeletal maturity score. The sample’s bone 

age was then derived from the corresponding bone age 
table. The method, again, was independent of racial and 
geographical variations and had a clear basis for clinical 
dissemination.

Related work

Many deep learning frameworks have been proposed for 
automatic BAA and can be divided into 2 categories. The 
first category comprises training of neural networks by 
extracting features of whole-hand images and focusing less 
on local regions. Spampinato et al. (13) trained and tested 
various deep learning networks (OverFeat, GoogLeNet, 
and OxfordNet) on a public dataset and exhibited an 
average difference of approximately 0.8 years between 
manual and automated assessments. Lee et al. (1) applied 
deep convolutional neural networks (CNNs) to eliminate 
background and detect the hand from radiographs, 
and subsequently selected 3 CNN models (AlexNet, 
GoogLeNet, and VGG-16) as regression networks for BAA. 
Larson et al. (14) trained models using CNNs that were 
compared by radiologists, exhibiting a mean difference of  
0 years between the neural network models and the BAA of 
radiologists, with a mean effective value and mean absolute 
difference (MAD) of 0.63 and 0.50, respectively. He  
et al. (15) proposed a novel, end-to-end BAA approach that 
was based on lossless image compression and compression-
stimulated deep residual networks. However, these methods 
omitted the inclusion of specific bone parts as ROIs. 
Consequently, their precision is limited.

The other category is the automatic BAA algorithm 
that combines local and global features and exhibits better 
performance. Cao et al. (16) proposed landmark-based, 
multi-region CNNs for automatic BAA based on whole-
hand image and local ROIs. Using attention and recognition 
agent modules, Liu et al. (2) performed bone local landmark 
discrimination and extracted image features for bone age 
prediction, respectively. Wang et al. (17) proposed a new 
anatomical local awareness network (ALA-Net) for BAA. 
Chen et al. (18) proposed an attention-guided approach to 
obtain ROIs from whole-hand images and then aggregated 
these ROIs for BAA.

These methods provided direct predictions of bone age 
through an end-to-end architecture. However, Zhang et al. (19)  
reported racial and geographical variations in the status 
of pediatric development. Children from different races 
and geographic regions with the same skeletal maturity 
exhibit distinct variations in bone ages owing to differences 
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in their developmental status, which to some extent limits 
the diffusion of relevant automatic BAA algorithms. 
Furthermore, end-to-end predictive BAA algorithms are 
limited in clinical dissemination because of the lack of a 
clear clinical basis.

In this paper, a skeletal assessment method based on a 
multi-region ensemble of CNNs integrating with clinically 
interpretable methods was proposed to automate the entire 
process of the TW3 BAA method. In our method, the first 
step was to automatically remove the image background and 
enhance the hand bone contrast to pre-process the left-hand 
radiographs, and then the localization network and object 
detection network were trained to extract the RUS-ROIs 
and carpal region. Finally, we trained a feature extraction 
network to extract the features of both the whole left-hand 
and the ROIs to assess skeletal maturity scores and bone 
age. We constructed a database of left-hand radiographs of 
children with TW3-method annotation for the training and 
testing of the proposed algorithm. Experimental results on 
the database demonstrated that our method had an accuracy 
comparable to that of experienced endocrinologists and 
radiologists, with even greater stability and efficiency. 
We present the following article in accordance with the 

TRIPOD reporting checklist (available at https://qims.
amegroups.com/article/view/10.21037/qims-21-1158/rc).

Methods

Overall framework

The architecture of our proposed method comprised 3 parts 
(Figure 2).

Datasets

The study was conducted in accordance with the 
Declaration of Helsinki (as revised in 2013). The study was 
approved by the Ethics Committee of Beijing Jishuitan 
Hospital (Approval No. 201907-11). The present study 
was conducted on 4,861 left-hand radiographic images of 
children of different ages obtained from the Beijing Jishuitan 
Hospital. Each image was labelled in detail by 5 experienced 
radiologists with 20 epiphyseal scores based on the TW3 
scoring method, including 13 RUS-ROIs skeletal maturity 
scores for the RUS-series and 7 C-ROIs skeletal maturity 
scores for the C-series. Additionally, the bone age and 

Figure 1 TW3-related regions of interest. TW3, Tanner-Whitehouse 3; DP, distal phalanges; MP, middle phalanges; PP, proximal 
phalanges; MC, metacarpal; C1 to C7: 7 carpal bones related to TW3; C1, triquetrum bone; C2, hamate bone; C3, lunate bone; C4, capitate 
bone; C5, scaphoid bone; C6, trapezium; C7, trapezoid bone.  
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gender of each child were included in the label. The result 
was accepted as the ground truth only when the same result 
was obtained by at least 3 radiologists. Otherwise, an image 
would be presented to the committee of experts for further 
validation and determination. Of the total 5,300 radiographs 
which were acquired between 26 August, 2019 and 31 
December, 2019, 439 images with hand deformities and 
right-hand images were excluded. Thus, the present study 
was conducted using the remaining 4,861 images. The age 
distribution of the 4,861 images is illustrated in Figure 3A,  
with 49% of the images of female origin and 51% of male. 
The distribution of the skeletal maturity scores of the 4,861 
images is illustrated in Figure 3B. The original dataset was 
unevenly distributed across the skeletal maturity stages 
(Figure 3B). Therefore, the dataset was equalized based on 
data augmentation algorithms (Figure 3C). Detailed sources 
of data and a description of the experimental setup of this 
study are displayed in the Appendix 1 and Figure S1.

Image preprocessing

Background elimination
The images in the database were obtained through 

different devices, and their quality varied greatly due to the 
differing parameters and radiation doses. A reliable hand 
segmentation technique was required to extract the hand 
mask and remove the irrelevant regions. The present study 
used a variant network of U-Net (20), Attention U-Net (21),  
which incorporated the additive attention gate module 
on the traditional U-Net to improve the sensitivity of the 
model to the foreground pixels of an image. After removing 
the background, the left-hand radiographs were processed 
for enhancement with contrast-limited, adaptive histogram 
equalization and Laplace sharpening algorithms. The pre-
processed images are illustrated in Figure 4.

RUS-ROI extraction
The TW3-related ROIs, including RUS and C series, 
of the left-hand radiographs were acquired and used to 
assess the skeletal maturity scores. The 13 RUS-ROIs 
were extracted and utilized to assess the RUS scores. The 
present study initially located 37 keypoints on the left-
hand radiographs and used them as reference marks to cut 
out the desired 13 RUS-ROIs. Such keypoint localization 
methods usually require complex network structures and a 
large amount of training data to provide high accuracy (22). 

Figure 2 Framework for the SMA method. (A) Image preprocessing; (B) acquisition of anatomical regions; (C) SMA network. CLAHE, 
Contrast Limited Adaptive Histogram Equalization; RUS, radius, ulna, and short; C, carpal; SMA, skeletal maturity assessment. 
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Figure 3 Histogram of the distribution of the dataset. (A) Distribution of the number of males and females in different age groups; (B) 
distribution of skeletal maturity for the original dataset; (C) distribution of skeletal maturity after data augmentation. TW3-C, Tanner-
Whitehouse 3 carpal bones; TW3-RUS, Tanner-Whitehouse 3 radius, ulna, and short bones.

Figure 4 Image preprocessing. (A) Original images; (B) images masks; (C) images after Attention U-Net processing; (D) images after 
contrast enhancement.
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A total of 5 high-performance, keypoint detection CNNs 
(22-25) were considered candidate networks. Payer et al. (22) 
conducted a comparative study of these candidate networks. 
The localization results of these networks were triple cross-
validated on 895 left-hand radiographs. The point-to-
point error (PEall) and the number of outliers at different 
error radii (#Or) were used as measures of the keypoint 
localization error. Spatial Configuration-Net (SCN) 
exhibited the best results in terms of both local accuracy 
and robustness to keypoint error identification. Therefore, 
SCN was selected as the network for keypoint detection in 
the present experiment. Furthermore, a technique called 
positive mining, an iterative process, was employed to 
mitigate the labelling cost. In the positive mining method, 
manual labelling was combined with automatic processing; 
hence, this method allowed the rapid acquisition of accurate 
labels for all images in the training set.

After obtaining the image keypoints (Figure 5), 13 
RUS keypoints were selected, and the cropped region was 
determined on the basis of these keypoints to obtain the 
RUS-ROIs.

C-ROIs extraction
Detecting specific carpal bones individually is relatively 
challenging because the bones have a gradual ossification 
process with differing morphological characteristics at 
different times. Therefore, the You Only Look Once 
(YOLO)_v. 4 (26) object detection network was utilized 
to identify the entire carpal bone region. Then, the entire 

carpal bone image was cropped out as the input for the 
C-series score evaluation. 

Multi-region ensemble networks in SMA

Many advanced backbone networks, such as Inception_
v3 (27), ResNet (28), and GoogLeNet (29), have emerged 
in the field of computer vision. The addition of more fully 
connected sub-networks to these backbone networks and 
changing the loss function of the networks can enable 
regression or classification tasks (30). The Inception_
v3 network was chosen as the feature extraction network 
for the entire hand and wrist. A lightweight ResNet_18 
network was used to extract small-sized patches from ROIs. 
The network adopted the mean absolute error (MAE) as the 
loss function of this regression task, as follows:

 
( )1

1
m

m
ii

MAE y y
=

= −∑  [1]

where m denotes the number of data in the set, yi denotes 
the value of the ith number, and  y denotes the average of all 
numbers.

The C-series SMA model architecture comprised 2 
separate Inception_v3 sub-networks (Figure 6A), which 
were used to extract whole-hand and C-ROIs features. 
The RUS-series SMA model architecture comprised 
one Inception_v3 network and 13 ResNet_18 networks 
(Figure 6B), where these networks were responsible for 
extracting the whole-hand features and RUS-ROIs features, 
respectively. Furthermore, 2 completely connected layers 
and a linear layer were added as additional sub-networks to 
extract more useful features and reduced the feature space 
dimension to save computational effort.

Results

Image pre-processing

The accuracy of keypoint localization and carpal bone 
region detection directly affects the effectiveness of 
ROIs extraction. To compare the effects of different pre-
processing methods on keypoint localization and carpal 
bone region detection, comparison experiments were 
conducted. As shown in Table 1, the keypoint localization 
and carpal bone region detection models performed better 
after background elimination and contrast enhancement 
were applied to the left-hand radiographs. In this study, the 
accurate extraction of ROIs determined the reasonableness 

Figure 5 37 keypoints detected using SCN networks. SCN, spatial 
configuration-Net.
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Figure 6 Framework for SMANet. (A) Network structure diagram of TW3-C series; (B) network structure diagram of TW3-RUS series. 
SMANet, skeletal maturity assessment network; TW3-C, Tanner-Whitehouse 3 carpal bones; TW3-RUS, Tanner-Whitehouse 3 radius, 
ulna, and short bones.

Table 1 The results of different pre-processing methods on keypoint localization and carpal bone region detection

Method

RUS-ROIs (SCN) C-ROIs (YOLO_v4)

PEall
Outliers (>10 mm) (%) Accuracy (%) Recall (%) Precision (%) F1 (%)

Median (mm) Mean ± SD (mm)

Original image 0.92 0.97±1.01 17 95.83 98.09 97.63 97.86

Enhanced contrast 0.87 0.91±0.96 12 96.83 99.07 97.70 98.38

Background elimination 0.63 0.80±0.93 8 97.11 99.22 97.85 98.53

Background elimination and 
enhanced contrast

0.42 0.54±0.60 6 97.30 99.34 97.29 98.30

RUS-ROIs, radius, ulna, and short bones regions of interest; C-ROIs, carpal bones regions of interest; SCN, Spatial Configuration-Net; YOLO, 

You Only Look Once; SD, standard deviation; PEall, point-to-point error; 
 

100%
TP TN

Accuracy
TP FP FN TN

+
= ×

+ + + ; 
 

100%
TP

Recall
TP FN

= ×
+ ;  

 
100%

TP
Precision

TP FP
= ×

+
; 

 21 100%Precision RecallF
Precision Recall
× ×

= ×
+

. TP, true positives; FP, false positive; FN, false negatives; TN, true negatives.

and accuracy of the skeletal maturity assessment network 
(SMANet) prediction scores. Therefore, the performance 
of the pre-processing methods was closely related to the 
prediction results of the final model.

The extraction of ROIs

The SCN network was evaluated on the test sets, and the 
median of the outliers radii was statistically obtained as 

0.42 mm. The median standard deviation of the outliers 
radius was 0.54±0.60 mm, and the outliers larger than  
10 mm accounted for about 6% of the overall keypoints. 
After locating the keypoint, the tilt angle of the bone 
patches was calculated using the 2 adjacent keypoints. The 
whole-hand image was then rotated to ensure that the 
bone patches were in a vertical position. The process is 
illustrated in Figure 7. If the vertical image of the A joint 
had to be acquired, the tilt angle of the line between point 
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A and point B was initially calculated, and then the image 
was rotated to ensure that the AB line was in a vertical state. 
The bone patch was subsequently cropped (Figure 7C), 
with A as the center. Eventually, 13 epiphyseal images were 
acquired, as shown in Figure 7D.

For the carpal bone region detection task, many advanced 
object detection networks, such as Mask R-CNN (31),  
Fast R-CNN (32), and YOLO_v. 4, were available. A 
comparison experiment was conducted separately to identify 
the network that matched well with our dataset. The 
YOLO_v. 4 network performed better on our dataset and 

was therefore selected to detect the carpal bone region. The 
cropped carpal bone region is shown in Figure 8.

SMANet performance

The SMANet network was constructed using the PyTorch 
framework and trained separately for the C-series and  
RUS-series. The RUS-ROIs images were resized to 
128×128 pixels, whereas the whole carpal image was resized 
to 448×668 pixels. The 4,861 sets of image data were 
divided into the training set, validation set, and test set in 

Figure 7 The interception process of epiphyseal images. (A) Original left-hand radiograph; (B) rotated image; (C) single epiphyseal images; 
(D) 13 epiphyseal images. ROI,  regions of interest; RUS, radius, ulna, and short bones.

Figure 8 The process of carpal bone patch interception. (A) Original left-hand radiograph; (B) intercepted carpal bone region. C-ROI, 
carpal bones regions of interest.

A B DCOriginal image Rotated image Single ROI 13 RUS ROIs

A BOriginal image C-ROI
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a ratio of 8:1:1. The mini-batch size was set to 16 and the 
epoch size was set to 500. The learning rate was set to 0.001 
and decreased in steps by a factor of 5 every 100 iterations.

The SMANet performance was evaluated on 486 left-hand 
radiographs, and SMANet obtained a skeletal maturity MAE 
of 29.9±0.21 points and bone age MAE of 0.43±0.17 years  
for the RUS-series and a skeletal maturity MAE of 
31.4±0.19 points and bone age MAE of 0.45±0.13 years  
for the C-series (Table 2). The statistical error plots of 
the RUS-series and C-series were determined (Figure 9).  
No significant outlier points were observed in both the 
RUS-series and C-series, reflecting the strength of the 
generalizability of our network. Additionally, the MAE of 
the skeletal maturity scores among the different age groups 
was compared (Table 3). The features of the TW3-related 
image were not obvious due to the incomplete development 
of the carpal and finger bones in the early period. 
Therefore, the MAE score was relatively large. However, 
as the carpal and finger bones gradually reach complete 

development with age, the features of the TW3-related 
image became more obvious, resulting in a lower MAE.

Discussion

SMANet compared with other networks

The information of the bone age and gender of each 
individual in the Jishuitan database was also included in the 
annotation file. Moreover, as skeletal maturity scores can be 
converted into a bone age using a bone age table, the official 
model of BoNet (33), SIMBA (34), and Yitu-AICARE (35) 
were trained and tested on the Jishuitan database. The best 
performing models on the validation set were selected to 
conduct the comparative experiments. The comparisons 
between SMANet, BoNet, Yitu-AICARE, and SIMBA 
are presented in Table 4. As shown in Table 4, SMANet 
outperformed BoNet, Yitu-AICARE, and SIMBA on test sets, 
which reflected a positive correlation between the skeletal 
maturity MAE (score) values and bone age MAE (year) values. 

Figure 9 Statistical results of the SMANet. (A) TW3-C series statistical result; (B) TW3-RUS series statistical result. The horizontal and 
vertical axes indicate the actual bone maturity score and the model prediction score, respectively. SMANet, skeletal maturity assessment 
network; TW3-C, Tanner-Whitehouse 3 carpal bones; TW3-RUS, Tanner-Whitehouse 3 radius, ulna, and short bones.

Table 2 The MAE of SMANet on Jishuitan dataset

Network
TW3-RUS TW3-C

Skeletal maturity (score) Bone age (year) Skeletal maturity (score) Bone age (year)

SMANet 29.9±0.21 0.43±0.17 31.4±0.19 0.45±0.13

MAE, mean absolute error; SMANet, skeletal maturity assessment network; TW3-RUS, Tanner-Whitehouse 3 radius, ulna, and short 

bones; TW3-C, Tanner-Whitehouse 3 carpal bones. 
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Comparison of the performance of different network 
combinations

A cross-sectional comparison was conducted to compare 
the performance of different network architectures. The 
different SMA network architectures utilizing the input of 
ROIs patches, whole hand images, and a combination of both 
were trained and tested, respectively (Table 5). The evaluation 
metric was defined as the MAE between the ground truth and 
the estimated skeletal maturity score and the estimated bone 
age. The combination of ROIs and whole hand performed 
optimally on the top of the model (Figure 10).

The effect of gender on SMANet

Our model predicted the bone maturity score, which was 
independent of gender. A standard clinical BAA process is 
that the physician first derives a skeletal maturity score from 
the left-hand radiographs and then derives the bone age from 
the bone age table, which corresponds to a different bone 
age table for each gender. Therefore, differences in bone 
age by gender are only reflected in the bone age table. The 
method we proposed was fully compatible with the clinical 
reading process. In addition, we performed statistics on the 
experimental results based on different genders. As shown 
in the statistical distribution (Figure 11), the SMA model did 
not differ significantly by gender, which also indicated that 
the SMA model was more robust to gender differences.

The limitations of SMANet

In the initial data screening stage, 439 images with 

Table 3 The skeletal maturity MAE of different age groups

Age (years) TW3-RUS (scores) TW3-C (scores)

3–5 34.9±0.32 36.1±0.26

5–7 33.3±0.19 35.7±0.22

7–9 30.1±0.21 32.7±0.23

9–11 29.3±0.11 32.1±0.18

11–13 27.9±0.22 32.5±0.13

13–15 28.1±0.25 28.3±0.19

15–17 27.8±0.15 28.1±0.17

17–18 27.4±0.21 25.8±0.16

Average 29.9±0.21 31.4±0.19

MAE, mean absolute error; TW3-RUS, Tanner-Whitehouse 3 
radius, ulna, and short bones; TW3-C, Tanner-Whitehouse 3 
carpal bones.

Table 4 Comparison of bone age results using various networks 
with 10-fold cross validation

Network
Mean absolute error 

(years)
Probability for less than 

1 year

BoNet (33) 0.65±0.14 93.7%

Yitu-AICARE (35) 0.57±0.21 94.2%

SIMBA (34) 0.48±0.19 96.1%

SMANet 0.43±0.17 97.3%

BoNet, Hand pose estimation for pediatric bone age assessment; 
Yitu-AICARE, diagnostic performance of convolutional neural 
network-based Tanner-Whitehouse 3 bone age assessment 
system; SIMBA, specific identity markers for bone age 
assessment; SMANet, skeletal maturity assessment network.

Table 5 Comparison of results using different regions with 10-fold cross validation

Category Networks MAE (scores) MAE (years) Probability for less than 1 year

TW3-C Whole hand 35.1±0.26 0.51±0.17 93.7%

C-ROIs 40.7±0.31 0.59±0.21 91.4%

Whole hand + ROIs 31.4±0.19 0.45±0.13 96.9%

TW3-RUS Whole hand 33.9±0.27 0.51±0.16 94.1%

RUS-ROIs 37.1±0.18 0.55±0.23 92.2%

Whole hand + ROIs 29.9±0.21 0.43±0.17 97.3%

MAE, mean absolute error; TW3-C, Tanner-Whitehouse 3 carpal bones; TW3-RUS, Tanner-Whitehouse 3 radius, ulna, and short bones; 
ROIs, regions of interest; C-ROIs, carpal bones regions of interest; RUS-ROIs, radius, ulna, and short bones regions of interest.
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hand deformities and right-hand images were excluded. 
Therefore, the final model lacked the ability to discriminate 
these abnormal images and therefore had some limitations.

Conclusions

In the present study, skeletal maturity instead of bone 
age was used as an evaluation indicator of development 
in children, which can potentially overcome the problem 
of racial and geographical variations, to some extent. The 
study discussed the application of multi-region ensemble 
networks for automatic SMA. The accuracy of automatic 
SMA could be similar to that of radiologists. Moreover, 
by comparing our method with the proposed popular 

BAA method, we found that the predictive accuracy of our 
method was superior to that of all other methods. To the 
best of our knowledge, SMANet is a novel network that 
can automatically implement an end-to-end SMA. This is 
crucial for the dissemination of an automated TW3 (both 
of RUS-series and C-series) BAA method across different 
ethnicities and geographic regions.
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Figure 10 Skeletal maturity MAE scores obtained using different regions of left-hand radiographs. (A) Skeletal maturity MAE scores of 
TW3-C series; (B) skeletal maturity MAE scores of TW3-RUS series. MAE, mean absolute error; TW3-C, Tanner-Whitehouse 3 carpal 
bones; TW3-RUS, Tanner-Whitehouse 3 radius, ulna, and short bones.

Figure 11 The Performance of SMANet on different genders. (A) Skeletal maturity MAE scores of TW3-C series by gender; (B) skeletal 
maturity MAE scores of TW3-RUS series by gender. TW3-C, Tanner-Whitehouse 3 carpal bones; TW3-RUS, Tanner-Whitehouse 3 
radius, ulna, and short bones; MAE, mean absolute error; SMANet, skeletal maturity assessment network.
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Appendix 1 Details of data collection

The participants enrolled in the study underwent a posterior-anterior radiography of the non-dominant hand and wrist. The 
criteria for inclusion were healthy children aged 3 to 18 years old from kindergarten, primary school, middle school, and high 
school, willing to participate in this study, and consent by parents. The participants who had no written informed consent 
from parents, and were under 3 years old were excluded. All the radiography without motion artifact and developmental 
deformity (e.g., hyperdactylia, oligodactylia, macrodactylia, dactylion, etc.) were included in the study. The protocol was 
approved by the ethics committee of Beijing Jishuitan Hospital (Approval No. 201907-11).

The posterior-anterior radiography was acquired by a mobile X-ray unit with shielding (X-Bone, Dymena Healthcare, 
Shanghai) (Figure S1). The projection was centered at head of ossa metacarpale III. The projection distance was 70 cm. The 
parameters of projection were 60–70 kV, 0.20 mAs, 300 mm× 300 mm, 500 ms. The radiation dose of the skin was tested as 
2.9–4.9 μGy.

Supplementary

Figure S1 A boy was receiving a posterior-anterior radiography of the left hand and wrist. This image is published with the patient’s 
consent.


