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Background: Endometrial thickness is an essential factor affecting female fertility. Clinically, ultrasound 
imaging is the first choice for the examination of uterine and endometrial-related diseases. However, the 
boundary of some endometrial is challenging to distinguish due to the effects of image resolution and 
noise. In addition, the irregular shape of the endometrium makes it more difficult for doctors to measure its 
thickness. Through the automatic segmentation and extraction of the endometrium, the maximum thickness 
of the endometrium can be measured automatically and accurately. This provides a quantitative index for 
doctors to use diagnostically.
Methods: In this study, 85 cases of three-dimensional transvaginal ultrasound (3D TVUS) images were 
collected retrospectively, including 75 cases of endometrial adhesion and 10 cases of non-adhesion. Firstly, 
the ultrasound images were filtered by block-matching and 3D filtering and speckle reducing anisotropic 
diffusion (SRAD). These two kinds of filtered images were combined with the original image to construct 
a three-channel image. Then, the augmented images were sent to 3D U-Net to realize endometrium 
segmentation. The performance of the segmentation models was evaluated using the Dice similarity 
coefficient (DSC), Jaccard, sensitivity, and 95th percentile Hausdorff distance (HD95). Finally, the medial 
axis transform was used to extract the endometrial centerline, based on which the endometrial thickness 
could be automatically measured.
Results: The endometrium segmentation method proposed in this paper achieved 90.83% in Dice, 83.35% 
in Jaccard, 90.85% in sensitivity, and 12.75 mm in HD95 in the testing set. Taking the doctor’s manual 
measurement as the gold standard, 94.20% of the automatic endometrial thickness measurements based on 
the segmentation results were within the allowable error range of clinical diagnosis.
Conclusions: This paper presents an automatic endometrium segmentation and thickness measurement 
method for 3D TVUS images. The experimental results show that this method has high segmentation 
accuracy to recognize endometrial adhesion images. Furthermore, the thickness measurement based on the 
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Introduction

The endometrium, including the superior inner cortex and 
mucosa, is essential for fertility and reproductive health. 
Clinically, endometrial thickness is essential for diagnosing 
endometrial-related diseases (1-6). In addition, endometrial 
receptivity reflects the receptivity of the endometrium to 
embryos, which is often evaluated by endometrial thickness 
in the clinic (7-9). If the endometrium is too thin, it is not 
conducive to embryonic implantation and development.

Ultrasound imaging and magnetic resonance imaging 
(MRI) are the main ways to diagnose uterine and 
endometrial-related diseases (10-12) To date, three-
dimensional (3D) ultrasound has been widely used in 
clinical medicine to provide continuous anatomical images 
for diagnosis. A 3D ultrasound can enable doctors to 
observe the endometrium’s shape, echo, and thickness more 
intuitively, and it is of great value in diagnosing uterine 
diseases (13-16). Furthermore, 3D ultrasound imaging 
facilitates obtainment of the complete information of the 
uterus and endometrium in real-time from three different 
angles—the coronal plane, sagittal plane, and transverse 
plane.

In ultrasound-based endometrial disease screening, 
the quantitative evaluation result of endometrial diseases 
is generally achieved by measuring the thickness of 
the endometrium. In clinical medicine, the acceptable 
error range of endometrial thickness measurement 
is ±2 mm (17,18). However, manual measurement of 
endometrial thickness is based on personal experience in 
clinical diagnosis, and subjective factors may affect the 
measurement position. Furthermore, some endometrial 
boundaries are challenging to identify because of the 
resolution and noise of the image. In addition, the irregular 
shape of the endometrium increases the difficulty of manual 
measurement by doctors. Therefore, the current diagnostic 
methods may have issues such as low accuracy and poor 
repeatability of the endometrium measurement results.

So far, the research on endometrial segmentation in 

ultrasound images has achieved some valuable results. 
Yang et al. (19) proposed an endometrium segmentation 
algorithm in uterus contraction, using a recursive model 
and multi-threshold technology to extract the uterus in 
motion and automatically segment the endometrium to 
provide evaluation indexes for the treatment of infertility. 
Thampi et al. (20) used the level set method to segment the 
endometrium in two-dimensional (2D) ultrasound images 
of endometrial cancer. The algorithm first performed 
speckle reducing anisotropic diffusion (SRAD) filtering on 
the image, then selected the initial contour and realized the 
segmentation of the region of interest (ROI) using the level 
set. However, the segmentation result of this method will 
depend on the seed point selection of the level set.

In recent years, a convolutional neural network (CNN) 
has been widely applied to the processing and analysis of 
medical images and has shown excellent performance in 
medical image segmentation (21-23). The U-Net network 
is a typical CNN model for medical image segmentation. 
With the development of technology, researchers began 
to extend 2D convolution to 3D convolution to introduce 
the spatial information of data (24). The 3D U-Net 
was first developed for 3D medical image segmentation 
and achieved good research results (25). Chen et al. (26) 
proposed a 3D U-Net network based on the channel 
attention for multi-modal brain tumor segmentation. 
Mourya et al. (27) proposed the cascaded 3D U-Net to 
realize automatic segmentation of the liver and tumor in 
computed tomography (CT) images, and its Dice for liver 
segmentation reached 95%.

T h e  C N N  w a s  a l s o  a p p l i e d  t o  e n d o m e t r i a l 
segmentation. Hu et al. (28) used the visual geometry 
group (VGG) network to realize automatic endometrium 
segmentation in 2D ultrasound images and calculated 
the maximum endometrial thickness perpendicular to the 
central axis, which was extracted through the medial axis 
transformation (MAT) (29,30). Singhal et al. (31) proposed 
an endometrium segmentation algorithm based on fully 

segmentation results has high reliability and repeatability, and the accuracy can meet clinical diagnosis needs.
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convolutional networks (FCN) and level set and realized 
the automatic measurement of endometrial thickness. The 
algorithm performed the 2D segmentation and thickness 
measurement of endometrium through a hybrid variational 
curve propagation model, namely, the deep learning snake 
(DLS) segmentation model. Park et al. (32) employed 
the critical point discriminator to train the endometrium 
segmentation network to learn the shape distribution of 
the endometrium. As a result, the problem of edge blur 
and uneven texture of 2D ultrasound images was solved by 
adversarial learning that could realize the endometrium’s 
automatic segmentation.

The above endometrium segmentation studies were 
all based on the sagittal plane of 2D ultrasound images. 
Although 3D images were used by Singhal et al. (31), the 
network segmentation training was still carried out for 
2D images slice by slice. However, compared with 2D, 
3D ultrasound provides complete structural information. 
Furthermore, the accuracy of endometrium segmentation 
determines the accuracy of endometrial thickness 
measurements. Therefore, based on 3D ultrasound 
images, this paper presents an automatic endometrium 
segmentation using a 3D U-Net (33). Then, the method 
obtains the measurement of endometrium thickness. We 
present the following article in accordance with the STARD 
reporting checklist (available at https://qims.amegroups.
com/article/view/10.21037/qims-21-1155/rc).

Methods

Materials

Constrained by the time of the data collection and retention 
in the ultrasound instruments, we performed staged data 
collection to obtain sufficient data. In each stage of data 
collection, all ultrasound images were selected. Therefore, a 
total of 113 three-dimensional transvaginal ultrasound (3D 
TVUS) images from October 2019 to May 2021 (October–
December 2019, March–May 2020, October–December, 
and March–May 2021) were collected retrospectively in 
this study. The ages of all patients ranged from 29 to 41. 
For the acquired data, we excluded patient data that were 
duplicated within one month, poor quality images, and 
images with indistinguishable endometrial areas. After data 
screening, 85 cases were selected for this study, including 
75 cases with endometrial adhesion and 10 cases without 
endometrial adhesion. The data selection process is shown 
in Figure 1. The images were collected by Voluson E8 
three-dimensional ultrasonic equipment and the transducer 
RIC5-9-D (center frequency 6.6 MHZ, bandwidth 5 MHZ-
9MHZ; GE Healthcare, Chicago, IL, USA). The slice 
spacing of the image data was between 0.22 and 0.31 mm, 
and the resolution was between 0.2933 and 4.413 pixels per 
mm. The three-section images of the endometrium with or 
without adhesion are shown in Figure 2, the coronal section 
of the endometrium in Figure 2A, the transverse section in 

Figure 1 Flow chart of data screening process. 3D, three-dimensional.

Patients underwent ultrasonography from October 2019 to May 2021 (patients =113)

Amount of research data (patients =93)

Patients with normal endometrium (patients =10) Patients with adhesion endometrium (patients =83)

Excluded patients (patients =20)
•	 Without 3D images (patients =4)
•	 Duplicate patient images (patients =16)

Excluded patients (patients =8)
•	 Poor images quality

Endometrial adhesion data (patients =75)

Amount of research data used (patients =85)

https://qims.amegroups.com/article/view/10.21037/qims-21-1155/rc
https://qims.amegroups.com/article/view/10.21037/qims-21-1155/rc
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Figure 2B, and the sagittal section in Figure 2C. The first 
row is normal endometrium, the second is the endometrium 
with adhesion, and the red line shows the endometrial 
boundary in each section.

The study was conducted in accordance with the 
Declaration of Helsinki (as revised in 2013). The study was 
approved by the Institutional Review Board of Shengjing 
Hospital of China Medical University, and individual 
consent for this retrospective analysis was waived.

Study methods

This paper used 3D U-Net to segment endometrium from 
3D ultrasound images. Two experienced doctors manually 
annotated the endometrium on the coronal section by ITK-
SNAP (http://www.itksnap.org/pmwiki/pmwiki.php) and 
measured the endometrial thickness as the gold standard for 
evaluation. In the case of disagreement, another more senior 
clinical physician was asked to analyze and confirm the final 
annotation results. The overall research method is shown 

in Figure 3. The 3D U-Net uses 3D convolution instead of  
2D (34). With a 3D image as input, the structure 
information between slices of the image could be better 
extracted in the encoder part of the network, and the ROI 
could be more accurately located in the decoder part, which 
realized more accurate segmentation of the endometrium. 
Then, the endometrial thickness could be automatically 
measured according to the sagittal  endometrium 
segmentation results, and the receptivity could be evaluated 
with the thickness. 

Image preprocessing
The noise of ultrasound images has a significant influence 
on model learning. Therefore, we performed image filtering 
on the original images, including block-matching and 3D 
filtering (BM3D) and the SRAD (35-37). As a result, the 
noise of the image was removed, while the edge information 
was preserved as much as possible. These two kinds of 
filtered images were combined with the original image to 
construct a three-channel image. Then, the augmented 

Figure 2 Images of the endometrium. The first row shows normal endometrium, the second shows the endometrium with adhesion, and the 
red line shows the endometrial boundary in each section. (A) Coronal section images; (B) transverse section images; and (C) sagittal section 
images.
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images were sent to 3D U-Net to realize endometrium 
segmentation. The image process after two filtering processes 
are shown in Figure 4, the original image in Figure 4A, the 
image after SRAD filtering in Figure 4B, and the image after 
BM3D noise removal in Figure 4C.

To achieve  a  bet ter  per formance  dur ing deep 
learning model training, we chose two methods for data 
augmentation. One was to augment the training data by 
rotating, scaling, translating, and mirroring. The other 
method was to randomly extract patches from the ROI of 
the data to increase the training samples (38,39). By trying 
different patch sizes in training, we finally determined 
to extract ten patches with the size of 96×96×32 for each 
case as the input of network training. When testing, the 
same size patches were extracted by sliding windows, and 
there are 50% overlapping areas between patches. When 

synthesizing the results, the mean value of the overlapping 
areas was calculated, and then the prediction results were 
back to 224×224×32 images.

3D U-Net segmentation
We used a 3D U-Net to segment the endometrium. Since 
most of the research on endometrium segmentation has 
been carried out on 2D ultrasound images, we conducted 
a comparative experiment of 2D U-Net and 3D U-Net 
segmentation. Among the 85 cases of data, 15 cases (13 
with adhesion and 2 without) were randomly selected as the 
testing set, and the other 70 cases were used as the training 
set. All experiments in this paper were carried out on 
NVIDIA GTX 1080 graphics card (NVIDIA, Santa Clara, 
CA, USA).

In the 3D U-Net segmentation experiment, the image 

Figure 3 Flowchart of the method. The first red column on the right shows the different sections obtained by 3D U-net segmentation and 
the reconstructed endometrial images, and the second column shows the segmentation results of the sagittal section used for endometrial 
thickness measurement. Conv, convolution; BN, batch normalization; Relu, rectified linear units; 3D, three-dimensional; U-net, U-shape 
network. 
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size sent into the network training was 224×224×32. When 
training, the Adam optimizer was used for optimization 
with momentum parameters of beta1 =0.9, beta2 =0.999, 
and epsilon =1e-8 (40). The initial learning rate was 10−3. 
During the training period, the learning rate decayed 
according to Eq. [1]. The batch size was 1 due to graphics 
processing unit (GPU) limitations, epochs were 800, 
and the Dice loss was used as the loss function. Sigmoid 
was selected as the activation function, and a threshold 
of 0.5 was used to obtain the final segmentation mask 
from the output of the 3D U-Net. In the experiment, the 
original data (OD) set, the augmented OD set, and the 
augmented filtered data set were trained, respectively, and 
the corresponding segmentation model and segmentation 
results were obtained. 

 tep

teps

s

s

global
decay

r atel rlr initial decay= ∗ 	 [1]

Where lr represents the current learning rate, initiallr 
represents the initial learning rate, decayrate represents the 
decay rate, globalstep represents the current training round, 
and decaysteps represents the decay period.

Automatic measurement of the endometrium thickness
After  obta in ing the  segmentat ion resul t s  o f  the 
endometrium through the 3D U-Net, the automatic 
measurement of endometrium thickness was conducted. 
Although the original image in this study was the coronal 
image, the sagittal image can better reflect the thickness 
of the endometrium. Therefore, the sagittal endometrium 
segmentation results were used to measure and evaluate 
thickness.  First ,  the centerl ine of  the segmented 
endometrium was extracted through the MAT. Then, the 

distances perpendicular to the centerline were calculated 
according to the endometrium contour. Furthermore, the 
maximum distance was taken as the endometrium thickness 
in this slice, consistent with the evaluation method in 
clinical medicine. The results of automatic measurement 
of endometrium thickness according to MAT is shown in 
Figure 5, the images of different sagittal section images 
of the endometrium in Figure 5A, the corresponding 
endometrium contour and centerline obtained by MAT in 
Figure 5B, and the corresponding thickness measurements 
in Figure 5C. The code for endometrial segmentation, 
evaluation, and endometrial thickness measurement can be 
found on GitHub (https://github.com/wx-hub/package.git).

Evaluation method 
The Dice similarity coefficient (DSC), Jaccard, sensitivity, 
and 95th percentile Hausdorff distance (HD95) were used 
as the parameters for the segmentation evaluation. The 
DSC, Jaccard, sensitivity, and HD95 were calculated as 
follows:

 2
2

TPDSC
FP TP FN

=
+ +

	 [2]

 TPJaccard
TP FP FN

=
+ +

	 [3]

 TPSensitivity
TP FN

=
+

	 [4]

 ( ) ( ) ( )( )95 95, max , , ,i i i i i iHD P G H P G H G P= 	 [5]

 ( )95 , 95
i i

th
i i p P g G i iH P G K min P G∈ ∈= − 	 [6]

where TP, FP, and FN represent the number of true 
positive, false positive, and false negative pixels, and HD 

Figure 4 Image filtering. (A) Original image; (B) image filtered by BM3D; and (C) image filtered by SRAD. BM3D, block-matching and 3D 
filtering; SRAD, speckle reducing anisotropic diffusion.
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represents the maximum surface distance between the 
predicted mask map Pi of pixel i and the corresponding 
ground truth Gi manually marked by the expert. The Kth 
ranking distance was used to suppress outliers. 

Results

Endometrium segmentation results

Segmentation of different network
For 2D U-Net, we selected the original coronal image 

containing the ROI as the input for network training. 
According to the case division of the training and testing 
set, we obtained 2,000 training images and 480 testing 
images. During the training, an Adam optimizer was used 
for optimization. The initial learning rate was 10−4, epochs 
were 500, and the binary cross-entropy was used as the loss 
function. Different batch sizes were tested, and the final 
model selected the batch that had the best segmentation 
results.

The segmentation results of 2D U-Net and 3D U-Net 

Figure 5 Automatic endometrium thickness measurement. The orange line is the endometrial border, the yellow line represents the 
centerline of the endometrium, the blue line represents the maximum thickness of the endometrium, and the green line shows the thickness 
of the endometrium at different locations. (A) The different sagittal section images; (B) the corresponding endometrium contour and the 
centerline obtained by MAT; and (C) the corresponding thickness measurements. MAT, medial axis transformation.
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are shown in Figure 6, the original image in Figure 6A, the 
label of endometrium in Figure 6B, and the segmentation 
result of 2D and 3D U-net in Figure 6C,6D. Table 1 shows 
the evaluation indexes of the two network segmentation 
models. The segmentation result of 2D U-Net had under-
segmentation or over-segmentation, and its DSC was 
64.04%, while the segmentation result of 3D U-Net was 
significantly improved, and its DSC reached 85.80%.

Segmentation of different preprocessing 
Based on the 3D U-Net, we evaluated the segmentation 

results of the OD, the augmented data (AD) obtained by the 
traditional augmentation method, the enhanced augmented 
data (EAD) obtained after image filtering, the patched data 
(PD) of the original image, and the enhanced patched data 
(EPD) obtained after image filtering. The final results are 
shown in Table 2. The DSC of the segmentation results 
obtained from OD and AD were 85.80% and 87.20%, 
respectively. On EAD, the segmentation result achieved the 
DSC of 90.83%, which was 5.03% and 3.63% higher than 
before. In the patch-based 3D U-Net, the segmentation 
result of the model based on PD was 81.66%, and that 

Figure 6 Endometrium segmentation results of 2D and 3D U-Net. (A) The original image; (B) the label of the endometrium; and (C,D) 
show the segmentation results of 2D and 3D U-Net, respectively. 2D, two-dimensional; 3D, three-dimensional; U-net, U-shape network.
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based on EPD was 84.30%, with an increase of 2.64%. 
Overall, image filtering and the 3-channel integration 
with the enhanced images significantly improved the 
segmentation results. Compared with the patch-based 
method, the traditional augmentation method achieved 
better segmentation performance, and the DSC improved 
by 6.53%. 

The segmentation results from different training datasets 
are shown in Figure 7, the original images in Figure 7A, the 
label of the endometrium in Figure 7B, the segmentation 
results training from OD, AD and EAD in Figure 7C, 
7D,7E, the segmentation results trained from PD and EPD 
in Figure 7F,7G. The segmentation model training from 
EAD achieved the best endometrium segmentation result.

Endometrium thickness measurements

In this study, the endometrium thickness measurements 
were performed on the sagittal images of 15 cases in the 
testing set based on the segmentation results from EAD 

Table 1 Evaluation of U-Net segmentation results

Index 2D U-Net 3D U-Net 

DSC (%) 64.04 85.80

Jaccard (%) 50.43 75.33

2D U-net, two-dimensional U-shape network; 3D, three-
dimensional; DSC, dice similarity coefficient.

Table 2 Segmentation evaluation of 3D U-Net on the different 
pre-processing datasets

Index OD AD EAD PD EPD

DSC (%) 85.80 87.20 90.83 81.66 84.30

Jaccard (%) 75.33 78.20 83.35 70.00 73.30

Sensitivity (%) 83.71 85.05 90.85 75.39 79.89

HD95 (mm) 18.01 14.77 12.75 23.75 22.40

3D U-Net, three-dimensional U-shape network; OD, original 
data; AD, augmented data; EAD, enhanced augmented data; 
PD, patched data; EPD, enhanced patched data; DSC, dice 
similarity coefficient; HD95, 95th percentile Hausdorff distance. 

Figure 7 Endometrium segmentation results of 3D U-Net from the different training datasets. (A) The original images; (B) the labels of 
the endometrium; (C-E) the segmentation results training from OD, AD, and EAD respectively; and (F,G) the segmentation results training 
from PD and EPD. 3D U-Net, three-dimensional U-shape network; OD, the origin data; AD, the augmented data; EAD, the enhanced 
augmented data; PD, the patched data; EPD, the enhanced patched data.

A B C D E F G
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training model. At the same time, two experienced doctors 
were asked to manually measure the endometrium thickness 
of these 15 cases, which was regarded as the gold standard 
for evaluation. Mean absolute error (MAE), root mean 
square error (RMSE), and standard deviation (STD) were 
selected to evaluate the measurement error. The results are 
shown in Table 3. The calculation formulae of MAE, RMSE, 
and STD are as follows:

 


1

1 | |
n

i i
i

MAE y y
n =

= −∑ 	 [7]

 


2

1

1 ( )
n

i i
i

R y
n

MSE y
=

−= ∑ 	 [8]

 
2

1

1 ( )
n

i
i

STD y y
n =

= −∑ 	 [9]

where  iy  and yi represent the true value and predicted value, 
and  y  represents the mean value of yi.

The allowable measurement error range of endometrium 
thickness in clinical medicine is ±2 mm. The experimental 
results show that 94.20% of the measurement results were 
within the error range based on the measurement method 
proposed in this paper. Figure 8 shows the measurement 
results of the endometrium thickness based on 3D 

U-Net segmentation, in which the red region shows the 
segmentation result of the endometrium, the orange line 
is the contour of the endometrium, the yellow line is the 
centerline of the endometrium, and the green line shows 
the maximum thickness of the endometrium.

Discussion

Most of the existing endometrium segmentation studies 
were conducted on 2D images, including using traditional 
image segmentation methods and deep learning methods. In 
this study, the segmentation results obtained by 2D U-Net 
were unsatisfactory, although the images were preprocessed 
and augmented. In contrast, the segmentation accuracy 
improved when using the 3D U-Net, and the DSC reached 
90.83%, which is 26.79% higher than that of the 2D U-Net. 
The reason for the improvement is that the signal-to-noise 
ratio of the ultrasound image is relatively poor, and the 
morphology of the endometrium is irregular. In addition, 
2D segmentation ignores the information between the 
image slices, so 3D segmentation results are significantly 
better than those of 2D segmentation. Finally, we compared 
the proposed method with the existing endometrium 
segmentation methods, as shown in Table 4.

When using 3D U-Net for endometrium segmentation, 

Table 3 Endometrium thickness measurement evaluation

Index MAE (mm) RMSE (mm) STD (mm) <±2 mm (%)

Proposed method 0.75 1.07 0.80 94.20

MAE, mean absolute error; RMSE, root mean square error; STD, standard deviation.

Figure 8 Endometrium thickness measurement results. The orange line is the endometrial border, the yellow line represents the centerline 
of the endometrium, and the blue line represents the maximum thickness of the endometrium.
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Table 4 The comparison of endometrium segmentation and thickness measurement

Study Method
Case 

number
Image 

number
Input image 

size
Dice  
(%)

Jaccard 
(%)

Thickness  
<±2 mm (%)

Hu et al. (28) 2D VGG-based U-Net 91 1,031 192×256 85.30 – 87.50

Singhal et al. (31) 2D deep learned snake 59 330 200×200 – – 87.00

Park et al. (32) 2D segmentation framework with a discriminator – 3,372 256×320 82.67 70.46 –

This study 3D U-Net 85 2,480 224×224×32 90.83 83.35 94.20

2D VGG-based U-Net, two-dimensional visual geometry group based on U-shape network; 3D U-Net, three-dimensional U-shape network.

we compared the traditional data augmentation and patch-
based methods. The experimental results showed that the 
DSC of the traditional data augmentation method (EAD) 
was 90.83%, while the patch-based method (EPD) was 
only 84.30%. The analysis showed that the patch-based 
augmentation method had an excellent segmentation effect 
for normal endometrium. However, for endometrium 
with adhesion, although the extraction of the patches can 
increase the sample size, the patch only contains local 
information, which leads to missing or having difficulty 
distinguishing the local edge and results in incomplete 
segmentation or over-segmentation. 

In addition, we used a 3-fold cross-validation method to 
verify the optimal model based on EAD as the final uterine 
image preprocessing method and 3D U-Net as the final 
uterine segmentation network. First, 18% of data (15 cases) 
were randomly selected as the test set. Then, the remaining 
data were randomly divided into three parts of the same 
number, two of which were used for training and the other 
for verification. This process was carried out in turn, and 
then we obtained the optimal model, which was trained with 
data other than the test set to obtain the final segmentation 
model. Finally, the segmentation performance of the model 
was evaluated on the test set, and the results achieved DSC 
coefficient of 89.1% and STD value of 0.0296. Compared 
with the previous test results (DSC coefficient of 90.83%, 
STD value of 0.0325), the Dice coefficient of the optimal 
model was slightly reduced, but the STD value was 
improved. The segmentation accuracy of the optimal model 
was guaranteed, and the stability of the test results were 
improved.

An essential purpose of endometrium segmentation is 
to measure the endometrium thickness. Therefore, the 
segmentation results directly affect the accuracy of the 
thickness measurement. This study compared the automatic 
measurement of endometrium thickness based on different 
segmentation results. The experimental results showed that 

the accuracy of endometrium thickness measurement was 
highest used 3D U-Net segmentation training from EAD, 
94.20% of the measurement results are within the error 
range, and only a few data have relatively large thickness 
measurement errors due to their blurred endometrium 
boundary and severe endometrial damage. We compared 
the proposed method with the existing endometrium 
thickness measurement methods, as shown in Table 4.

In  th is  s tudy,  the  endometr ium thickness  was 
calculated on sagittal images, which is consistent with the 
measurement method of doctors. The method was applied 
in the clinical process for experimental testing. Next, we 
will try to measure the thickness of the endometrium based 
on 3D segmentation results to provide further assistance 
to physicians. In addition, there were some poor-quality 
images encountered during the data collection process, 
which are shown in Figure 9. For these poor-quality 
images, an experienced doctor also has difficulty providing 
representative criteria for segmentation. Therefore, the 
poor-quality images were excluded from the datasets. The 
segmentation of the poor-quality images will be discussed 
with doctors subsequently. Moreover, the experimental 
datasets in this paper were obtained from a single source 
with limited access to data. In future work, we can obtain 
more data samples to train and test the model.

Conclusions

This  paper  presents  an  automat ic  endometr ium 
segmentation method based on 3D U-Net and demonstrates 
an endometrial thickness measurement method. The 
experimental results show that the segmentation model 
training from traditional data augmentation and image 
filtering processing (EAD) achieves the best performance, 
reaching DSC of 90.83%, which is higher than patch-based 
3D U-Net and 2D U-Net. Based on the segmentation 
results, the MAE and RMSE of the automatic endometrium 
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Figure 9 Coronal section images of poor-quality images.

thickness measurement were 0.75 and 1.07 mm. A total of 
94.20% of the measurement results in the testing dataset 
were within the allowable error range of clinical medicine. 
Therefore, the proposed method in this paper can 
effectively help doctors in their diagnostic decision making.
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