
© Quantitative Imaging in Medicine and Surgery. All rights reserved.   Quant Imaging Med Surg 2022;12(7):3917-3931 | https://dx.doi.org/10.21037/qims-21-791

Original Article

Development and validation of bone-suppressed deep learning 
classification of COVID-19 presentation in chest radiographs

Ngo Fung Daniel Lam1^, Hongfei Sun1^, Liming Song1^, Dongrong Yang1^, Shaohua Zhi1^, Ge Ren1^, 
Pak Hei Chou1, Shiu Bun Nelson Wan2, Man Fung Esther Wong2^, King Kwong Chan3,  
Hoi Ching Hailey Tsang3, Feng-Ming (Spring) Kong4^, Yì Xiáng J. Wáng5^, Jing Qin6,  
Lawrence Wing Chi Chan1^, Michael Ying1^, Jing Cai1^

1Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, China; 2Department of Radiology, Pamela Youde 

Nethersole Eastern Hospital, Hong Kong, China; 3Department of Radiology and Imaging, Queen Elizabeth Hospital, Hong Kong, China; 4Department 

of Clinical Oncology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China; 5Department of Imaging and Interventional 

Radiology, The Chinese University of Hong Kong, Hong Kong, China; 6School of Nursing, The Hong Kong Polytechnic University, Hong Kong, China

Contributions: (I) Conception and design: NFD Lam, J Cai, G Ren; (II) Administrative support: SBN Wan, MFE Wong, KK Chan, HCH Tsang, 

FS Kong, YXJ Wáng, J Qin, LWC Chan, M Ying, J Cai; (III) Provision of study materials or patients: PH Chou, KK Chan, HCH Tsang; (IV) 

Collection and assembly of data: NFD Lam, H Sun, L Song, PH Chou; (V) Data analysis and interpretation: NFD Lam, H Sun; (VI) Manuscript 

writing: All authors; (VII) Final approval of manuscript: All authors. 

Correspondence to: Jing Cai, PhD; Michael Ying, PhD. Department of Health Technology and Informatics, The Hong Kong Polytechnic University. 

Hong Kong, China. Email: jing.cai@polyu.edu.hk; michael.ying@polyu.edu.hk.

Background: Coronavirus disease 2019 (COVID-19) is a pandemic disease. Fast and accurate diagnosis 
of COVID-19 from chest radiography may enable more efficient allocation of scarce medical resources and 
hence improved patient outcomes. Deep learning classification of chest radiographs may be a plausible step 
towards this. We hypothesize that bone suppression of chest radiographs may improve the performance of 
deep learning classification of COVID-19 phenomena in chest radiographs.
Methods: Two bone suppression methods (Gusarev et al. and Rajaraman et al.) were implemented. The 
Gusarev and Rajaraman methods were trained on 217 pairs of normal and bone-suppressed chest radiographs 
from the X-ray Bone Shadow Suppression dataset (https://www.kaggle.com/hmchuong/xray-bone-shadow-
supression). Two classifier methods with different network architectures were implemented. Binary classifier 
models were trained on the public RICORD-1c and RSNA Pneumonia Challenge datasets. An external test 
dataset was created retrospectively from a set of 320 COVID-19 positive patients from Queen Elizabeth 
Hospital (Hong Kong, China) and a set of 518 non-COVID-19 patients from Pamela Youde Nethersole 
Eastern Hospital (Hong Kong, China), and used to evaluate the effect of bone suppression on classifier 
performance. Classification performance, quantified by sensitivity, specificity, negative predictive value (NPV), 
accuracy and area under the receiver operating curve (AUC), for non-suppressed radiographs was compared 
to that for bone suppressed radiographs. Some of the pre-trained models used in this study are published at 
(https://github.com/danielnflam).
Results: Bone suppression of external test data was found to significantly (P<0.05) improve AUC for one 
classifier architecture [from 0.698 (non-suppressed) to 0.732 (Rajaraman-suppressed)]. For the other classifier 
architecture, suppression did not significantly (P>0.05) improve or worsen classifier performance. 
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Introduction

Coronavirus Disease 2019 (COVID-19) is a pandemic 
disease, caused by severe acute respiratory syndrome 
coronavirus 2 (SARS-CoV-2), which can result in alveolar 
damage and respiratory failure (1) and has a fatality rate of 
2% (2). New variants of SARS-CoV-2 are associated with 
increased transmissibility (3), decreased vaccine effectiveness 
and increased hospital admissions rates (4) than previous 
variants. In general, the clinical standard for confirmed 
diagnosis of the disease is reverse-transcriptase polymerase 
chain reaction (RT-PCR) testing of nasopharyngeal swabs 
(1,5), with radiology generally being used as a fast auxiliary 
diagnostic methodology alongside RT-PCR testing (6). 
Chest X-ray (CXR) imaging is an economical and accessible 
method for imaging the patient lung (7,8), with mobile 
systems capable of imaging at patient bedside with less risk 
of cross-contamination. Rapid and accurate methods to 
diagnose COVID-19 from CXRs could assist healthcare 
systems in controlling the spread of the disease.

Deep learning methods—in particular, convolutional 
neural networks—have shown great success (9) in general 
image processing applications (10). Such methods have 
recently been developed as a potential step towards 
automated diagnosis of COVID-19 from CXRs (8,11-15). 
Many efforts have been made to improve the diagnostic 
accuracy of deep learning classification methods, including 
but not limited to architectural improvements (16) and 
multi-modality classification (17). Concurrently, many 
methods for medical image enhancement have been 
developed, including those for CXR bone suppression  
(18-25). In this context, bone suppression is the removal 
of the bone shadows caused by increased attenuation of 
X-rays in the ribs and clavicles. Bone suppression of CXRs 
has been demonstrated to improve automated classification 
and manual diagnosis of lung pathologies (19,26-28). Manji  

et al. (28) demonstrated that radiologists diagnosed lung 
nodules in bone-free images acquired from dual energy 
subtraction radiography faster and more accurately than 
from standard CXRs. However, dual energy subtraction 
radiography requires specialized hardware, which may be 
unavailable for many institutions, and increased patient 
dose (25). Hence there is interest in the development and 
use of software-based bone-suppression techniques that 
could be applied to standard CXRs. Freedman et al. (27) 
demonstrated that radiologists performed significantly 
better in detecting lung nodules in CXRs when aided 
with proprietary visualization software that suppressed 
the clavicle and ribs, filtered noise and adjusted contrast. 
Baltruschat et al. (26) found that an ensemble of lung 
pathology classification models trained on software-based 
bone-suppressed and lung-cropped images resulted in 
improved performance when identifying lung pathologies 
in CXRs compared to an ensemble trained on non-
suppressed images. Rajaraman et al. (19) demonstrated that 
deep learning-based bone suppression of CXRs improved 
the sensitivity, specificity and accuracy of a tuberculosis 
classification model significantly by 7%, 4% and 5% 
respectively for an internal test set. 

In this retrospective study, we hypothesize that bone 
suppression could be used to improve the classification 
of COVID-19 phenomena in CXRs. The study develops 
and validates a classification workflow, in which input 
radiographs are bone-suppressed before classification. 
The major contributions from this study include: (I) 
application of bone suppression to improve classification 
of COVID-19 phenomena; (II) use of an external test set 
to assess the impact of bone suppression on classification 
models trained on non-suppressed and bone-suppressed 
CXRs. This study provides insight into the possibility of 
further improving deep learning classifier performance via 

Conclusions: Rajaraman suppression significantly improved classification performance in one classification 
architecture, and did not significantly worsen classifier performance in the other classifier architecture. This 
research could be extended to explore the impact of bone suppression on classification of different lung 
pathologies, and the effect of other image enhancement techniques on classifier performance.
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image enhancement. We present the following article in 
accordance with the TRIPOD reporting checklist (available 
at https://qims.amegroups.com/article/view/10.21037/
qims-21-791/rc).

Methods

Overview

The workflow for the study is as follows: first, input images 
were resized using nearest-neighbor interpolation; second, 
bone suppression was applied; third, classification was 
performed. Bone suppression was performed with two 
methods described in Section Bone suppression of Methods. 
The methods [‘Gusarev’ (18) and ‘Rajaraman’ (19)]  
were trained from chest radiographs. These methods are 
feedforward neural networks, and were chosen for training 
stability in preliminary work. To examine the effect of 
bone suppression on image classification performance, two 
deep learning-based image classification methods [the pre-
trained ‘COVID-Net CXR2’ (11) method and the ‘VGG16- 
Modified’ (19) method] were implemented and used as 
described in Section Classification of Methods, to classify the 
images as “COVID” or “Non-COVID”. The performance 
of the classification models for non-suppressed test CXRs 
was compared to that for bone-suppressed test CXRs. All 
bone suppression and classification models were trained and 
tested on a workstation with a RTX2080Ti GPU (NVIDIA, 
Santa Clara, CA, USA) using CUDA 11.0. This study was 
conducted in accordance with the Declaration of Helsinki (as 
revised in 2013) and with ethics approval from The Hong 
Kong Polytechnic University Faculty Research Committee 
(No. HSEARS20201107001). Since only anonymized 
data was acquired in this study, individual consent for this 
retrospective study was waived. 

Datasets

This retrospective study makes use of anonymized image 
datasets collected previously for other purposes. Frontal 
chest radiograph datasets were collected for the purposes 
of training the bone suppression methods, training the 
VGG16-Modified classification method, and testing 
the trained methods. Acquired images included both 
anteroposterior (AP) and posteroanterior (PA) cases. 
Imaging methodology included computed radiography 
and digital radiography from both static and mobile X-ray 
machines. The Gusarev and Rajaraman bone suppression 

methods employed in this study were trained using a 
publicly available dataset of PA chest radiographs (Digital 
Image Database) from the Japanese Society of Radiological 
Technology (JSRT) (29). The JSRT dataset was acquired 
from 13 institutions in Japan and 1 institution in the United 
States around 1997–1998. Juhász et al. (30) had applied in-
house bone suppression algorithms to the JSRT images 
and publicly released the resulting dataset, which was used 
in this study as the bone-suppressed “target” dataset to 
train the bone suppression models. The JSRT and Juhász 
datasets had been combined and published as the X-ray 
Bone Shadow Suppression dataset (31) (https://www.
kaggle.com/hmchuong/xray-bone-shadow-supression). To 
the authors’ knowledge, this is the only publicly available 
set of co-registered non-suppressed and bone-suppressed 
chest radiographs. A total of 241 non-suppressed and 
bone-suppressed image pairs were acquired (31), each 
pair derived from a unique patient, of which 148 images 
contained at least one lung nodule and 93 images were 
without nodules. To train the bone suppression models, the 
dataset was cleaned by removing image pairs where poor 
suppression (defined as observing at least 1 rib or clavicle 
with edges visible across the lung tissue) and image artifacts 
were observed. A total of 217 image pairs (131 with nodule, 
86 without nodule) remained after data cleaning. Of those, 
20 images (9%) were retained for internal testing; the 
remaining 197 images were used for 10-fold cross-validation 
of the bone suppression models.

Second, to train the VGG16-Modified classification 
model, CXRs from COVID-19 and non-COVID-19 
datasets were acquired. A total of 996 CXR images of 
COVID-19 positive patients were extracted from the 
publicly available RICORD-1c dataset (32,33), consisting 
of PA, AP and portable acquisitions from three institutions. 
Data accrual began in April 2020 and ended before March 5, 
2021. A total of 1,125 CXR images of patients with no lung 
pathology (‘normal’), and 100 CXR images of patients with 
non-COVID-19 pneumonia, were randomly extracted from 
the publicly available RSNA Pneumonia Challenge dataset 
[National Institute of Health Clinical Center, United 
States (34-36)], which contained patient data that had been 
acquired between 1992 and 2015. The data was split into 
an 8-fold cross-validation set (896 COVID, 1,025 normal), 
and internal testing (100 COVID, 200 non-COVID) sets. 
Non-COVID pneumonia data was used exclusively in the 
internal test set to assess the generalizability of the trained 
models.

Third, an external test dataset was created to test the 

https://qims.amegroups.com/article/view/10.21037/qims-21-791/rc
https://qims.amegroups.com/article/view/10.21037/qims-21-791/rc
https://www.kaggle.com/hmchuong/xray-bone-shadow-supression
https://www.kaggle.com/hmchuong/xray-bone-shadow-supression
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classification models. An anonymized dataset consisting 
of 524 COVID-19-positive patients was obtained from 
Queen Elizabeth Hospital (Hong Kong, China) with ethics 
approval from the relevant ethics committee (KC/KE-20-
0337/ER-4), and combined with a separate anonymized 
dataset of 564 COVID-19-negative patients that was 
obtained from Pamela Youde Nethersole Eastern Hospital 
(Hong Kong, China) with ethics approval from the relevant 
ethics committee (HKECREC-2020-119). After data 
cleaning to remove low-resolution, non-AP/PA, and non-
chest radiographs, 320 COVID-19 and 518 non-COVID 
radiographs remained. The earliest CXR from each patient 
was used for external testing in this study, under the 
assumption that this was acquired within a day of patient 
admission. Potentially eligible patients were identified from 
hospital admissions, forming a consecutive series. Inclusion 
criteria for this dataset are as follows: patients with age 
18 years or older, clinically diagnosed with COVID-19 
(using PCR testing), had received chest radiography for 
COVID-19, and had radiographs acquired between 1st 
January 2020 and 31st December 2020. Exclusion criteria 
were patients who had previous pulmonary pneumonia and 
previous treatment for lung diseases. The proportions of 
potentially eligible patients who were included or excluded 
were unavailable due to limitations in the ethical review. 
Furthermore, due to limitations in the ethical review, this 
dataset is not available to the public.

The external test dataset for the bone suppression 
methods and the classification methods was created 
by combining the data from the two abovementioned 

Hong Kong hospitals, totaling 518 non-COVID-19 and 
320 COVID-19 CXRs from unique patients. From the 
literature, a test set of this size is suitable (11,19). Known 
clinical information about the image datasets used in this 
study is summarized in Table 1. 

Bone suppression

Classification performance on non-suppressed test images 
was compared to that on bone-suppressed test images. 
In this study, bone suppression was performed using the 
following published neural network architectures.

The Gusarev method was modified from that introduced 
by Gusarev et al. (18), and was instead implemented as 
shown in Figure 1. Convolutional layer weights were 
initialized with a normal distribution with a mean of 0 
and standard deviation of 0.02, whilst batch normalization 
weights were initialized with the same standard deviation 
and a mean of 1. The training batch size was 5, and the 
network was trained for 400 epochs. An Adam optimizer (38) 
was used, with an initial learning rate of 0.001 and β1,β2 of 
0.9, 0.999 respectively. The learning rate was decreased by 
25% every 100 epochs. The loss LGusarev to be minimized was 
defined in Eq. [1]: 

 ( )0.16 0.84 1GusarevL MSE MSSSIM= × + × −
	

[1]

where MSSSIM is the multiscale structural similarity index 
measure (SSIM) (39) and MSE is the mean-squared error 
between the predicted bone-suppressed image and the 
target image.

Table 1 Clinical information of the datasets used in this study 

Dataset Geographic region Male/female Age (years, mean ± SD)
Number of non-pathological/non-COVID 

pneumonia/COVID-19 patients

RSNA Pneumonia Challenge North America NA NA 1,125/100/0

RICORD-1c North America 208/143 55±18 0/0/996

JSRT (all) Japan 116/125 58±14 93/NA/NA

JSRT (for bone suppression) Japan 104/113 NA 86/NA/NA

Hong Kong Hospitals (all) Hong Kong (China) 260/264 (QEH); 
280/284 (PYNEH)

46±22 (QEH);  
57±25 (PYNEH)

0/0/524 (QEH);  
564/0/0 (PYNEH)

Hong Kong Hospitals  
(for external test set)

Hong Kong (China) 152/168 (QEH); 
265/253 (PYNEH)

NA 0/0/320 (QEH);  
518/0/0 (PYNEH)

The authors could not identify the age and sex information of the subjects in the RSNA Pneumonia Challenge dataset. All patients in the 
JSRT dataset who were not non-pathological had lung nodules. Mean and standard deviation of the patient ages in the PYNEH dataset 
were derived from 478 out of the 564 unique patients used. SD, standard deviation; JSRT, Japanese Society of Radiological Technology; 
NA, not applicable/no information found; QEH, Queen Elizabeth Hospital; PYNEH, Pamela Youde Nethersole Eastern Hospital.
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The Rajaraman method was implemented as described 
by Rajaraman et al.  (19) and as shown in Figure 2 . 
Convolutional layer weights were initialized with a normal 
distribution with a mean of 0 and standard deviation of 0.02. 
An Adam optimizer (38) was used, with an initial learning 

rate of 0.001 and β1,β2 of 0.9, 0.999 respectively, to train the 
model for 200 epochs with a batch size of 8. The learning 
rate was reduced on plateau by a factor of 0.5 after 10 
epochs with no improvement (defined as a change of 0.0001 
in the loss). The loss LRajaraman to be minimized was defined 

Figure 1 The Gusarev network for bone suppression used in this study. It is modified from that described by Gusarev et al. (18) by the 
addition of the batch normalization (37) layer in the ConvBlock. Every 2D convolutional layer (“Conv2d”) uses a filter size (f) of 5×5, a 
stride (s) of 1 and a padding (p) of 2. The final layer uses a sigmoid activation function to generate the bone-suppressed output image.

Figure 2 The Rajaraman network for bone suppression used in this study. Every 2D convolutional layer (“Conv2d”) uses a filter size (f) 
of 3×3, a stride (s) of 1 and a padding (p) of 1. Arrows denote skip connections. Elementwise addition is used to combine tensors both in 
ResBlocks and in the larger network. In the ResBlock scaling layer, the input tensor is elementwise multiplied by 0.1. The final layer uses a 
sigmoid activation function to generate the bone-suppressed output image.
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in Eq. [2]: 

 ( )0.16 0.84 1RajaramanL MAE MSSSIM= × + × −	 [2]

where MAE is the mean absolute error.
The Rajaraman and Gusarev bone suppression networks 

were trained and evaluated using 10-fold cross validation. 
The models with the best results were used for further 
processing. The training images were resized to 256×256 
to alleviate the computational cost. Data augmentation 
operations, performed during training, included: random 
rotations of up to 10° clockwise and counterclockwise; 
random translations of up to 10% of image dimensions 
horizontally and vertically; scaling by a random factor 
ranging from 0.9 to 1.1; horizontal flipping at a 50% 
chance; intensity flipping (black to white and white to black) 
at a 50% chance; contrast stretching (where a random 
percentage, up to 10%, of the lowest and highest intensity 
voxels are set to the minimum and maximum intensity 
allowable for the image, and the remaining pixel intensities 
in the image are rescaled to fit the range). The bone 
suppression models were implemented in Python 3.6 and 
PyTorch 1.10. 

The performance of the bone suppression methods was 
quantified using the peak signal-to-noise ratio (PSNR), 
SSIM (40) and root-mean-squared error (RMSE) for the 
internal test set, and was qualitatively assessed using the 
Hong Kong hospitals external test set. The paired Student 
t-test was used to assess the statistical significance of the 
bone suppression methods.

Classification

To identify the effect of bone suppression on classification, 
two classification models were implemented. The COVID-
Net CXR2 model, a publicly available, pre-trained 2-class 
(‘Not COVID’ and ‘COVID’) classification model (11), was 
implemented. As shown in the published paper and code (11),  
all images input into the classifier were processed as follows: 
(I) the topmost 8% of the image was removed in order to 
remove metadata in the image; (II) the image was center-
cropped by removing both ends of the longer side of the 
image, such that the remaining image is square; (III) the 
image was resized using bilinear interpolation to 480×480 
pixels; (IV) the image was input into the model’s neural 
network for classification. This model had been trained 
on the ImageNet (41) natural image database, then on the 
COVIDx8B dataset which consisting of approximately 8,700 
non-pathological CXRs, 5,900 non-COVID pneumonia 

CXRs, and 4,600 COVID-19 CXRs obtained from public 
datasets (32,33,36,42-45). No bone suppression of the 
dataset had been performed prior to training. The model 
had then been modified using a proprietary deep learning-
based generative synthesis process to create the final model, 
which was used in this study without modification. COVID-
Net had been implemented in TensorFlow 2.6.

COVID-Net had been trained on datasets generated by 
crowd-sourcing (11). This is noted to be problematic (46),  
since the submitted images may have been mislabeled, 
and images may have been submitted to multiple crowd-
sourced datasets resulting in duplication within the training 
data. Therefore, we trained a classification network using 
datasets sourced from medical archives [RSNA Pneumonia 
Detection Challenge dataset (36), a subset of the ChestX-
ray8 dataset released by the National Institutes of Health 
Clinical Center, and RICORD-1C (33)]. The network 
architecture used in this study is inspired by that introduced 
by Rajaraman et al. (19), and is as follows: a VGG-16 (47)  
network pretrained on ImageNet (41) was truncated after 
the last convolutional block to be used as a feature extractor. 
A global average pooling (48) layer, a dropout layer (49) 
(50% dropout chance), and then a fully connected output 
layer with two output nodes was appended in that order. 
VGG16 had been chosen because it had been used in 
previous chest disease classification studies (19,50) and had 
demonstrated improved results over alternatives such as 
DenseNet-121 (51) and ResNet-50 (52). In this study, our 
model is denoted “VGG16-Modified”. It was trained as 
described: (I) all VGG-16 parameters are frozen; (II) the 
whole network is trained using the Adam optimizer (learning 
rate = 0.001, beta1 = 0.9, beta2 = 0.999) for 5 epochs; (III) 
the parameters of the final three convolutional layers of the 
VGG16 feature extractor are unfrozen; (IV) the network 
is fine-tuned by training using stochastic gradient descent 
(learning rate = 5e-6, weight decay = 0.01) for 40 epochs. 
The training batch size was 8. The network was trained 
using 8-fold cross-validation. 

Three VGG16-Modified models were independently 
trained using three cross-validation datasets. The first cross-
validation dataset consisted of the 896 COVID-19 CXR 
images and 1,025 non-pathological CXR images introduced 
in Section Datasets of Methods. The second dataset was 
generated by Gusarev suppression of the first dataset. The 
third dataset was generated by Rajaraman suppression of 
the first dataset. The COVID and non-pathological image 
data for all three datasets were augmented by four and three 
times respectively (18), using the same data augmentation 
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operations as those used for bone suppression model training 
(Section Bone suppression of Methods), resulting in final dataset 
sizes of 3,584 COVID and 3,075 non-pathological CXR 
images for each dataset. No augmentation was performed 
during training. The fold with the best average accuracy was 
used for further processing. Prior to model input, images 
were resized and center-cropped to 224×224 pixels (to fit the 
VGG16 input) using nearest-neighbor interpolation. The 
VGG16-Modified model was implemented in Python 3.6, 
PyTorch 1.10 and torchvision 0.11.

After the bone suppression models and VGG16-
Modified classi f ier  models  had been trained,  the 
performance of the COVID-Net CXR2 and VGG16-
Modified classifier models were quantified by sensitivity, 
specificity, negative predictive value (NPV), accuracy, and 
area under the receiver operating curve (AUC) on the Hong 
Kong hospitals external test set. NPV is important because 
the public health consequences of missing a COVID-19 
diagnosis was deemed to be greater than that of mistakenly 
identifying someone as infected. The performance of 
COVID-Net CXR2 when classifying a non-suppressed, a 
Gusarev-suppressed and a Rajaraman-suppressed external 
test set was compared. The VGG16-Modified model 
trained on non-suppressed data was assessed using the non-
suppressed external test set; the model trained on Gusarev-
suppressed data, on the Gusarev-suppressed external test 
set; and the model trained on Rajaraman-suppressed data, 
on the Rajaraman-suppressed external test set.

The 95% confidence intervals for AUC were calculated 
using the DeLong test (53) to assess statistical significance 
in differences between classifier performance. Due to 
the nature of this study, the classifiers were not blind-
tested. The trained bone suppression models and VGG16-
Modified models used in this study are available for use 
from (https://github.com/danielnflam).

Results

Clinical information

The clinical information of patients whose datasets were 
used in this study is shown in Table 1. Patients in the JSRT 
dataset were either non-pathological or had lung nodules.

Bone suppression

Internal test set
Qualitative bone suppression results for a subset of the 

internal test set of 20 image pairs are shown in Figures 3,4  
for Gusarev and Rajaraman suppression, respectively. 
Quantitative results for all methods are given in Table 2. For 
both Gusarev and Rajaraman suppression, the suppressed 
images were significantly (P<0.05) more similar to the 
target images than the non-suppressed images. 

External test set
Representative examples of non-suppressed and bone-
suppressed CXRs from the Hong Kong hospitals dataset 
are shown in Figures 5,6 for Gusarev and Rajaraman 
suppression respectively. As no ground-truth CXR existed 
for this dataset, no quantitative results could be shown. 

Classification

The sensitivity, specificity, NPV, accuracy and AUC results 
for both classifier architectures processing external test data 
sets are shown in Table 3.

For the VGG16-Modified classifier, the AUC (±95% 
confidence interval) results for the internal test set were 
0.887±0.033, 0.828±0.037 and 0.838±0.035 for the non-
suppressed, Gusarev-suppressed and Rajaraman-suppressed 
models respectively. Interestingly, bone suppression resulted 
in significantly (P<0.05) worse results than no suppression. 
For the external test set (320 COVID and 518 non-COVID 
patients), bone suppression improved classifier performance 
from 0.698±0.031 (no suppression) to 0.703±0.032 (Gusarev 
suppression) and 0.732±0.031 (Rajaraman suppression). 
Rajaraman suppression resulted in significantly (P<0.05) 
improved AUC scores compared to no suppression. 
NPV increased after bone suppression (from 74.88% to a 
maximum of 78.21% for Rajaraman suppression).

For COVID-Net CXR2, no significant difference in 
classifier performance was observed between non-suppressed 
(0.686±0.031), Gusarev-suppressed (0.691±0.031) and 
Rajaraman-suppressed (0.696±0.032) external test data 
sets. NPV decreased after bone suppression (from 82.67% 
to a minimum of 79.28% for Rajaraman suppression). 
Interestingly, the AUC for COVID-Net CXR2 did not 
differ significantly from that for VGG16-Modified, for the 
non-suppressed external test data set.

Discussion

The Rajaraman-suppressed and Gusarev-suppressed images 
were significantly (P<0.05) more similar to the target 
images than the non-suppressed images, suggesting that the 
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Figure 3 Representative examples of the non-suppressed original (A), target (C) and Gusarev-suppressed (B) CXRs from the internal (JSRT) 
test set. The white rectangles at the edges of the original image had been generated during image anonymization to remove metadata. CXR, 
chest X-ray; JSRT, Japanese Society of Radiological Technology.

Figure 4 Representative examples of the non-suppressed original (A), target (C) and Rajaraman-suppressed (B) CXRs from the internal 
(JSRT) test set. The white rectangles at the edges of the original image had been generated during image anonymization to remove 
metadata. CXR, chest X-ray; JSRT, Japanese Society of Radiological Technology.
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bone suppression methods are fit for purpose. Qualitative 
examination of the Gusarev- and Rajaraman-suppressed 
radiographs (Figures 5,6, respectively) in this study suggest 
that rib shadows are reduced post-suppression, albeit 
imperfectly. A limitation of the bone suppression performed 
in this study was that the target images were themselves 
derived from a method by Juhász et al. (30), instead of 
acquired directly from dual-energy subtraction radiography. 
Hence, the bone suppression models could have learnt 
to reproduce the errors produced by Juhász suppression. 

Published studies have been performed using the JSRT and 
Juhász et al. datasets to pursue bone suppression of CXRs 
(19,54), and, to the authors’ knowledge, no other publicly 
available co-registered non-suppressed and bone-suppressed 
chest radiograph dataset exists. 

The main purpose of the study was to examine whether 
bone suppression improved the performance of COVID-19 
classification models. For the external test set, results 
demonstrate that Rajaraman suppression significantly 
(P<0.05) improved AUC for the VGG16-Modified classifier 

Figure 5 Representative examples of the CXRs from the Hong Kong hospitals external test set, before (A) and after (B) Gusarev bone 
suppression. The top row shows radiographs from a non-COVID patient; the bottom row, those from a COVID-positive patient. CXR, 
chest X-ray.

Table 2 Internal test results for the bone suppression methods used in this study

Bone suppression method PSNR (higher is better, mean ± SD) SSIM (higher is better, mean ± SD) RMSE (lower is better, mean ± SD)

None 32.9±3.0 0.982±0.005 0.024±0.010

Gusarev 33.8±2.9 0.984±0.004 0.022±0.010

Rajaraman 34.0±3.7 0.986±0.004 0.021±0.010

PSNR, peak signal-to-noise ratio; SD, standard deviation; SSIM, structural similarity index measure; RMSE, root-mean-squared error.
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Figure 6 Representative examples of the CXRs from the Hong Kong hospitals external test set, before (A) and after (B) Rajaraman bone 
suppression. The top row shows radiographs from a non-COVID patient; the bottom row, those from a COVID-positive patient. CXR, 
chest X-ray. 

architecture compared to no suppression, whereas no 
significant improvement was observed for COVID-Net 
CXR2. This difference may have been because COVID-
Net had been trained on a larger and more varied dataset 
of non-suppressed CXRs (4,600 COVID + 14,600 non-
COVID) than VGG16-Modified (896 COVID + 1,025 
non-COVID before augmentation). Hence, the COVID-
Net CXR2 model could have learned to disregard bone 
shadow when classifying CXRs. It is interesting to note that, 
for VGG16-Modified, internal test set results significantly 
worsened after bone suppression, whilst external test set 
results demonstrated either no significant change (Gusarev 
suppression) or significant improvement (Rajaraman 
suppression). This difference was suspected to arise from 
minor overfitting in the non-suppressed classifier model. 
Ultimately, the results suggest that bone suppression could 
be applied to improve the performance of classifier models, 
with the worst-case scenario being a statistically insignificant 
change in performance. Further work could involve 

acquiring more CXRs to improve classifier performance, 
and examining the effect of bone suppression on more 
classifier architectures. Furthermore, it is plausible that, 
as demonstrated by the research of Rajaraman et al. (19),  
this technique could be applied to lung pathologies outside 
of COVID-19 such as lung carcinomas. 

Limitations of the study are as follows. Only two classifier 
architectures were tested in this study, so it is difficult 
to definitively conclude that bone suppression improves 
classification performance. In the future, the effect of bone 
suppression could be tested on a wider variety of classifiers, 
particularly those based on novel architectures (16) or 
those using inputs from different imaging modalities (17).  
Furthermore, bone suppression of the test data has only been 
tested for two-class classification models. The impact of 
bone suppression on the performance of three-class models 
(that classify CXRs into non-pathological, non-COVID-19 
pneumonia and COVID-19) (11,12) remains to be seen. The 
demographics of the training data and external test set are 
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Table 3 Quantitative results for the classification models when evaluating the external test dataset for classification (Hong Kong hospitals dataset) 

Bone suppression of external test data None Gusarev Rajaraman

COVID-Net CXR2

Sensitivity (%) 80.93 77.81 71.25

Specificity (%) 56.18 60.42 67.95

NPV (%) 82.67 81.51 79.28

Accuracy (%) 65.63 67.06 69.21

AUC ± SE95% 0.686±0.031 0.691±0.031 0.696±0.032

VGG16-Modified

Sensitivity (%) 52.81 61.88 61.88

Specificity (%) 86.87 78.76 84.56

NPV (%) 74.88 76.98 78.21

Accuracy (%) 73.87 72.32 75.90

AUC ± SE95% 0.698±0.031 0.703±0.032 0.732±0.031*

For the COVID-Net CXR2 architecture, the same model was tested with non-suppressed, Gusarev-suppressed and Rajaraman-suppressed 
external testing data. For the VGG16-Modified architecture, separate models trained on non-suppressed, Gusarev-suppressed and 
Rajaraman-suppressed data were each tested with their correspondingly suppressed external test data (e.g., non-suppressed training 
data model with non-suppressed test data). *, denotes a significant (P<0.05) difference from the non-suppressed external test data. NPV, 
negative predictive value; AUC, area under the receiver operating curve; SE95%, the error associated with a 95% confidence interval. 

also of interest. The patients of the external test dataset in 
this study are mostly of East Asian descent, compared to the 
North American patient data used to train VGG-Rajaraman 
and the North American and South Asian patient data used 
to train COVID-Net (11,32-34,36,42,43,45). Possible 
biological variability in COVID-19 radiological presentation 
between different demographics may have contributed to 
poor classifier performance (55,56). Furthermore, standard 
imaging protocols may differ between nations. Acquisition 
of patient data from a wider range of institutions could 
enable further research into whether the results in this study 
are generalizable. 

In general, future work could be pursued in several other 
ways. Other classification architectures could be tested to 
see whether bone suppression improved their performance. 
More image data could be acquired to improve both the 
classifier performance and the generality of the external test 
set. Other image enhancement techniques beyond bone 
suppression could be pursued to improve classification 
performance for other clinical conditions imaged using 
other modalities. Radiomics analysis of the enhanced images, 
and analysis of other non-deep learning features (57),  
could be combined with deep learning features to further 
improve classification performance. 

Conclusions

Rajaraman bone suppression of external test data was 
found to significantly (P<0.05) improve the AUC of the 
VGG16-Modified classifier. In general, bone suppression 
significantly improved, or did not worsen, classifier 
performance for an external test data set. Further research 
into bone suppression and other image enhancement 
techniques could significantly improve deep learning image 
classification performance.
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