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Background: Radiologists currently subjectively examine multi-parametric magnetic resonance imaging 
(MP-MRI) to determine prostate tumor aggressiveness using the Prostate Imaging Reporting and Data 
System scoring system (PI-RADS). Recent studies showed that modified signal to clutter ratio (SCR), tumor 
volume, and eccentricity (elongation or roundness) of prostate tumors correlated with Gleason score (GS). 
No previous studies have combined the prostate tumor’s shape, SCR, tumor volume, in order to predict 
potential tumor aggressiveness and GS.
Methods: MP-MRI (T1, T2, diffusion, dynamic contrast-enhanced images) were obtained, resized, 
translated, and stitched to form spatially registered multi-parametric cubes. Multi-parametric signatures 
that characterize prostate tumors were inserted into a target detection algorithm [adaptive cosine estimator 
(ACE)]. Pixel-based blobbing, and labeling were applied to the threshold ACE images. Eccentricity 
calculation used moments of inertia from the blobs. Tumor volume was computed by counting pixels within 
multi parametric MRI blobs and tumor outlines based on pathologist assessment of whole mount histology. 
Pathology assessment of GS was performed on whole mount prostatectomy. The covariance matrix and 
mean of normal tissue background was computed from normal prostate. Using signatures and normal tissue 
statistics, the z-score, noise corrected SCR [principal component (PC), modified regularization] from each 
patient was computed. Eccentricity, tumor volume, and SCR were fitted to GS. Analysis of variance assesses 
the relationship among the variables. 
Results: A multivariate analysis generated correlation coefficient (0.60 to 0.784) and P value (0.00741 to 
<0.0001) from fitting two sets of independent variates, namely, tumor eccentricity (the eccentricity for the 
largest blob, weighted average for the eccentricity) and SCR (removing 3 PCs, removing 4 PCs, modified 
regularization, and z-score) to GS. The eccentricity t-statistic exceeded the SCR t-statistic. The three-
variable fit to GS using tumor volume (histology, MRI) yielded correlation coefficients ranging from 0.724 to 
0.819 (P value <<0.05). Tumor volumes generated from histology yielded higher correlation coefficients than 
MRI volumes. Adding volume to eccentricity and SCR adds little improvement for fitting GS due to higher 
correlation coefficients among independent variables and little additional, independent information.
Conclusions: Combining prostate tumors eccentricity with SCR relatively highly correlates with GS. 
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Introduction

Upon detecting prostate cancer, clinical management 
requires deciding whether to monitor (1) or treat prostate 
cancer. The therapy, whether with surgery or radiation, can 
impose great physical and psychological burdens on the 
patient that maybe especially troublesome if unnecessary. 
However, mistakenly assessing the prostate cancer to be 
benign rather than malignant can result in metastases, 
severe suffering from the effects of progressive disease, and 
death. A number of tools (2-6) have been developed to make 
the critical assessment of biologic aggressiveness of prostate 
cancer. Although determination of prostate serum antigen 
(PSA) levels in the blood specimen sometimes provides an 
important, non-invasive guide for patient management. 
PSA is not well correlated with actual patient status  
(7-9). Meta-data (6) such as age, family history, diet, can also 
contribute and aid assessment of a patient’s tumor status. 
The best predictor for disease progression is determination 
of the Gleason score (GS) (10) derived from a pathologist’s 
microscopic examination of the stained biopsy or whole 
mount prostatectomy sections. However, extracting tumor 
samples with a biopsy or a whole mount prostatectomy 
burdens the patient with an invasive procedure and can 
also generate inaccurate readings due to sampling error. 
Therefore, an entirely non-invasive method of assessing 
tumor aggressiveness would be ideal. 

For such a non-invasive biomarker to be useful, it is 
crucially important to develop a reliable, non-invasive, 
quantitative predictor of tumor progression. Examining 
magnetic resonance imaging (MRI) images (11-15) of 
prostate cancer patients provides an opportunity to assess 
tumor aggressiveness. In particular, trained radiologists 
visually examine a number of types of MRI sequences 
[often referred to as multi-parametric or multi-parametric 
magnetic resonance imaging (MP-MRI)] and follow 
proscribed rules to determine prostate tumor status 
following the Prostate Imaging-Reporting and Data 
System (PI-RADS) protocol (11). Currently research (11) 
employing the PI-RADS approach also is predictive of 
lymph node involvement, extra-prostatic extension, and 
clinically significant disease (13), but only weakly correlates 

with GS (14). Due to its subjective nature, the PI-RADS 
approach is vulnerable to inter-reader variability especially 
with inexperienced radiologist’s interpretations of the  
MRI (16). A quantitative, objective approach could support 
and guide the clinical impact of MRI.

Recently, supervised algorithms were modified and 
applied to spatially registered MP-MRI of prostate tumors  
(17-21). These algorithms used in-scene and transformed 
tumor signatures (17) to infer the GS. Analysis of the 
prostate tumors from the spatially registered MP-
MRI determined prostate tumor characteristics such as  
volume (18), eccentricity (or shape) (19) derived from 
histology of whole mount prostatectomy and MP-MRI and 
signal to clutter ratio (SCR) or Z-score taken from MP-
MRI. Earlier work then examined the correlation of the GS 
with tumor volume (20), tumor eccentricity (19), a modified 
tumor SCR (21), and novel tumor eccentricity predicted 
GS better than the more conventional tumor volume (20). 
This study extends the examination of the MP-MRI metrics 
and GS and assesses combining two (eccentricity, SCR) or 
three (volume, eccentricity, SCR) variables to predict GS. 
To see if each independent variable (volume, eccentricity, 
and SCR) adds significant new information to fitting the 
GS, the relationship and correlation coefficients among the 
independent variables is also computed and analyzed. 

The present paper is the first and only study to 
combine a modified SCR (21) and another novel metric  
eccentricity (19), and their possible relationship with GS. 
The computation of filtered and regularized SCR (21) 
and their relationship with GS was first presented and 
examined in 2021. The relationship between eccentricity 
and GS first presented and examined in 2021. Following 
validation from more independent studies and greater 
patient numbers, employing novel noninvasive MRI 
indicators of disease status (including ones not considered 
in this study) and a predictive model for GS will hopefully 
generate a digital nomogram and elevate and simplify 
patient management. We present the following article 
in accordance with the TRIPOD reporting checklist 
(available at https://qims.amegroups.com/article/
view/10.21037/qims-21-1092/rc).
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Methods

Overall description of histology and MP-MRI 
determination

This study followed a number of tracks (Figure 1) (18,19,21) 
to determine the relationship between prostate tumor 
morphology (eccentricity), tumor volume, and tumor SCR, 
and GS. Spatially registered hypercubes were resized, 

translated, and stitched together (yellow arrows, highlight) 
from the patient’s MP-MRI (17). Another track (18) (blue 
arrows, highlight) estimated the tumor volume from 
histology and MP-MRI using supervised target detection. 
One track (red arrows, highlight) computed the tumors 
eccentricity (19) for supervised target analysis applied 
to MP-MRI. The other track (green arrows, highlight) 
computed the SCR (21) applied to spatially registered 

Figure 1 Overall method scheme for fitting Gleason score (histology of whole mount prostatectomy) from MP-MRI derived eccentricity 
(red), MP-MRI derived SCR (green), volume from histology and MP-MRI (blue). MP-MRI, multi-parametric magnetic resonance imaging; 
SCR, signal to clutter ratio; ACE, adaptive cosine estimator.
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multi-parametric MRI. The GS was determined by a 
pathologist analyzing histology slides derived from whole 
mount prostatectomy from tumors. This study analyzed 
25 of 26 consecutive patients that had underwent radical 
prostatectomy. Only one of the 26 patients was not analyzed 
due to failure to show contrast uptake in the MRI dynamic 
contrast enhancement images. GS was denoted as the 
dependent variable (solid black arrow in Figure 1) (17). 
The eccentricity (19), tumor volume (20), and SCR (21) 
were treated as the independent variables in multi-variate 
regression fitted calculations. The eccentricity (19) was 
determined from manipulating the computed moments 
of inertia for voxels inside a blob. Tumor volume (20) was 
derived from threshold adaptive cosine estimator (ACE) 
applied to the hyperspectral images. SCR (21) was generated 
from tumor signatures and statistics of the normal prostate. 
Each feature contains candidate metrics, such as filtered and 
regularized SCR for example. This study examined a variety 
of possible combinations of components of the independent 
variables to find an optimal fit to the GS. The tumor 
eccentricity, SCR, volume was then compared (green, red, 
blue striped arrows, respectively, in Figure 1) to the GS of 
the tumor. Computation of all features (eccentricity, tumor 
volume, SCR) used custom software written in Python 
3.6 and 3.7. Multiple regression affiliated metrics such as 
t-values, P values, Shapiro-Wilks etc. used Statsmodel, a 
Python module.

Study design and population

The Cancer Imaging Archive (TCIA) (22,23), affiliated 
with The National Institutes of Health (NIH), collected 
and stored the patient data from prostate tumor MRI and 
histology from whole mount prostatectomy specimens. The 
study was conducted in accordance with the Declaration 
of Helsinki (as revised in 2013). This retrospectively 
designed, single institution study was approved by the 
NIH Institutional Review Board, and was compliant with 
the Health Insurance Portability and Accountability Act. 
Individual consent for this retrospective analysis was waived. 
All cases were anonymized. A total of 26 patients were 
included. All patients had biopsy proven adenocarcinoma of 
the prostate, with median patient age 60 years (range, 49 to 
75 years), with median PSA 5.8 ng/mL (range, 2.3 to 23.7 
ng/mL), and with median GS 7 (range, 6 to 9). Eighteen of 
the 26 patients had tumor size >1 cc. This study placed no 
restrictions on tumor location within the prostate. Robotic 
assisted radical prostatectomy was performed at a median 

time of 60 days (minimum 3 days, maximum 180 days) 
following MRI without any intervening treatment. 

Whole mount prostatectomy and histology

The whole mount prostatectomy histology has previously 
been described in great detail and is very briefly summarized 
(24-26). Following radical prostatectomy, the specimen 
was fixed at room temperature in formalin for 2 to  
24 h, and then placed in the customized 3D mold and sliced 
in sections with a separation of 6 mm. in the axial direction, 
corresponding to the MRI axial plane section. The individual 
tumor foci, dimensions, and GSs from the histology 
slides were independently determined by two experienced 
pathologists, blinded to the MRI results. As in previous efforts 
(17-21) and to better reflect the patient’s status, a patient’s 
GS was a weighted average (based on histology blob size) 
of the GSs assessed by the pathologist. The tumor’s shape 
(or eccentricity) and tumor volume from histology slides of 
sectioned whole mount prostatectomy was determined from 
analysis of the digitized version of the pathology delineated 
marks of the tumor, and computed using Eqs. [2-5]. 

Magnetic resonance imaging

The MRI collection was composed of diffusion weighted 
images (DWIs), dynamic contrast enhanced (DCE), and 
structural (T1, T2) images. The pulse sequences were 
described in earlier studies (24-26). Triplanar T2W turbo 
spin echo, DW MRI, and axial pre-contrast T1-weighted 
axial 3D fast field echo DCE MRI sequences, were part 
of this MRI protocol. A prior study (26) described their 
detailed sequence parameters. The mean interval between 
MRI and radical prostatectomy was 60 days (range, 3 to  
180 days).

Image processing, pre-analysis

DCE are formed from a time series of images. These images 
display the evolution in time of contrast material over 
several hundred s following injection. The DCE shows the 
contrast uptake in the tissues. By analyzing the DCE and 
exploiting the unique tumor physiology, a portion of tumors 
may be identified. The tracer concentration in the tissue 
that supplies and empties through the tumor vasculature is 
described by a simple two compartment model (17,27,28). 
For times greater (>50 s), than the time to reach the peak 
uptake of the contrast material in a tumor, every voxel was 
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fitted with an exponentially decaying function to form the 
washout (kep) images and the probability likelihood (prob) 
images. 

The MRI images were digitally resized (17-21) to 1 mm 
resolution in the transverse direction. Using the known 
location of patient’s table position, the slices were resized 
to 6 mm spacing and aligned using resampling. Due to the 
short time intervals between scans (<20 minutes), small 
rigid adjustments (minor transverse translation) were 
applied to the structural, diffusion, and DCE images. A 
“cube” is composed of stacked individual slices were scaled, 
translated, resliced so as to be spatially registered at the 
pixel level. These “three dimensional” (two transverse 
directions plus spectral composed of MP-MRI modalities) 
cubes were “stitched” together into a narrow three-
dimensional hypercube to depict the entire MRI scan. 
The spectral content of the hypercube had 7 components  
(17-21) [T1 (pre contrast), T1 (maximum contrast), T2, 
ADC, DWI-high B (B=1,000 s/mm2), Washout or kep  
from DCE].

ACE

The ACE (Eq. [1]) (29-31) was transferred for this medical 
application (17-21) and applied to spatially registered MP-
MRI. The algorithm (ACE) uses in-scene multispectral 
tumor signatures (for tumor). S is the target (tumor) 
signature and is a 7-component vector [DWI, T1, T2, 
ADC, DCE in this analysis (17-21)]. S, the in-scene 
tumor signature, is selected from yellow voxels in a three-
color display of the spatially-registered MP-MRI (red is 
Washout, green is DWI, high-B, blue is ADC) (17-21). The 
component Sq (for vector S) is the average from T target 
vector-voxels xp,q summed over p target voxels (identif﻿ied as 
yellow) (see Eq. [1]). µ is the background (normal prostate) 
7 component vector. CM is the covariance (7×7) matrix for 
the background. The background voxels needed for μ and 
CM were taken from digitally outlining the prostate on the 
spatially-registered MP-MRI (17-21).
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To compute the background statistics, the prostate image 

is manually outlined for all slices to generate an image mask 
and restrict computations to the prostate volume. ACE 
generates a conical hyperspace decision surface. A large 
angle (but small cosine, small ACE score, outside decision 
cone) or a small angle (but large cosine, large ACE score, 
inside the decision cone) determines whether a voxel is 
background (normal tissue) or target (tumor). 

Labeling and blob generation

Blobbing and labeling (19) aggregate neighboring pixels. 
The blobbing is applied to a binary image following 
application of a threshold to the primary image. Binary 
tumor masks are generated from digitized maps of tumor 
outlines marked by pathologists on histology slides. In 
addition, binary masks were derived from the pixels that 
exceed a threshold of ACE target detection applied to MP-
MRI hypercubes. Each pixel is perused within a given 
neighborhood to determine if they are a blob candidate. 
If the pixels are deemed to be a blob member, then they 
are connected, collected, and labeled as a member of a 
particular blob. 

Eccentricity calculation

Custom software (coded in Python 3) was used to calculate 
the eccentricity and volume (19) for every labeled blob. The 
moment of inertia matrix I for the kth blob was computed. 
From the eigenvalues of the moment of inertia I, the 
largest eigenvalue was assigned to the large axis lk and the 
second minor axis eigenvalue was assigned to the transverse 
moment sk. The eccentricity Ek for the kth blob with a 
major axis lk and minor axis sk is given by

k k
k

k

l sE
s
−

= 	 [2]

Eccentricity values Ek range from 0 to 1. A spherical 
shape has an eccentricity Ek of 0. A line has an eccentricity 
Ek of 1. Each blob’s volume Vk is given total number of 
pixels within each blob and corrected by the voxel volume r 
(assuming density of unity for each voxel),

( )1

N
i

k
i i

xV rN r
abs x=

= = ∑
	 [3]

and r is the total volumetric resolution (6 mm3 per voxel 
for MP-MRI and 0.00270 mm3 per voxel for the histology 
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slices in this study). 
The weighted eccentricity W is sum over B blobs, and is 

given by
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Overall quantitative metrics description: z-score and SCR

Z-score is a quantitative metric (32) for assessing the degree 
of disease. It is computed using the digital values from MRI. 
The z_score for given for each modality q is (32):

2

_ q q
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	 [5]

and q ranges from q=1,2,3…M (M=7 in this study), where 
Sq is the tumor signature (Eq. [1]) or value in the modality 
q (mean over the T tumor pixels), µq is the mean value for 
normal prostate in MRI modality q (Eq. [1]), 
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σq is the standard deviation for the normal prostate in 
modality q, and p ranges over all N prostate voxels. The 
background voxels needed for µ and CM were taken from 
digitally outlining the prostate on the spatially-registered 
MP-MRI. A simple way of combining all M MRI modalities 
q is to sum the individual z-scorei, i.e.,

	 [7]
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The SCR (21,29-31) is given by

( ) ( )1TSCR S CM Sµ µ−= − − 	 [8]

that is a matrix multiplication over MP-MRI modalities, 
the superscript T denotes a vector transpose operation, CM 
is the covariance matrix, and the superscript −1 denotes a 

matrix inverse operation.

Filtering noise

The inverse covariance matrix CM-1 is a square symmetrical 
matrix and decomposes into three parts (33), 

1 1TCM λ− −= Λ Λ 	 [9]

namely the eigenmatrix Λ, transpose of the eigenmatrix 
ΛT, and diagonal matrix λ with eigenvalues 2 2 2 2
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The eigenvalues are ordered according to size ranging from 
the largest λ1 to the smallest λM. The images corresponding to 
the eigenvalues and eigenvectors and principal components 
(PCs) range from high signal and variation (1,2) to low 
variation and very noisy (M−1, M). The lowest value PCs  
(M−1, M) elevate the noise due to the inversion in the 
inverse matrix CM−1 (Eq. [9]). Filtering out the noisy PCs 
(21,34,35) means removing or deleting the lowest valued 
eigenvalues (3 or 4 in this study) from the inverse matrix, i.e., 
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and inserting Eq. [11] into Eq. [9] 

1T
Filtered FilteredCM λ−= Λ Λ 	 [12]
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resulting in

( ) ( )1T
Filtered FilteredSCR S CM Sµ µ−= − − 	 [13]

after inserting Eq. [10] into Eq. [8]. 

Regularization and shrinkage 

The goal of shrinkage regularization (21,35) is to perturb 
the covariance matrix CM(γ) to maximize the likelihood 
estimation, or equivalently minimize the discriminant 
function d(γ) [=-ln(normal distribution)] by adding a 
diagonal component that is controlled by the parameter γ 
and thereby perturbing the covariance matrix CM into the 
regularized CMmod_Reg(γ) 

( )mod_ Re 1gCM CM Vγ γ= − + 	 [14]

V is a diagonal matrix filled up with the square of the 
standard deviations from M modalities is given by

	
[15]
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Using Eqs. [14-15] the modified discriminant function 
dmod_Reg (γ)
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is computed for 0<γ<1 and a minimum dmod(γmin) is found 
at γmin. resulting in a SCRMod_Reg (Eq. [17]) using a modified 
regularization procedure (using Eqs. [14-16]).

( ) ( ) ( )1
mod_ Re min mod_ Re

T
g gSCR S CM Sγ γ µ µ−= = − − 	 [17]

Tumor volume measurements, supervised target detection

Tumor volume from histology determination was derived 

directly from tumors outlined by a pathologist on  
slides (18). Tumor volume was given by digitally tracing 
the tumor on all slices, summing the number of voxels 
within the pathologist’s outline and converting the number 
of voxels to volume from the image spatial resolution. 
The transverse spatial resolution (300 dots per inch) for 
the volume calculation and the histology slice separation  
(6 mm) resulting in a voxel volume r=4.30×10−5 cm3.

The procedure for estimating the tumor volume using 
the supervised target detection algorithm or ACE has been 
previously described (18). For spatially-registered MP-MRI 
threshold is applied to the ACE map. Voxels exceeding 
a threshold for ACE scores are assigned to tumor and 
normal tissue assigned to ACE scores residing below the 
threshold. The chosen threshold in this study was from 
0.40 to 0.85 assessed in 0.05 increments. The number of 
tumor voxels are converted to volume based on the MRI 
spatial resolution (1 mm × 1 mm) and slice separation  
(6 mm) resulting in a voxel volume (r=0.006 cm3). 

Statistics and univariate and multivariate fitting

A multivariate f it  (36-39) was applied to the GS, 
eccentricity, and volume measurements i.e., 

	
_ _ * _ *GS b const b Ecc Ecc b SCR SCR ε= + + + 	 [18]

_ _ * _ * _ *GS b const b Ecc Ecc b SCR SCR b Vol Vol ε= + + + + 	 [19]

The GS derived from the pathological assessment of 
histology slides from prostatectomy were fitted through 
linear regression with eccentricity (Ecc), SCR, and volume 
(Vol). Optimal coefficients b_const, b_Ecc, b_SCR, b_
Vol or constant, eccentricity coefficient, SCR, volume 
coefficients respectively, were chosen by minimizing the 
error ε through the least-squares formulation. Ecc includes 
Eccentricity from the largest blob using ACE thresholds of 
0.35, 0.40, 0.45, eccentricity of the weighted average using 
ACE threshold of 0.40. SCR includes cutoff from three 
and four PCs, modified registration, and Z-score. Volume 
includes histology from whole mount prostatectomy and 
MP-MRI using ACE thresholds of 0.60, 0.65, 0.70. The 
Pearson correlation coefficient R, R squared (r squared), 
adjusted correlation coefficient, t-value, P value, that assess 
the fitness and probability that the fit departs from null fit, 
were computed. In addition (36-39), the quality of fit was 
assessed by computing the F-value and affiliated P value.

To examine if the independent variables (volume, 
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eccentricity, and SCR) add significant information to the 
GS fit, the relationship and correlation coefficients among 
the independent variables is computed and analyzed. 
Low values of correlation coefficients indicate that the 
independent variables are truly independent, are not 
redundant and meaningfully contribute to the GS fit.

D'Agostino-Pearson (D-P) Omnibus and the Shapiro-
Wilks (S-W) tests (36-39) generated P values for the 
null hypothesis of fitted residuals following the normal 
distribution. The P values for null hypothesis that the 
residuals’ follow homoscedasticity are calculated through 
the Breusch-Pagan (B-P) test (36-39).

Results

Table 1 summarizes metrics for assessing the multivariate 
fits (Eq. [18]) for MP-MRI-based eccentricity and SCR 
measurements to GS. The two sets of independent variables 
use combinations of prostate tumor eccentricity and 
SCR. Eccentricity and SCR related topics and results are 
summarized and listed in Table 1. Options and results for  
b_Ecc include the eccentricity for the largest blob, 
weighted average for the eccentricity. Options for b_SCR 
include the cutoff for 3 PCs, cutoff for 4 PCs, modified 
regularization, and z-score. The fitted coefficients for the 
eccentricity and SCR b_Ecc and b_SCR are shown along 

Table 1 Summary of eccentricity and SCR fit to Gleason score

Two variate 
metrics

Max Blob: 0.35 Max Blob: 0.4 Weighted: 0.4

Cutoff: 3 Deleted Cutoff: 3 Deleted Cutoff: 4 Deleted
SCR (dB): Mod 

Regular
Z Score Cutoff: 3 Deleted

R 0.763 0.784 0.71 0.701 0.696 0.6

R2 0.582 0.614 0.504 0.491 0.485 0.36

R2 adjusted 0.544 0.579 0.459 0.445 0.438 0.302

F value 15.323 17.488 11.189 10.623 10.353 6.18

P value 0.00007 0.00003 0.00044 0.00059 0.00068 0.00741

D-P Omni 0.671 0.924 3.578 1.7 2.963 2.399

D-P Omni P value 0.715 0.63 0.167 0.427 0.227 0.301

S-W 0.956 0.948 0.922 0.947 0.916 0.947

S-W P value 0.335 0.222 0.057 0.22 0.042 0.214

b_Ecc −2.546 −2.728 −2.599 −2.379 −2.483 −2.977

std error 0.607 0.598 0.701 0.77 0.754 1.521

t_Ecc −4.193 −4.564 −3.707 −3.088 −3.292 −1.958

P value 0.00038 0.00015 0.00123 0.00537 0.00332 0.0631

b_SCR 0.044 0.04 0.029 0.039 0.158 0.046

std error 0.013 0.012 0.016 0.025 0.106 0.016

t_SCR 3.448 3.21 1.778 1.587 1.488 2.893

P value 0.00229 0.00404 0.08926 0.12673 0.15104 0.00845

SCR, signal to clutter ratio; Max Blob, largest blob; Weighted, weighted eccentricity; Cutoff, principal component filtering; 3 Deleted, 3 
principal component deleted; 4 Delete, 4 principal component deleted; Mod Regular, modified regularization; MP-MRI, multi-parametric 
magnetic resonance imaging; R, correlation coefficient; R2, R squared; R2 adjust, adjusted R squared; D-P Omni, D’Agostino-Pearson 
Omnibus residual normality test; S-W, Shapiro-Wilks residual normality test; b_Ecc, eccentricity coefficient; std error, standard error; t_
Ecc, eccentricity t-value; b_SCR, SCR coefficient; t_SCR, SCR t-value.
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with the standard error for each parameter associated with 
the fit. The b_Ecc is negative, demonstrating that GS is 
associated with smaller and more spherical tumors. The b_
SCR is positive, confirming that larger departures of MP-
MRI from normal prostate are associated with GS. The t 
statistics for eccentricity t_Ecc and SCR and t_SCR along 
with P values are displayed in Table 1. The magnitude of 
the t-value t_Ecc is comparable to the t-value t_SCR for 
all pairs of independent variables. A specific example taken 
from Table 1 shows Eccentricity (Maximum Blob Volume, 
ACE threshold 0.40) yields t_Ecc =−4.56 and SCR with 
3 PCs cutoff t_SCR =3.21. Correlation coefficient (R), R 
squared (R2), adjusted R squared (R2 adjusted), F-statistic 

and P value summarize the overall multivariate fit for MP-
MRI-based measurements to GS (Eq. [18]). 

Table 1, displays the correlation coefficient R and P 
value from fitting two sets of independent variates in a 
multivariate analysis (Eq. [8]) for GS ranged from R=0.60 
to 0.784 and P value 0.00741 to <0.0001, respectively. The 
t-statistic for the eccentricity is comparable to those from 
SCR measurements. This MP-MRI analysis processed 
the 25 patients that took up the contrast material. The 
residuals in the fits mostly followed a normal distribution as 
evidenced by the P values for the D’Agostino-Pearson and 
Shapiro-Wilks tests yielding P values >0.05. The residuals 
in the fits also followed homoscedasticity as shown by  

Figure 2 The relationship between Gleason score and eccentricity and SCR. (A) A three-dimensional plot where the orange dots denote the 
data and the blue dots show the fit; (B) the plot of the Gleason score against the SCR (filtered out 3 principal components); (C) the plot of 
the Gleason score against the eccentricity (largest blob, ACE threshold =0.40); (D) the plot of the SCR [largest blob, ACE threshold is 0.40] 
against the eccentricity (largest blob, ACE threshold =0.40). SCR, signal to clutter ratio; ACE, adaptive cosine estimator.
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Table 2 Summary of eccentricity, SCR, volume fit to Gleason score

Three 
variate 
metrics

Max Blob: 
0.35

Max Blob: 
0.4

Max Blob: 
0.45

Max Blob:  0.4
Weighted: 

0.4

Cutoff: 3 
Deleted

Cutoff: 3 
Deleted

Cutoff: 3 
Deleted

Cutoff: 3 
Deleted

Cutoff: 3 
Deleted

Cutoff: 3 
Deleted

Cutoff: 4 
Deleted

Cutoff: 4 
Deleted

SCR (dB): 
Mod Regular

Z Score
Cutoff: 3 
Deleted

Histology Histology Histology
MP-MRI: 

0.6 
MP-MRI: 

0.65
MP-MRI: 

0.7
Histology

MP-MRI: 
0.65

Histology Histology Histology

R 0.795 0.819 0.792 0.791 0.800 0.784 0.778 0.726 0.767 0.783 0.724

R2 0.632 0.670 0.627 0.626 0.641 0.615 0.605 0.527 0.589 0.613 0.524

R2 adjusted 0.579 0.623 0.574 0.573 0.589 0.560 0.548 0.459 0.531 0.558 0.456

F value 12.01 14.21 11.77 11.74 12.47 11.20 10.71 7.787 10.05 11.11 7.695

P value 8.59e-05 2.79e-05 9.79e-05 9.93e-05 6.70e-05 0.000134 0.000177 0.00111 0.000261 0.000141 0.00118

D-P Omni 2.734 0.772 1.064 0.092 0.67 0.328 0.924 1.228 1.063 0.359 2.931

D-P Omni  
P value

0.255 0.68 0.587 0.955 0.715 0.849 0.63 0.541 0.588 0.836 0.231

S-W 0.967 0.976 0.962 0.96 0.955 0.965 0.966 0.949 0.965 0.968 0.956

S-W  
P value

0.563 0.805 0.466 0.415 0.33 0.527 0.544 0.237 0.521 0.593 0.334

b_Ecc −0.441 −0.4819 −0.4235 −0.531 −5.141 −0.5877 −0.3999 −0.4767 −0.3496 −0.3152 −0.1906

std error 0.156  0.143 0.153 0.163 0.152 −0.154 0.163 0.150 0.178 0.174 0.160

t_Ecc −2.829 −3.371 −2.763 −3.253 −3.382 −3.813 −2.456 −2.540 −1.969 −1.807 −1.193

P value 0.010 0.003 0.012 0.004 0.003 0.001 0.023 0.0.019 0.062 0.085 0.246

b_SCR 0.431 0.3915 0.3669 0.469 0.4774 0.4325 0.3001 0.3437 0.2935 0.3406 0.4136

std error 0.135 0.128 0.136 0.143 0.138 0.137 0.143 0.170 0.158 0.153 0.154

t_SCR 3.189 3.066 2.691 3.285 3.472 3.155 2.094 2.025 1.853 2.225 2.694

P value 0.004 0.006 0.014 0.004 0.002 0.005 0.049 0.056 0.078 0.037 0.014

b_Vol 0.2665 0.2731 0.3030 0.1401 0.1924 0.0448 0.3621 0.1830 0.3576 0.4192 0.4373

std error 0.158 0.145 0.154 0.166 0.154 0.153 0.157 0.184 0.160 0.159 0.163

t_Vol 1.682 1.889 1.972 0.842 1.248 0.292 2.311 0.996 2.240 2.642 2.688

P value 0.107 0.07 0.062 0.409 0.226 0.773 0.031 0.331 0.036 0.015 0.014

SCR, signal to clutter ratio; Max Blob, largest blob; Weighted, weighted eccentricity; Cutoff, principal component filtering; 3 Deleted, 3 
principal components deleted; 4 Delete, 4 principal components deleted; Mod Regular, modified regularization; R, correlation coefficient; 
R2, R squared; R2 adjust, adjusted R squared; D-P Omni, D’Agostino-Pearson Omnibus residual normality test ; S-W, Shapiro-Wilks 
residual normality test; b_Ecc, eccentricity coefficient; std error, standard error; t_Ecc, eccentricity t-value; b_SCR, SCR coefficient; t_
SCR, SCR t-value; b_Vol, volume coefficient; t_Vol, volume t-value.
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P values >0.05 for the Breusch-Pagan tests.
Figure 2 displays fits to the GS by using eccentricity 

from the largest blob (ACE threshold =0.40) combined 
with the SCR with cutoff or filtering of 3 PCs to the 
GS. Figure 2A shows a three-dimensional plot where 
the orange dots denote the data and the blue dots show 
the fit. Figure 2B shows the plot of the GS against 
the SCR (filtered out 3 PCs) showing a correlation 
coefficient of R=0.60, P value =0.0113. Figure 2C  
shows the plot of the GS against the eccentricity (largest 
blob, ACE threshold =0.40) showing a correlation 
coefficient of R=−0.658, P value =0.000349. Figure 2D 
shows the plot of the SCR (largest blob, ACE threshold is 
0.40) against the eccentricity (largest blob, ACE threshold 
=0.40) showing a correlation coefficient of R=−0.115, P 
value =0.583. SCR and eccentricity correlate with GS but 

not to each other.
Table 2 summarizes metrics for assessing the multivariate 

fits (Eq. [8]) for MP-MRI-based eccentricity, SCR, and 
tumor volume measurements to GS. The results from 
the fitting are also summarized and listed in Table 2. 
SCR related topics and results are also summarized and 
listed in Table 2. Volume related topics and results are 
also summarized and listed in Table 2. The three sets of 
independent variables use combinations of prostate tumor 
eccentricity, SCR, and volume. The options for b_Ecc 
(eccentricity) and b_SCR (SCR) are the same as Table 1 for 
two variable fitting. Options for b_Vol include those from 
histology of whole mount prostatectomy and from applying 
ACE thresholds (0.6, 0.65, and 0.70) to MP-MRI. The 
fitted coefficients for the eccentricity, SCR, and volume 
are b_Ecc, b_SCR, and b_Vol, respectively and are shown 

Table 3 Matrix of correlation co-efficients (R) between independent variables (eccentricity, SCR, volume)

Variables

Ecc SCR Vol

Max Blob: 
0.35

Max Blob: 
0.4

Max Blob: 
0.45

Weighted: 
0.4

Cutoff: 3 
Deleted

Cutoff: 4 
Deleted

Mod 
regular

Z score Histology
MP-MRI: 

0.6
MP-MRI: 

0.65
MP-MRI: 

0.7

Ecc; Max 
Blob: 0.35 

1 0.957 0.856 0.809 −0.039 −0.194 −0.384 −0.316 −0.523 −0.543 −0.485 −0.484

Ecc; Max 
Blob: 0.40

0.957 1 0.924 0.786 −0.115 −0.281 −0.466 −0.416 −0.48 −0.523 −0.463 −0.459

Ecc; Max 
Blob: 0.45 

0.856 0.924 1 0.8 −0.176 −0.378 −0.5 −0.481 −0.486 −0.541 −0.476 −0.469

Weighted: 0.4 0.809 0.8 0.786 1 −0.014 −0.416 0.181 −0.353 −0.331 −0.439 −0.35 −0.408

SCR; Cutoff; 
3 Deleted 

−0.039 −0.115 −0.176 −0.014 1 0.716 0.39 0.39 0.187 −0.227 −0.2 −0.044

SCR; Cutoff; 
4 Deleted 

−0.194 −0.281 −0.378 −0.263 0.716 1 0.683 0.606 0.079 −0.209 −0.2 −0.149

SCR; Mod 
regular

−0.384 −0.466 −0.5 −0.181 0.39 0.683 1 0.757 0.179 −0.026 −0.026 −0.118

SCR; Z Score −0.316 −0.416 0.481 −0.353 0.39 0.606 0.757 1 0.021 −0.024 −0.102 −0.148

Vol; Histology −0.523 −0.48 −0.486 −0.331 0.187 0.079 0.179 0.021 1 0.609 0.662 0.641

Vol; MP-MRI: 
0.60

−0.543 −0.523 −0.541 −0.439 −0.227 −0.209 −0.026 −0.024 0.609 1 0.965 0.887

Vol; MP-MRI: 
0.65

−0.485 −0.463 −0.476 −0.35 −0.2 −0.2 −0.026 −0.102 0.662 0.965 1 0.931

Vol; MP-MRI: 
0.70

−0.484 −0.459 −0.469 −0.408 −0.044 −0.149 −0.118 −0.148 0.641 0.887 0.931 1

SCR, signal to clutter ratio; Ecc, eccentricity; Vol, volume; Max Blob, largest blob; Weighted, weighted eccentricity; Cutoff, principal 
component filtering; 3 Deleted, 3 principal components deleted; 4 Delete, 4 principal components deleted; Mod Regular, modified 
regularization; MP-MRI, multi-parametric magnetic resonance imaging; R, correlation coefficient.
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along with the standard error for each parameter associated 
with the fit. The b_Ecc is negative and b_SCR is positive 
as discussed and shown in Tables 1,2. The b_Vol is positive, 
confirming that larger departures of MP-MRI from normal 
prostate are associated with greater GS. The t statistics 
for eccentricity (t_Ecc), SCR (t_SCR), and volume (t_Vol) 
along with P values are displayed in Table 2. The magnitude 
of the t-value t_Ecc is comparable to the t-value t_SCR for 
all pairs of independent variables. The t_Vol is lower than 
the t_Ecc and t_SCR except for relatively poor fits (F<10). 
Correlation coefficient (R), R squared (R2), adjusted R 
squared (R2 adjusted), F-statistic and P value summarize the 
overall multivariate fit for MP-MRI-based measurements to 
GS (Eq. [19]). 

Table 2 shows the correlation coefficient R and P 
value from fitting two sets of independent variates in a 
multivariate analysis (Eq. [19]) for GS ranged from R=0.60 
to 0.784 and P value 0.00741 to <0.0001. The t-statistic 
for the eccentricity is comparable to those from SCR 
measurements. This MP-MRI analysis processed the 25 
patients that took up the contrast material. The residuals in 
the fits mostly followed a normal distribution as evidenced 
by the P values for the D’Agostino-Pearson and Shapiro-
Wilks tests yielding P values >0.05. The Breusch-Pagan 

test in all variable combinations finds P values >0.05 and 
therefore the variables follow homoscedasticity.

Table 3 is a matrix showing the correlation coefficients 
between the eccentricity, SCR, and volume. The correlation 
coefficients involving overlap of eccentricity and SCR are 
also shown. Similarly, the correlation coefficients involving 
overlap of eccentricity and volume are shown as well as  the 
correlation coefficients involving overlap of volume and 
SCR are displayed in Table 3. As expected, the correlation 
coefficients within eccentricity, SCR, and volume are 
larger than correlation coefficients from overlapping 
components. It should be noted that correlation coefficients 
involving eccentricity and volume are higher than those 
for eccentricity and SCR and correlation coefficients for 
SCR and volume. More correlated independent variables 
(volume, eccentricity) will combine less effectively in fitting 
to Gleason score (dependent variable) due to reduced 
additional, independent information, as seen in Table 2 and 
Figure 3.

Figure 3 plots the multivariate fit (Eq. [8]) using 
ACE/MP-MRI (eccentricity for the largest blob with 
a 0.4-threshold plus SCR after applying a cutoff of 3 
PCs) against data for GS. The fit resulted in correlation 
coefficient of R=0.784 and P value <0.000001. Adding 
volume,  whether  f rom his to logy  or  MP-MRI to 
eccentricity and SCR processing generates R=0.82, P value 
=5.6e-7, and R=0.80, P value =1.5e-6 and adds little to the 
fitting to the GS. 

Discussion

This study found that combining filtered prostate tumor 
SCR with the tumor’s eccentricity can significantly elevate 
the correlation coefficient with the patient’s GS. For 
configurations involving eccentricity and SCR that result in 
lower correlation with GS, adding MP-MRI derived tumor 
volume can elevate the correlation coefficient with GS. 
The optimal tumor eccentricity and inferred volume from 
the largest blob depend on the ACE threshold. Weighted 
eccentricity averages over all blobs correlates significantly 
with GS, but not as highly as those from the largest blob. 
The optimal SCR requires filtering out the noise by 
removing a number of PCs from the covariance matrix. A 
modified regularization applied to the covariance matrix 
performs well, albeit not as well as the filtered application. 
This study confirmed a previous study (20) that eccentricity 
related independent variable correlated better with GS and 
attained higher t-values in multivariate fits than MP-MRI 

Figure 3 The multivariate fit using ACE/MP-MRI [eccentricity 
for the largest blob with a 0.4-threshold plus SCR after applying 
a cutoff of 3 principal components] against data for Gleason 
score. Volume (histology, MP-MRI) added for three variable fit 
to Gleason score. SCR, signal to clutter ratio; ACE, adaptive 
cosine estimator; MP-MRI, multi-parametric magnetic resonance 
imaging.

9.0

8.5

8.0

7.5

7.0

6.5

6.0

G
le

as
on

 s
co

re
 fi

t (
2,

 3
 v

ar
ia

bl
es

)

Gleason fit (2, 3 variables) vs. Gleason score data

6.0 6.5 7.0 7.5 8.0 8.5 9.0
Gleason score data

Fit, 2 variables: Ecc (0.4 max blob), SCR (delete 3) R=0.78 P=3.6e–6

y=2.7219 + 0.61387x       R=0.7835

Fit, 3 variables: Ecc (0.4 max blob), SCR (delete 3) Vol (histology)

y=2.3264 + 0.66997x        R=0.81851

R=0.82, P=5.7e–7
Fit, 3 variables: Ecc (0.4 max blob), SCR (delete 3) Vol (0.65 max blob)

y=2.5338 + 0.64055x        R=0.80034

R=0.80 P=1.5e–6



Mayer et al. Multi-parametric MRI to predict Gleason score3856

© Quantitative Imaging in Medicine and Surgery. All rights reserved.   Quant Imaging Med Surg 2022;12(7):3844-3859 | https://dx.doi.org/10.21037/qims-21-1092

derived tumor volume measurements. The histology derived 
tumor volume measurements consistently helped achieve 
higher correlation with GS in multivariate fits than the MP-
MRI. It may be possible to combine histology and MP-MRI 
to predict GS but its utility is limited due to the invasive 
nature of whole mount prostatectomy relative to MRI.

The relationship among the independent variables 
(eccentricity, SCR, volume) was examined to see if they 
were truly independent. From Table 3, the correlation 
coefficients involving volume and eccentricity are 
relatively high. The higher correlation coefficient means 
that adding volume to the GS (dependent variable) fit 
should yield little additional, independent information 
and minimal improvement in fitting as seen in Table 2 and  
Figure 3. However, the reported correlation coefficients 
in Table 3 between eccentricity and SCR and volume and 
SCR are low, showing little correlation among those sets of 
variables. 

The metrics examined in this study (eccentricity, SCR, 
volume) are generated non-invasively by quantitatively 
analyzing spatially registered multi-parametric MRI. 
Generating and adding these indicators to predict clinical 
outcome should benefit the patient by reducing the burden 
and potential side effects on the patient. In addition, using 
eccentricity and SCR can aid the radiologist in assessing 
MRI to determine the interpretation of MRI and clinical 
direction in proscribing patient therapy and reducing 
variability among radiologists in generating PI-RADS 
scoring (16). The histology derived tumor volume adds 
greater predictive value for GS than from tumor volume 
inferred from MP-MRI. It is hoped that future research will 
improve the MP-MRI generated tumor volume. 

In addition to this study of fitting of individual 
components, the GS was fit using multivariable regression 
with of two and three variables that incorporated Analysis 
of Variance (ANOVA) and Three-Way ANOVA when 
appropriate. This parallel study, although not shown, 
was quite extensive. However, the results involving 
the same variables (eccentricity, volume, SCR) yielded 
essentially the same results as this study regarding the 
relative strength of the fits and the correlation among 
the variables. Additional data analysis confirmed the 
analysis discussed in this manuscript and added little new 
information. For simplicity, the multivariable fit analysis 
was not included in this paper. 

The high correlation of GS and MP-MRI metrics such 

as filtered SCR and eccentricity exceeds those from current 
standard approaches such as PSA, age etc. Although the 
Pearson correlation coefficients between z-score, SCR and 
GS are not close to 1.0, they are statistically significant with 
low P values. To provide a reference point, the connection 
between PSA and GS ranges finds the Pearson correlation 
coefficient (R) varies from R=0.59 (8) to R=0.43–0.46 (9) and 
a P value =0.75, showing no statistical significance (7). The 
PI-RADS and GS relationship also varies among studies. 
Bastian-Jordan (15) showed the incidence of clinically 
significant disease for different PIRADS grades. PI-RADS 
score was not associated with significant differences regarding 
GS distribution within the target (14). However, the PI-
RADS score significantly correlated with postoperative 
extracapsular extension, lymphovascular invasion, and 
seminal vesicle involvement were significant (P<0.001, 
P=0.032, and P=0.007, respectively) (13).

If additional studies analyzing greater patient numbers 
and prospective analyses confirm combining SCR/Z-scores, 
eccentricity with metadata such as age, family history, 
PSA etc. significantly correlate with GS, then clinical 
implementation is feasible. The biggest issue is generating 
spatially registered hypercubes from MP-MRI in a timely 
manner. Software development should enable autonomous 
spatial registration that should reduce time to assemble 
the hypercubes. Identifying tumors by the radiologist to 
generate tumor signature is simplified for spatial-registered 
hypercubes through color processing discussed in earlier 
studies (17-21). 

This study has some limitations. The patients in this stud 
were prospectively enrolled, but originated from a single 
institution (NIH). Clinical implementation variations were 
therefore not examined and the effects of variation on this 
analysis are uncertain. In addition, this is a retrospective 
analysis of the data and may be subject to biases. Lastly, 
the dataset comprised only 25 patients. Although a small 
number of patients were assessed, consecutive patients were 
analyzed to minimize potential bias, and nevertheless highly 
statistically significant P values were achieved, showing 
potential clinical value of this approach.

Conclusions

Combining prostate tumors eccentricity with its processed 
SCR is highly correlated with GS. Adding volume 
marginally improved the multivariate fit.
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