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A software program for automated compressive vertebral fracture 
detection on elderly women’s lateral chest radiograph: Ofeye 1.0
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Background: Because osteoporotic vertebral fracture (OVF) on chest radiographs is commonly missed 
in radiological reports, we aimed to develop a software program which offers automated detection of 
compressive vertebral fracture (CVF) on lateral chest radiographs, and which emphasizes CVF detection 
specificity with a low false positivity rate. 
Methods: For model training, we retrieved 3,991 spine radiograph cases and 1,979 chest radiograph cases 
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Introduction

The bone composition of the spine, which is predominantly 
trabecular bone, is more prone to the thinning and 
microarchitectural changes associated with osteoporosis 
than regions of the hip that are richer in cortical bone. 
Assessment of vertebral fracture status, in addition 
to BMD (bone mineral density), provides relevant 
clinical information to aid in predicting fracture risk in 
postmenopausal women (1-6). Siris et al. (1) reported that at 
any given BMD T-score, the risk of incident vertebral, non-
vertebral, and any fracture depended heavily on prevalent 
radiographic osteoporotic vertebral fracture (OVF) status (1).  

Johansson et al. (2) reported that, in older women and after 
adjustment for clinical risk factors and BMD, grade-1 OVFs 
identified on lateral spine imaging with dual-energy x-ray 
absorptiometry (DXA) are associated with incident major 
osteoporotic fractures. Though BMD has been commonly 
used in decision-making for the diagnosis of osteoporosis, 
it is associated with many inherent limitations (7,8). How 
to define cutpoint T-scores for differential ethnic groups 
remains controversial (9). In addition, osteoporotic fracture 
commonly occurs in subjects not in the category of BMD-
defined osteoporosis, and thus would not be selected for 
pharmacological therapy based on BMD score alone (10-14).  

from 16 sources, with among them in total 1,404 cases had OVF. For model testing, we retrieved 542 chest 
radiograph cases and 162 spine radiograph cases from four independent clinics, with among them 215 cases 
had OVF. All cases were female subjects, and except for 31 training data cases which were spine trauma 
cases, all the remaining cases were post-menopausal women. Image data included DICOM (Digital Imaging 
and Communications in Medicine) format, hard film scanned PNG (Portable Network Graphics) format, 
DICOM exported PNG format, and PACS (Picture Archiving and Communication System) downloaded 
resolution reduced DICOM format. OVF classification included: minimal and mild grades with <20% or 
≥20–25% vertebral height loss respectively, moderate grade with ≥25–40% vertebral height loss, severe 
grade with ≥40%–2/3 vertebral height loss, and collapsed grade with ≥2/3 vertebral height loss. The CVF 
detection base model was mainly composed of convolution layers that include convolution kernels of 
different sizes, pooling layers, up-sampling layers, feature merging layers, and residual modules. When the 
model loss function could not be further decreased with additional training, the model was considered to 
be optimal and termed ‘base-model 1.0’. A user-friendly interface was also developed, with the synthesized 
software termed ‘Ofeye 1.0’.
Results: Counting cases and with minimal and mild OVFs included, base-model 1.0 demonstrated a 
specificity of 97.1%, a sensitivity of 86%, and an accuracy of 93.9% for the 704 testing cases. In total, 33 
OVFs in 30 cases had a false negative reading, which constituted a false negative rate of 14.0% (30/215) 
by counting all OVF cases. Eighteen OVFs in 15 cases had OVFs of ≥ moderate grades missed, which 
constituted a false negative rate of 7.0% (15/215, i.e., sensitivity 93%) if only counting cases with ≥ moderate 
grade OVFs missed. False positive reading was recorded in 13 vertebrae in 13 cases (one vertebra in each 
case), which constituted a false positivity rate of 2.7% (13/489). These vertebrae with false positivity labeling 
could be readily differentiated from a true OVF by a human reader. The software Ofeye 1.0 allows ‘batch 
processing’, for example, 100 radiographs can be processed in a single operation. This software can be 
integrated into hospital PACS, or installed in a standalone personal computer. 
Conclusions: A user-friendly software program was developed for CVF detection on elderly women’s 
lateral chest radiographs. It has an overall low false positivity rate, and for moderate and severe CVFs an 
acceptably low false negativity rate. The integration of this software into radiological practice is expected to 
improve osteoporosis management for elderly women.
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On the other hand, OVF is a highly prevalent clinical 
endpoint (15). OVF can be considered as a “gateway” to 
other more serious fractures, such as hip fractures. 

Many guidelines suggest women with age ≥60 or ≥65 years  
take osteoporosis screening (16-22). Many fractures and 
associated complications, including secondary fractures 
and mortality, can be prevented by routine osteoporosis 
screening in older people and timely treatment initiation 
in at-risk individuals. A number of medications have 
demonstrated that they can reduce fracture risk, both 
vertebral and nonvertebral, including hip fractures (23-28). 
Nonpharmacologic approaches to manage osteoporosis, 
including the combination of weight-bearing and resistance 
training, adequate calcium and vitamin D intake, and 
physical activity, can positively affect bone mass. Coupled 
with preventing falls and limiting modifiable risk factors, 
such as smoking and alcohol use, these measures can help 
reduce a person’s risk for osteoporotic fractures (29,30). 
Early detection of an OVF can lead to further investigation 
and appropriate management that decreases the risk of 
future fractures (31). However, osteoporosis screening is 
still not commonly taken by individuals. In clinical practice, 
OVF remains under-recognized and undertreated. Because 
the OVF damage is limited to the anterior vertebral 
column in most cases, the fracture is usually stable and 
not associated with neurologic impairment. It is estimated 
that 3/4 of OVFs are clinically silent. Moreover, OVFs 
are often unrecognized on chest radiographs, especially 
when the radiographs were not ordered primarily for 
skeletal conditions. This underreporting can be due to a 
lack of awareness by radiologists of the clinical implications 
of incidental OVFs, and also some radiologists tend to 
focus their report only on the clinical indication of the 
X-ray examination, thus tend to not perform an accurate 
analysis of the spine while reading chest radiograph when 
the clinical indication is pulmonary or heart diseases (32). 
Even in back pain patients when the spine is the focus of 
investigation, OVF can also be missed (33). In our recent 
retrospective analysis of 105 female cases (mean: 72 years, 
range: 55–93 years) in a tertiary hospital in China, among 
the patients with OVF, the false negative reporting rate 
was 23.9% (17/71, counting cases), though with missed 
cases being all minimal or mild grades in vertebral height 
loss. Moreover, in 25 cases with multiple OVFs, in addition 
to those OVFs reported, one additional OVF was missed 
in 8 cases, more than one additional OVF were missed in 
15 cases, and one additional vertebra with endplate and/
or cortex fracture (ECF) was missed in two cases. Multiple 

and more severe grades of OVFs are associated with an 
even greater fracture risk (34-36). A precise reporting of the 
number of OVFs in each patient is also highly relevant in 
clinical practice. 

Because the missing report for OVF on chest radiographs 
is widespread, computer aided automated detection of 
compressive vertebral fracture (CVF) (compressive vertebral 
fracture) is expected to be highly useful (since the diagnosis 
of OVF should be suggested by a radiologist or physician, 
computer reading result is termed as CVF, denoting a 
compressive morphological change of a vertebra). We 
developed a software program and validated its performance 
in this study. This version of the software was developed 
with the following considerations: (I) the software should 
have the sensitivity of detecting minimal grade CVFs (<20% 
vertebral height loss); (II) the software should have a low 
false positivity rate for CVFs; (III) the software should 
have a low false negativity rate for moderate and severe 
CVFs (≥25% vertebral height loss). Since we primarily 
wanted to develop a software program for opportunistic 
detection of OVF on chest radiographs not indicated for 
spine disorders, we took the assumption that it will be 
troublesome to physicians and patients if our software labels 
a high proportion of false positive reports. On the other 
hand, it will be acceptable if some minimal and mild OVFs 
are missed, and it is still acceptable even if a portion of 
moderate OVFs is missed. Therefore, the goal of our study 
was to emphasize CVF detection specificity, rather than 
sensitivity. 

Methods

Radiographs materials and OVF gradings 

For model training, we retrieved 3,991 spine radiograph 
cases and 1,979 chest radiograph cases from 15 centers  
(Table 1). Testing radiographs (542 chest radiograph cases 
and 162 spine radiograph cases) were from another four 
independent clinics which differ from the 15 centers which 
provided training data (Table 1). All cases were female 
subjects, and except for the training data 12 which were 
spine trauma cases, all the remaining cases were post-
menopausal women. Image data included DICOM format, 
hard film scanned Portable Network Graphics (PNG) 
format, DICOM exported PNG format, and Picture 
Archiving and Communication System (PACS) downloaded 
reduced resolution DICOM format. The study was 
conducted in accordance with the Declaration of Helsinki (as 
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revised in 2013). This retrospective study was approved by 
our institutional ethics committees, study subject consent 
was obtained for training data 1, 2, 15, and testing data 3, 
while patient consent was waived for the other data. 

The initial readings were based on previous results for 
spine radiograph OVF epidemiological studies (training 
data 1, 2, 15, and testing data 3), and chest radiographs 
were evaluated initially by a trained biomedical engineering 
graduate (BHX). Reading and labelling were primarily based 
on lateral radiograph, while frontal radiograph was checked 

when available and necessary to assist the reading. The 
final reference readings were established by an experienced 
radiologist reader (YXJW). The OVF diagnostic criteria 
were based on previous publications (15,37-43). In 
addition to vertebral height reductions, attention was 
paid to alterations in the shape and configuration of 
a vertebra relative to adjacent vertebrae and expected 
normal appearances. All the known mimics of OVF 
were systematically excluded. While a positive ECF sign 
increases the diagnostic confidence for OVF, an ECF sign 

Table 1 Information of image data used for ‘base-model’ training and testing

Hospital Total cases Age OVF cases X-ray region Image format

Training data 1 1,994 ≥65 years 308 T and L spine Scanned PNG

Training data 2 1,531 ≥69 years 249 T and L spine Scanned PNG

Training data 3 761 ≥65 years 273 Chest DICOM

Training data 4 127 ≥65 years 25 Chest DICOM

Training data 5 109 ≥65 years 32 Chest DICOM

Training data 6 99 ≥65 years 11 Chest DICOM

Training data 7 100 ≥65 years 38 Chest DICOM

Training data 8 101 ≥65 years 36 Chest DICOM

Training data 9 146 ≥65 years 35 Chest DICOM

Training data 10 284 ≥65 years 52 Chest DICOM

Training data 11 112 ≥65 years 27 Chest DICOM

Training data 12 31 No limitation 31 Spine* DICOM

Training data 13 132 ≥55 years 58 Spine** DICOM

Training data 14 102 ≥65 years 34 Chest DICOM

Training data 15 # 303 ≥60 years 176 T and L spine Exported PNG

Training data 16 38 ≥65 years 19 Chest DICOM

Total for Training 5,970 1404

Testing data 1 144 ≥65 years 49 Chest DICOM

Testing data 2 164 ≥65 years 40 Chest DICOM

Testing data 3 162 ≥85 years 52 T and L spine Scanned PNG

Testing data 4 ## 234 ≥65 years 74 Chest Reduced DICOM

Total for testing 704 215

Training data 1 and data 2 were acquired for MsOS (Hong Kong) study with 4 years apart, and with different acquisition radiography 
machines applied, thus equivalent to data from two sources. *, spine traumatic fracture patients (lateral and frontal view radiographs 
available); **, spine radiograph for back pain patients (lateral and frontal view radiographs available); #, Caucasian subjects from Italy, in 
DICOM exported PNG format. ##, data in PACS downloaded reduced resolution DICOM format. Only lateral view radiographs available 
for training data 1, 2, and 15, while all chest radiographs have both lateral and frontal views. OVF, osteoporotic vertebral fracture; scanned 
PNG, hard film scanned image; DICOM, Digital Imaging and Communications in Medicine; PNG, Portable Network Graphics; PACS, 
Picture Archiving and Communications System .
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was not considered essential for diagnosing an OVF (42).  
According to the vertebral height loss, OVFs were classified 
as: minimal and mild grades with <20% or ≥20–25% 
vertebral height loss respectively, moderate grade with 
≥25–40% vertebral height loss, severe grade with ≥40%–
2/3 vertebral height loss, and collapsed grade with ≥2/3 
vertebral height loss. Since the diagnosis of minimal grade 
OVF can be sometimes subjective, and these OVFs tend to 
overall have less immediate clinical relevance, diagnosis of 
minimal grade OVF was not strictly enforced, i.e., some of 
the minimal grade OVFs might have been missed during 
the human reader labelling. 

Image pre-processing

Only lateral radiographs were used. Personal information 
contained in the DICOM format radiographs was removed, 
and then the images were saved as 1024×1024 PNG format 
images. Images larger than 1024×1024 were cropped, while 
images smaller than 1024×1024 were padded with black 
borders. The contrast and other relevant parameters of the 
images were adjusted to increase the image clarity. 

Based on human labelling, the information of OVF 
coordinates in the image was obtained. 

Measures such as image flipping, rotation at different 
angles, and random splicing were used to expand the 
training dataset, for the purpose of improving the 
robustness and stability of the resulting CVF detection 
model.

Model training and optimization

Images were normalized to train the CVF detection base 
model. The detection model structure was composed of 
three parts, i.e., backbone, neck, and prediction (44), and 
composed of convolution layers that included convolution 
kernels of different sizes, pooling layers, up-sampling layers, 
feature merging layers, and residual modules (45), totaling 
213 layers.

The main training parameters were the batch size of 
8 (every batch included one negative image), the epoch 
of 1,000, and the initial learning rate was 0.01. As the 
number of model iterations increased, the cosine annealing 
function was used to gradually reduce the learning rate. 
The dropblock function was used to alleviate the problem 
of model overfitting. The loss function was (Distance 
intersection over union) DIOU_Loss, and the (Stochastic 
Gradient Descent) SGD gradient descent algorithm was 

used for parameter optimization. Model training was 
performed using Ubuntu 18.04.4 LTS, python (v3.6.12), 
pytorch (v1.7.1) machine learning libraries, Nvidia 
A100(40GB memory) Tensor Core Graphics Processing 
Unit, and Xenon E5-2698 v4 2.2GHz, 20 Cores Central 
Processing Unit. 

When a CVF is detected, a probability is returned. The 
model labels a vertebra as with CVF when the probability is 
≥0.6. This parameter can be adjusted depending on whether 
specificity or sensitivity is emphasized. 

When the model loss function could not be further 
decreased, the optimal training model, which we called 
‘base-model 1.0’, was obtained. 

Base-model 1.0 testing for CVF detection

For testing, in total radiographs of 704 cases were retrieved. 
These testing radiographs included a mixture of standard 
DICOM images, film scanned PNG images, and resolution 
reduced DICOM images downloaded from a PACS. Thus, 
the testing radiographs were not all of idealized image 
quality. Lateral radiographs were read by the base-model 
1.0, and the reference reading was established by the 
radiologist reader (YXJW).

After the base-model 1.0 reading, the cases with false 
positivity and false negativity were further inspected for 
potential causes. 

User interface testing 

A user-friendly interface was developed (Figures S1-S4), and 
the synthesized software was termed Ofeye 1.0. This software 
allows ‘batch processing’, for example, 100 radiographs can 
be processed in a single operation. This software can be 
integrated into hospital PACS, or installed in a standalone 
personal computer. The clinical usage of a prototype version 
of the software has been tested externally since Nov 18, 2021, 
in the Department of Radiology, the First Affiliated Hospital 
of Zhejiang Chinese Medical University, Hangzhou, China. 
Users there provided feedback for improving the user-
friendliness of this software. 

Results

The primary Ofeye 1.0 reading output is demonstrated 
in Figure 1, the left image window shows the original 
radiograph; while the right image window shows the 
radiograph with CVF labelling (if there is/are). If there 

https://cdn.amegroups.cn/static/public/QIMS-22-433-supplementary.pdf
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is no CVF detected, then the left image window and 
right image window will show the same image. For each 
suspected CVF detected, a probability is provided. The 
DICOM view function of this software allows other 
basic functions including zoom-in, zoom-out, adjusting 
contrast and window levels, and distance and angle degree 
measurements. 

CVF detection performance of the base-model 1.0 
is shown in Table 2. Testing data 1 and data 2, which 
were in original DICOM format, showed slightly better 
performance than testing data 3 (in film scanned PNG 
format) and testing data 4 (in PACS downloaded reduced 

resolution DICOM format). 
In total, 33 OVFs in 30 cases had a false negative 

reading, which constituted a false negative rate of 14.0% 
(30/215) for counting all OVF cases (including those with 
minimal or mild grade OVFs). Among these cases with 
false negative reading, 15 OVFs in 15 cases were mild or 
minimal grades, while 18 OVFs in 15 cases had OVFs of 
≥ moderate grades missed (Table 3), which constituted a 
false negative rate of 7.0% (15/215) if only counting cases 
with ≥ moderate grade OVFs. In other words, for cases 
with ≥ moderate grades OVF, 93% were detected. False 
positive reading was recorded in 13 vertebrae in 13 cases 

Figure 1 The main operation window of Ofeye 1.0. The image on the left is an original lateral chest radiograph. With the image on 
the right, three CVFs were labelled on this lateral chest radiograph, with a probability of 0.90, 0.91, and 0.83, respectively. Reference 
reading confirms these three OVFs. One further minimal grade OVF was missed in this case. OVF, osteoporotic vertebral fracture; CVF, 
compressive vertebral fracture.

Table 2 Vertebral fracture detection performance of base-model 1.0 (counting cases)

Data Total TP case FP case TN case FN case Sensitivity Specificity Accuracy 

Data 1 144 43 1 94 6 0.878 0.989 0.951

Data 2 164 34 1 123 6 0.85 0.992 0.957

Data 3 162 46 6 104 6 0.885 0.945 0.926

Data 4 234 62 5 155 12 0.838 0.969 0.927

Total 704 185 13 476 30 0.860 0.973 0.938

TP, true positive; FP, false positive; TN, true negative; FN, false negative. 
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Table 3 Details of ≥ moderate grade OVFs missed in the independent testing data

Case number OVF number Grade Explanation for the false negativity 

4 4 Moderate OVF close to a border of the image

1 1 Moderate OVF overlay with diagram line 

1 2 Moderate OVF together with osteoarthritis 

1 3 Moderate OVF together with osteoarthritis and disappearance of disc space 

1 1 Moderate Oblique filming to the X-ray beam 

3 3 Moderate n/a

2 2 Severe n/a

1 1 Collapsed Vertebra totally collapsed 

1 1 Collapsed Vertebra collapsed + rotation 

OVFs, osteoporotic vertebral fractures; n/a, not available.

Table 4 Details of false positively labelled vertebrae in the independent testing data

Case number OVF number Explanation for the false positivity

3 3 Labeled vertebra above T4

3 3 Labeled vertebra had rotation to X-ray beam

5 5 Labeled vertebra looks like minimal CVF

1 1 Labeled vertebra looks like minimal CVF + diagram line overlaying 

1 1 n/a

OVF, osteoporotic vertebral fracture; CVF, compressive vertebral fracture; n/a, not available.

(one vertebra in each case, Table 4), which constituted a false 
positivity rate of 2.7% (13/489). These vertebrae with false 
positivity labeling had a mean probability of 0.72 (ranging 
from 0.61 to 0.88). They could mostly be easily evaluated 
by a radiologist reader as being of no significance or a false 
positive reading (Figure 2). 

Discussion

In recent a few years, a number of authors reported AI 
(artificial Intelligence) enabled analysis and detection of VF 
(vertebral fracture) of spine medical images which included 
spine radiograph (46-53), DXA (54-56), thoracic and/
or abdominal CT (57-62), and spine MR images (63-66).  
Kim et al.  (46) presented a structured hierarchical 
segmentation method that combines the advantages of two 
deep-learning methods of pose-driven learning and M-net 
which allows automated detection and segmentation of 
lumbar vertebrae from radiograph for CVF evaluation. 
Kim et al. (47) described an approach of AI enabled 
automated vertebral segmentation of lateral thoracic and 
lumbar spine radiograph which is expected to be helpful 

for the measurement of vertebral compression ratio. Seo 
et al. (48) described a vertebral body segmentation model 
and a vertebral compression measurement approach on 
lateral lumbar spine radiographs. Chou et al. (49) and Li  
et al. (50) reported AI enabled detection of VFs on thoracic 
and lumbar radiographs, with good accuracy achieved 
especially for lumbar Genant Grades 2 and 3 VFs. Murata 
et al. (51) reported AI enabled detection of VFs on plain 
spinal radiograph. With MRI as the reference standard, 
Chen et al. (52) reported identifying fresh CVFs from spine 
radiograph. Chen et al. (53) reported the application of 
a deep learning algorithm to detect and visualize VFs on 
plain frontal abdominal radiographs. Derkatch et al. (54)  
described a model to identify VFs on DXA images. Mehta 
and Sebro (55) described an application of a support vector 
machine learning algorithm using posterior-anterior DXA 
images to identify lumbar spine (L1-L4) VFs without 
additional lateral DXA imaging. Monchka et al. (56) 
described an AI model for automated identification of 
CVF using dual-energy and or single-energy lateral DXA 
images. Tomita et al. (57) described an AI enabled method 
to detect incidental CVFs in chest, abdomen, and pelvis 
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Figure 2 A false positive labelling of vertebra T7 in a study subject. The case was from testing data 3 with hard film scanned image. The 
image was of sub-optimal quality. (A) shows vertebra T7 is labelled as CVF with a relatively low probability of 0.67. (B) is the original image, 
scoliosis was suspected with multiple thoracic vertebrae showing apparent oval endplate rings. On the other hand, the anterior vertebral 
height of T7 appears to be similar to the adjacent vertebrae. T7 was not considered to have OVF by reference reading. OVF, osteoporotic 
vertebral fracture; CVF, compressive vertebral fracture.

T7

A B

CT examinations. Burns et al. (58) described an AI enabled 
method which detects, localizes, and classifies CVFs and 
measures BMD of thoracic and lumbar vertebral bodies on 
CT images. Kolanu et al. (59) described a computer-aided 
diagnosis model (Zebra Medical Vision) for Genant grades 
2 or 3 OVFs in a single center 2357 abdominal and thoracic 
CT scans. Roux et al. (60) reported automated detection of 
VF in 150,000 routine lumbar or abdominal CT scans from 
35 hospitals in Paris, France. Rueckel et al. (61) described 
several pathology-specific AI algorithms enabled detection 
of relevant initially missed secondary thoracic findings in 
emergency whole-body CT scans, including the detection 
of cardiomegaly, coronary artery plaques, lung lesions, 
aortic aneurysms, and VFs. Yabu et al. (63) described AI 
enabled detection of fresh VF on MR images. Del Lama  
et al. (64) described AI enabled detection of CVFs on 
spine MRI images. Yeh et al. (65) described an AI enabled 
model for the diagnosis of VFs on spine MR images. Yoda 

et al. (66) described an AI enabled approach for automated 
differentiation between OVF and CVF due to spinal 
metastasis on MR images. Overall, most of the reports 
were single center proof-of-concept studies, with unknown 
generalisability. Roux et al. (60) reported automated 
detection of VF in 150,000 routine lumbar or abdominal 
CT scans from 35 hospitals. However, a shorting coming 
of the study of Roux et al. appears to be that they did not 
apply different thresholds (or different criteria) for male and 
female patients. They reported that, of the patients with 
VFs, 43.7% were male; while this may represent an over-
estimation of VFs in male patients (67). 

Compared with literature reports, our base-model 1.0 
has the following features: (I) the goal of our software is 
to detect CVF on lateral chest radiographs (instead of 
spine radiograph or CT/MRI data) which were initially 
not indicated for spine disorders. It is less likely that 
important OVFs are missed by a human reader on spine 
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radiographs taken for spine disorders; (II) our software 
allows the detection of CVF with <20% height loss, 
which may be clinically relevant in selected cases (68-71);  
(III) our software used a large sample size from multiple 
sources (n=16) for training, the performance of our 
software was tested with data from multiple external 
centers (n=4); (IV) despite the testing image data were 
not all in idealised format, our software offers superior 
diagnostic performance compared with many literature 
reports. This base-model 1.0 achieved our goal that (I) 
it has an overall low false positivity rate (<3% according 
to our own testing); and (II) it has a low false negativity 
rate of 7.0% for moderate and severe CVFs (i.e., those of 
≥25% vertebral height loss).

There are still many limitations of this study and thus 
many still limitations for our software Ofeye 1.0. Ofeye 1.0 
does not grade the severity of the VF, instead it offers a ‘yes/
no’ selection and provides a CVF probability estimation. It 
labels a vertebra as with CVF when the probability is ≥0.6. 
Overall, a milder vertebral height loss is associated with a 
smaller value of the probability and vice versa. In the future, 
we want to further add the function for CVF grading. 
Ofeye 1.0 was developed with the goal to emphasize CVF 
detection specificity at the cost of sensitivity, thus Ofeye 1.0 
may not be suitable for traumatic VF assessment. We plan 
to develop another version of Ofeye which will emphasize 
CVF detection sensitivity, so that it can be applied to spine 
traumatic patients. Ofeye 1.0 was trained with radiographs 
of female subjects, how it can be applied to male subjects 
requires additional adjustment of the parameters (67), and 
also additional validations. Ofeye 1.0 was developed for 
lateral chest radiograph, how it can be reliably applied to 
the lower lumbar spine also requires additional validations. 
It should also be noted that, the initial OVF human 
labelling and the subsequent CVF testing were primarily 
based on the reference reading provided by one radiologist 
(YXJW) and his perception of radiographic diagnostics of 
OVF. However, how to best diagnose and classify minimal 
and mild grade OVFs remains controversial (72), though 
there is usually no difficulty for human reader diagnosis of 
moderate and severe grade OVFs. Thus, it is possible that, 
if Ofeye 1.0 is tested by a third independent party, slightly 
different CVF detection performance may be obtained as 
there is no golden standard for labelling minimal grade 
OVFs. Finally, it should be noted that Ofeye 1.0 suggests 
the probability of a vertebra having CVF, it does not 
offer a firm diagnosis of OVF. The diagnosis of OVF 
should be made by a radiologist or a physician, by further 

excluding mimics and other causes (such as artefacts due 
to poor image quality or scoliosis). While we argue for 
the importance of recognizing OVFs with <20% vertebral 
height loss, the clinical management of such OVF cases 
would depend on the clinical data such as BMD or other 
fragility fracture history. Though minimal grade OVFs may 
not have immediate further fragility fracture consequences, 
they are a biomarker of compromised bone quality. In our 
MsOS (Hong Kong) year-14 follow-up, out of 150 female 
participants, five women were identified as having baseline 
minimal OVF and among them three had osteopenia and 
two had osteoporosis. There was a trend that these minimal 
OVF subjects had incident OVF risk similar to that of the 
subjects with baseline apparent OVF (i.e., ≥20% height 
loss), higher than female subjects without baseline OVF (6).  
The real-world importance of minimal/mild OVFs may 
depend on patients individually, and a wait-and-see strategy 
with follow-up imaging may be sufficient for many non-
traumatic cases. Depending on practical scenarios, for CVFs 
with minimal/mild extent of vertebral height loss and a 
small value of probability, the diagnostician may also choose 
to ignore them for practical reasons even when the CVFs 
look like being osteoporotic. 

In conclusion, we developed a user-friendly software 
program, Ofeye 1.0, for CVF detection on elderly women’s 
lateral chest radiographs. This software has an overall 
low false positivity rate (2.7%), and also for moderate and 
severe CVFs a low false negativity rate (7.0%). Ofeye 1.0 
has batch processing function and can be integrated into 
hospital PACS. We expect the integration of such a software 
program into radiological practice will improve osteoporosis 
management for elderly patients.
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Supplementary

Figure S1 Frontpage login windows in English or Chinese.
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Figure S2 An easy-to-use main page for operation (available in English or Chinese).
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Figure S3 Individual reports can be automatically generated by Ofeye 1.0. In this case, a CVF (vertebra L1) with a probability of 0.92 was 
labelled and reported. The spine image is zoomed-in for better visualization. 
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Figure S4 An example of an output of Ofeye 1.0 ‘batch processing’ results in excel.
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