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Introduction

Magnetic resonance imaging (MRI) has become one 
of the most important means for investigations in the 
clinical setting due to its excellent ability to visualize 
both anatomical structure and physiological function. 

Nevertheless, time-consuming scanning is the main 
drawback of MRI, which affects patient comfort and 
imaging quality, especially in dynamic imaging applications. 
Substantial advances have been made over the last few 
decades to accelerate MRI scanning. Interpolation, simple 
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conjugate symmetry features of k-space or statistical image 
priors were utilized in earlier applications (1). Later, parallel 
imaging technologies using multi-channel phased array coils 
were used to speed up MRI scanning by undersampling 
k-space data uniformly (2). Currently, most MRI scanners 
have the capacity for the parallel imaging technique; 
nevertheless, the acceleration factor in practice is lower 
than four due to the noise and electromagnetic interference 
between coils (2).

Compressed sensing (CS) can recover a signal accurately 
from a few randomly sampled data in a sparse transformed 
domain (3,4). By extending the idea of CS to matrices, 
low-rank matrix completion can recover the missing or 
corrupted entries in a matrix when it has the property of low 
rank (5). Recently, the self-consistency of k-space data and 
the low-rankness of the weighted k-space data have been 
combined to exploit the correlation among inter- and intra-
coils simultaneously (6). Moreover, the low dimensionality 
of the patch manifold of the MRI images is used within the 
CS framework (7). Usually, CS-MRI algorithms exploit 
the sparse nature of MRI in an iterative manner. As a 
consequence, such optimization-based methods do not meet 
the real-time requirements in clinical applications due to 
the numerous computational loads (8). 

In the past a few years, the power of deep learning has 
been clearly demonstrated for numerous medical image 
processing problems (9-12). Recently, applying deep 
learning networks for solving fast MRI reconstruction has 
gained much attention. These methods can be roughly 
divided into k-space-based methods and image-based 
methods. The image-based methods take an inverse Fourier 
transform (IFT) on zero-filled k-space data to obtain an 
initial image (13-17). Then, various network models are 
introduced to derive mapping from the initial image to an 
output image without artifacts and noise, which includes 
vanilla convolutional neural networks (CNNs) (13), cascade 
CNN (14), and generative adversarial nets (GANs) (17).  
All these image-based deep learning MRI methods require a 
separate dataset with thousands of images for each anatomical 
site to train the network model. In fact, constructing such 
databases is intractable due to ethical issues. 

The k-space-based deep learning reconstruct is an 
emerging strategy that uses small amounts of autocalibration 
signals (ACS) data to train a scan-specific feedforward 
neural network for autoregressive k-space interpolation. 
Scan-specific robust artificial-neural-networks for k-space 
interpolation (RAKI) reconstruction uses three layers of 
convolutional network to interpolate the missing k-space  

data (18). It was recently extended to arbitrary undersampling 
for accelerating coronary MRI in self-consistent (s)RAKI (19) 
and multiple slice k-space collaborative reconstructing (20), 
where a huge network scale is employed to obtain sufficient 
train samples with ACS data. Motivated by ideas from RAKI 
and auto-calibrated low-rank modeling of local k-space 
neighborhoods (AC-LORAKS) (21,22), LORAKI takes a 
recurrent neural network (RNN) to recover missing k-space 
data (23). Nevertheless, the network training requires 
approximately 1 hour on Google Colab (https://colab.
research.google.com/) for LORAKI. 

The k-space-based method is trained to be scan-specific 
based on a small amount of ACS data, which alleviates 
one of the main drawbacks of most other deep learning 
methods. Nevertheless, commonly used networks trained 
with a small amount of ACS data cannot reap the benefits 
of nonlinear representation of deep learning. Moreover, 
current k-space deep learning methods separate the real and 
imaginary parts of the k-space data and double the effective 
number of channels to handle the real-valued k-space data.

In this study, a miniature U-net for k-space-based parallel 
MRI reconstruction is proposed, abbreviated as MUKR. 
The U-net (24) is the most famous CNN architecture for 
medical image segmentation, which can maintain good 
performance even with extremely few training data. The 
original U-net is truncated to access a trade-off between the 
network performance and requirement of training samples. 
The proposed network is trained individually for each 
scan with a mixing loss function involving magnitude loss 
and phase loss. The performance of the proposed method 
was evaluated with various acceleration factors using the 
phantom and in vivo datasets. We present the following 
article in accordance with the MDAR checklist (available at 
https://qims.amegroups.com/article/view/10.21037/qims-
21-1212/rc).

Methods

In this section, we first detail generalized autocalibrating 
partially parallel acquisitions (GRAPPA) (25), which is the 
most classical k-space-based parallel imaging reconstruction 
and RAKI, and then present the architecture of, and 
training in, MUKR used for reconstruction. 

GRAPPA reconstruction and RAKI

GRAPPA reconstructs the missing k-space data with nearby 
acquired data over all coils. Mathematically, the GRAPPA 

https://colab.research.google.com/
https://colab.research.google.com/
https://qims.amegroups.com/article/view/10.21037/qims-21-1212/rc
https://qims.amegroups.com/article/view/10.21037/qims-21-1212/rc
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reconstruction can be represented as follows:
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where (kx,ky) denotes the k-space coordinate, and the 
sampling intervals along frequency encoding (FE) and 
phase encoding (PE) directions are represented as ∆kx 
and ∆ky, respectively; s denotes the k-space signal; j and l 
indicate the coil indexes; L is the channel total; m represents 
the distance between the missing data and the acquired 
data along PE direction, m=1, 2, ..., R-1; and R denotes the 
acceleration factor. The size of the interpolation kernel is 
defined by N1, N2, H1, and H2. Further, wl,m (j, h, b) denotes 
the combination weights on the h-th offset along FE and 
b-th offset along PE to reconstruct the m-th offset of coil l.  
Generally, the central k-space data are fully sampled to 
calibrate the combination weights. In fact, the interpolation 
process can be regarded as a conventional operation on the 
zero-filled k-space data, and then it can be represented as 
follows:

 ˆ Sρ ω= ⊗ 	 [2]

where S denotes the zero-filled k-space data, and ω  
represents a conventional kernel, also known as the 
GRAPPA reconstruction weight.

The RAKI uses a three-layer CNN structure to replace 
the linear interpolation in GRAPPA reconstruction. 
Each layer, except the last, is a combination of linear 
convolutional kernels and a rectified linear unit (ReLU), 
namely,  ReLU(x)  = max(x ,0) ,  which has desirable 
convergence properties. The final layer of the network 
produces the desired reconstruction output by applying 
convolutional filters. The overall mapping can be denoted 
as:

 ( ) ( )( )3 2 1Re LU Re LUF s w w w s= ⊗ ⊗ ⊗ 	 [3]

where s denotes the sub-sampled zero-filled k-space, and 
F(s) represents the mapping from sub-sampled zero-
filled k-space to the fully sampled k-space. w1, w2, and w3 
represent the convolutional filters in the 1st, 2nd, and 3rd 
layers, respectively.

MUKR

The overall pipeline of the proposed method is shown in 
Figure 1. Unlike RAKI, which attempts to reconstruct the 
original k-space data directly, the proposed method utilizes 
a modified U-net to reconstruct a patch of k-space data 

each time, where the patch slides along the PE and FE 
directions within the entire k-space. In view of network 
performance and the requirement of training samples, 
the patch size is set empirically as 64×64. The complex-
valued k-space data are converted to two-channel real value 
signals, and data received from all the coils are stacked 
along the channel direction. Thus, the network accepts  
2×Nc patches with a size of 64×64 as input each time, where 
Nc denotes the total number of coils. As shown in Figure 1, 
the training data can be acquired by sliding the patch along 
both the PE and FE directions within the ACS region. In 
the reconstruction step, the network reconstructs a patch 
of missing data each time when the patch slides along both 
the PE and FE directions outside the ACS region. Then, a 
two-dimensional (2D) inverse fast Fourier transform (IFFT) 
on the individual coil k-space data is applied. Finally, all coil 
images are combined in a sum-of-squares (SOS) style.

Network architecture 
The miniature U-net designed in this work for k-space 
reconstruction consists of two main parts: a contracting 
path for the feature extraction and an expanding path for 
the image reconstruction. 

The contracting path involves a series of one 3×3 
convolutional kernel, followed by a ReLU layer, and then a 
2×2 shuffle-pooling operation with stride two. At the center 
layer of the autoencoder, the number of feature maps is 256 
and the size of the feature map is 8×8. The expanding path 
includes a continuous block of an up-sampling with bilinear 
interpolation from the front layer, a 2×2 convolutional 
kernel that halves the number of feature maps, and one 3×3 
convolutional kernel, followed by a ReLU layer. Finally, the 
network outputs 2×Nc patches with a size of 64×64.

Mixed loss function in k-space
Previous research on k-space-based reconstruction has paid 
much attention to various network architectures rather than 
loss function. In most cases, real and imaginary of k-space 
data are concatenated into different channels and make no 
discrimination in the loss function. However, amplitude 
and phase of frequency data have more physical meanings. 
Consequently, following the Fourier image transformer 
method reported in the literature (26), the loss function in 
this study is computed with amplitude and phase of k-space 
data. The amplitude loss is defined as:

 ( ) ( )2
am , 1p i i i iL a a a a= = + − 

	 [4]

where the  a  denotes the predicted amplitudes and a the 
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target amplitudes. The phase loss is defined as:

 ( ) ( )ˆ ˆ, 2 cospha i i i iL ϕ ϕ ϕ ϕ= = − − 	 [5]

The final loss function is the multiplicative combination 
of both individual losses, given by: 

( ) ( ) ( )
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Alternatively, a combination of both individual losses is 
summed:
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Training
As performed in parallel imaging, the center region of 
k-space is fully sampled to obtain ample training data. The 
fully sampled data, named ACS, are then reduced uniformly 
by removing some data on the computer to mimic the real 
undersampling processing in the parallel MRI scanner. 
The network weights are updated by the combination of 
magnitude and phase error between the original full k-space 
and the reconstructed k-space. 

With the aim of training MUKR, the learning rate size 
was set to 0.0001, and the training batch was set to 45. The 
network was trained for 300 epochs. The algorithm was 
developed using pyTorch1.1.0 (https://pytorch.org/) for 
the Python 3.8 environment (Python Software Foundation, 
Wilmington, DE, USA) on a NVIDIA GeForce GTX 2060 
(Nvidia, Santa Clara, CA, USA) with 8GB GPU memory. 

Evaluation

The proposed MUKR method was evaluated on one set of 
phantom data and two sets of in vivo data. The phantom dataset 
was acquired using a spin echo (SE) pulse sequence [echo time 
(TE)/repetition time (TR) =14/400 ms, 33.3 kHz bandwidth, 
512×512 pixels, field of view (FOV) =240×240 mm2]  
on a 3.0 T scanner (Siemens Healthcare, Erlangen, 
Germany) with 32-channel head coils. A set of axial brain 
datasets was acquired from an SE pulse sequence (TE/TR 
=14/400 ms, 33.3 kHz bandwidth, 256×256 pixels, FOV 
=240×240 mm2) on a 1.5 T scanner (Siemens Healthcare, 
Erlangen, Germany) with eight-channel head coils. The 
knee k-space dataset was downloaded from http://mridata.
org/, which was acquired from a TurboSpinEcho sequence 

Figure 1 Network architecture of the proposed method.
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(TE/TR =22/2,800 ms, 768×770 pixels, FOV =280 mm × 
280.7 mm × 4.5 mm) using a 3.0T whole body MR system 
(Discovery MR 750, DV22.0; GE Healthcare, Milwaukee, 
WI, USA).

The study was conducted in accordance with the 
Declaration of Helsinki (as revised in 2013). The study was 
approved by the Institutional Ethics Board of Chengdu 
University of Information Technology (Chengdu, China), 
and informed consent was provided by a healthy adult 
human volunteer (male, age 31 years). The data were fully 
sampled and later decimated by multiplying the mask 
matrix S with various factors to mimic a parallel imaging 
acquisition procedure. 

Peak signal-to-noise ratio (PSNR) and structural 
similarity index matrix (SSIM) (27) were chosen to 
quantitatively assess the reconstruction performance. The 
latter was based on the mean squared error and is closer to 
the human visual system than conventional metrics. The 
PSNR is defined as follows:

 2 2

, , ,
1 1 1 1

N N N N
recon ref ref
i j i j i j

i j i j
NMSE I I I

= = = =

= −∑∑ ∑∑ 	 [8]

 ( )PSNR 10 log 255 255 NMSE× ×＝ 	 [9]

where NMSE denotes the normalized root mean square 
error,  

,
ref
i jI  represents the reconstruction result without 

undersampling, and i and j indicate the pixel coordinates 
along PE and FE directions, respectively.

The SSIM between images    and    is computed as:
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where μi and  ˆ jµ  are the respective local mean values, σi 
and σj the respective standard deviations, σi,j covariance 
value, and c1 and c2 two predefined constants. Generally, a 
preferable image has higher PSNR and SSIM.

The reconstruction quality of the proposed method was 
compared with that of GRAPPA and RAKI. A PyTorch 
version implementation of the RAKI on github (https://
github.com/geopi1/DeepMRI) was adopted to reproduce 
the RAKI. The network was trained for 1,000 epochs with a 
learning rate of 0.01 and the batch size was set as 45. 

Results

To investigate the effects of different loss functions in 
MUKR, we compared the MUKR reconstructions with a 
multiplicative combination of magnitude and phase loss, 

summing the combination of magnitude and phase loss 
and L2 loss function (Figure 2). The phantom images were 
reconstructed with a sampling factor of six and ACS lines 
of 84. Minimal differences can be observed between the 
images reconstructed with multiplicative and summing 
combinations of magnitude and phase loss, although 
the zoom-in images show that the dots in the summing 
combinations reconstructed image are blurrier than those 
in the multiplicative combinations reconstructed image. 
The images reconstructed with L2 loss function have 
higher noise level and more artifacts. Quantitatively, the 
multiplicative combination reconstruction has the highest 
PSNR. Hence, the multiplicative combination was selected 
in the following experiments.

Figure 3 compares the reconstructed phantom images 
between GRAPPA, RAKI, and MUKR with a sampling 
factor 4 and 64 phase encoding lines in the center of 
k-space. The zoomed-in patch image is shown below 
the reconstructed image. Aliasing artifacts and blur are 
serious in the image reconstructed using RAKI, while 
slighter aliasing artifacts can also be seen in the GRAPPA 
reconstructed image. Although the noise is obvious in the 
image reconstructed by MUKR, the aliasing artifacts are 
significantly alleviated. 

Figure  4  demonstra tes  the  ax ia l  bra in  images 
reconstructed using GRAPPA, RAKI, and MUKR with a 
sampling factor of six and ACS lines of 84. The GRAPPA 
reconstructed image has a high noise level, which is 
suppressed in the MUKR reconstructed image. In addition, 
aliasing artifacts can be observed in the RAKI reconstructed 
images, which is not obvious in the MUKR reconstructed 
image.

Figure 5 lists images reconstructed using GRAPPA, 
RAKI, and MUKR from the 15-channel knee dataset. The 
data are accelerated for sampling factor of four with 64 ACS 
lines and a sampling factor of six with 84 ACS lines. At the 
sampling factor of four, although no obvious difference 
exists between the images reconstructed by all methods, the 
zoomed-in patch images show that RAKI produces more 
oscillation artifacts than GRAPPA and MUKR. At the 
sampling factor of six, the GRAPPA reconstructed image is 
contaminated with serious noise, while noticeable aliasing 
artifacts can be observed in the image reconstructed by 
RAKI. By contrast, MUKR produces an image with less 
artifacts and noise.

Table 1 quantitatively evaluates the images reconstructed 
with GRAPPA, RAKI, and MUKR. The highest PSNR and 
SSIM values are highlighted in each cell to facilitate the 

https://github.com/geopi1/DeepMRI
https://github.com/geopi1/DeepMRI
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comparison. For phantom and brain imaging, MUKR has 
an improvement on SSIM with 0.05 and 0.02 over GRAPPA 
and RAKI, respectively. This is consistent with the findings 
displayed in Figure 5.

As shown, MUKR consistently yields higher PSNRs and 
SSIMs than GRAPPA and RAKI in all cases.

Discussion

The noise amplification is serious in the GRAPPA 
reconstructed images when the acceleration factor is larger 
than four. The distance between the interpolation target 
point and the source point in the GRAPPA interpolation 
increases with the undersampling factor. As a result, the 
linear interpolation in GRAPPA is insufficient to capture 
the data correlation in k-space when the acceleration factor 
is large. Owing to the power of nonlinear representation 

in deep learning, the noise levels of RAKI and MUKR 
reconstructed images are much lower than those of 
GRAPPA reconstructed images, but increased aliasing 
artifacts are introduced in the RAKI reconstruction.

The major  problem in deep learning for  MRI 
reconstruction is the availability of training datasets. To 
address this, RAKI directly reconstructs the full k-space 
data using a simple CNN network trained with individual 
ACS data. Thus, RAKI can be viewed as a deep learning 
version of the widely used nonlinear GRAPPA parallel 
imaging method, where the nonlinear ability is introduced 
by the ReLu in the CNN. As performed in GRAPPA, RAKI 
reconstructs each undersampled k-space data point with the 
nearby sampled data, which ignores many data consistency 
constraints (21,28). Furthermore, the simple CNN network 
could not reconstruct clear boundaries and high gradient 
components. In particular, the magnitude of k-space data 

Figure 2 Comparison of different loss function for MUKR reconstruction using a 32-channel phantom dataset with uniform undersampling 
along the PE direction for reduction factor R=4 and number of ACS lines NSL =6. First row: images reconstructed using MUKR with 
L2 loss function (A), MUKR with multiplicative combination of magnitude and phase loss (B), and MUKR with summing combination 
of magnitude and phase loss (C). The PSNRs of resulting images are listed in the upper left corner of each difference image. Second 
row: zoomed-in patch image of MUKR with L2 loss function reconstructed result (D), zoomed-in patch image of MUKR multiplicative 
combination of magnitude and phase loss reconstructed result (E) and zoomed-in patch image of MUKR summing combination of 
magnitude and phase loss reconstructed result (F). PSNR, peak signal-to-noise ratio; MUKR, the proposed method; PE, phase encoding; R, 
reduce factor; ACS, autocalibration signals; NSL, number of autocalibration signals lines.

PSNR =36.4 PSNR =37.8 PSNR =37.4

A

D
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Figure 3 Comparison of GRAPPA, RAKI, and MUKR using a phantom dataset with uniform undersampling along the PE direction 
for R=4, NSL =64. First row: reference image reconstructed with full k-space data and corresponding zoomed-in patch image. Second 
row: GRAPPA, RAKI, and MUKR reconstructed images. Third row: corresponding zoomed-in patch images. GRAPPA, generalized 
autocalibrating partially parallel acquisitions; RAKI, scan-specific robust artificial-neural-networks for k-space interpolation; MUKR, the 
proposed method; R, reduce factor; ACS, autocalibration signals; NSL, number of autocalibration signals lines.

fluctuates dramatically. As a result, the images reconstructed 
with RAKI give aliasing artifacts when the undersampling 
factor is large. Such artifacts can be alleviated with MUKR, 
in which the more complex network has stronger power 
of nonlinear representation. Previous work has also 
demonstrated that U-net has a better performance than 
simple CNN network for image segmentation and super 
resolution (24). 

The depth of the original U-net is fixed to six, which 

means there are six downscale blocks and a corresponding 
six upscale blocks. There is considerable consent that the 
deeper network leads to a better performance with sufficient 
training samples (29). Nevertheless, the deeper network 
requires more training samples, which are intractable in the 
k-space-based reconstruction. In MUKR, the modified U-net 
has a depth of three. Meanwhile, the feature map is reduced 
by a factor of four. These clipping operations reduce the 
computational cost and the requirement of training samples. 

Full k-space data

GRAPPA RAKI MUKR



Quantitative Imaging in Medicine and Surgery, Vol 12, No 9 September 2022 4397

© Quantitative Imaging in Medicine and Surgery. All rights reserved.   Quant Imaging Med Surg 2022;12(9):4390-4401 | https://dx.doi.org/10.21037/qims-21-1212

Figure 4 Comparison of GRAPPA, RAKI and MUKR using an 8-channel axial brain dataset with for R=6, NSL =84. First row: reference 
image reconstructed with full k-space data (left) and the region marked with the blue box is zoomed-in and shown (right). Second row: 
GRAPPA (left), RAKI (middle), and MUKR (right) reconstructed images. Third row: corresponding zoomed-in patch images of GRAPPA 
(left), RAKI (middle) and MUKR (right). GRAPPA, generalized autocalibrating partially parallel acquisitions; RAKI, scan-specific robust 
artificial-neural-networks for k-space interpolation; MUKR, the proposed method; R, reduce factor; NSL, number of auto-calibration 
signals lines.

Full k-space data

GRAPPA RAKI MUKR

The size of input for the original U-net is generally larger 
than 256×256. Few training samples can be obtained in such 
a scenario, especially for the brain image where the k-space 
size is 256×256. The scaled-in U-net accepts a patch size 
of 64×64, which can slide along both PE and FE directions 

to obtain plentiful training samples. In the training step, 
the patch can slide with a step length of 1 to obtain more 
training samples; however, the step length for prediction can 
be set at 64 to reduce computational expense.

The k-space data are complex numbers, while most 
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Figure 5 Performance comparisons of GRAPPA, RAKI, and MUKR for a 15-channel knee dataset. First row: images reconstructed with 
full k-space data (A), GRAPPA (B), RAKI (C), and MUKR (D) for R=4, NSL =64. Second row: corresponding zoomed-in patch image of 
full k-space data (E), GRAPPA (F), RAKI (G) and MUKR (H). Third row: images reconstructed with GRAPPA (I), RAKI (J), and MUKR (K) 
for R=6, NSL =84. Fourth row: corresponding zoomed-in patch images of GRAPPA (L), RAKI (M) and MUKR (N). GRAPPA, generalized 
autocalibrating partially parallel acquisitions; RAKI, scan-specific robust artificial-neural-networks for k-space interpolation; MUKR, the 
proposed method; R, reduce factor; NSL, number of auto-calibration signal lines. 

Full k-space data GRAPPA RAKI MUKR

R=4

R=6

A

E

B

F

I

L

C

G

J

M

D

H

K

N

deep learning frameworks only support real number 
calculations. The complex data are split into two parts, that 
is real and imaginary, which are processed with different 

network channels. Nonetheless, such a real-imaginary split 
introduces phase error for MRI reconstruction (30). The 
magnitude loss and phase loss are measured in MUKR, 
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and the final loss is a combination of both individual losses. 
The results show that the real-imaginary split with L2 loss 
function can yield more artifacts than a magnitude-phase 
split. Although the results show that multiplicative and 
summing combinations of magnitude and phase loss share 
similar results, a further study is needed to investigate the 
influence on the phase reconstruction application, such as 
quantitative susceptibility mapping. 

Table 2 compares the time consumption of GRAPPA, 
RAKI, and MUKR in phantom and in vivo studies. The 
training time of GRAPPA denotes the time of computing 
interpolation weights with ACS data. The network 
training takes a considerable amount of time, and thus the 
calculation speed of RAKI and MUKR is five to eight times 
slower than that of GRAPPA. Since the proposed method 
reconstructs a patch of k-space data each time, while the 
RAKI reconstructs single k-space data points, the MUKR 
has less forward calculation times. For brain imaging, the 
forward reasoning in MUKR requires 12 times, explicitly, 
3× for PE and 4× for FE; however, the forward calculation 
in RAKI needs 16,128 times, namely, 192× for PE and 
256× for FE. As a result, RAKI consumes more time 
than MUKR. It should be noted that the implementation 
of MUKR was designed for simple proof-of-principle 

evaluation, and substantial acceleration may become 
possible with optimized hardware and more efficient 
programming language.

Conclusions

Overall, a miniature U-net has been introduced as a novel 
way to reconstruct the missing k-space data in MRI, 
which can provide an optimal trade-off between network 
performance and requirements of training samples. The 
network is trained individually for each scan using the scan-
specific ACS data with a mixing loss function involving 
magnitude loss and phase loss. Experimental results 
demonstrate that the proposed MUKR method can offer 
improved k-space-based parallel MRI reconstruction with a 
miniature U-net.
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Table 1 PSNRs and SSIM values of reconstructed images

Dataset GRAPPA RAKI MUKR

Phantom

PSNR 38.6813 40.3843 40.8461

SSIM 0.8706 0.9035 0.9240

Brain

PSNR 37.6824 40.9183 41.0584

SSIM 0.8824 0.9075 0.9289

Knee (R=4)

PSNR 45.6046 45.9673 46.1861

SSIM 0.9751 0.9803 0.9856

Knee (R=6)

PSNR 34.6824 38.6374 38.6952

SSIM 0.7068 0.8519 0.8671

PSNR, peak signal-to-noise ratio; SSIM, structural similarity 
index matrix; GRAPPA, generalized autocalibrating partially 
parallel acquisitions; RAKI, scan-specific robust artificial-
neural-networks for k-space interpolation; MUKR, the proposed 
method. 

Table 2 Comparison of time consumption between GRAPPA, 
RAKI, and MUKR(s)

Dataset GRAPPA RAKI MUKR

Phantom

R=4 38 282 130

R=6 60 448 224

Brain

R=4 24 143 64

R=6 30 204 85

Knee

R=4 46 217 127

R=6 51 358 224

GRAPPA, generalized autocalibrating partial ly paral lel 
acquisitions; RAKI, scan-specific robust artificial-neural-
networks for k-space interpolation; MUKR, the proposed 
method.
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