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Background: Microvascular invasion (MVI) is a critical risk factor for early recurrence of hepatocellular 
carcinoma (HCC) and intrahepatic cholangiocarcinoma (ICC). The aim of this study was to explore the 
contribution of 18F-fluorodeoxyglucose positron emission tomography/computed tomography (18F-FDG 
PET/CT) radiomic features for the preoperative prediction of HCC and ICC classification and MVI. 
Methods: In this retrospective study, 127 (HCC: ICC =76:51) patients with suspected MVI accompanied 
by either HCC or ICC were included (In HCC group, MVI positive: negative =46:30 in ICC group, MVI 
positive: negative =31:20). Results-driven feature engineering workflow was used to select the most predictive 
feature combinations. The prediction model was based on supervised machine learning classifier. Ten-fold 
cross validation on training cohort and independent test cohort were constructed to ensure stability and 
generalization ability of models. 
Results: For HCC and ICC classification, radiomics predictors composed of two PET and one CT 
feature achieved area under the curve (AUC) of 0.86 (accuracy, sensitivity, specificity was 0.82, 0.78, 0.88, 
respectively) on test cohort. For MVI prediction, in HCC group, our MVI prediction model achieved 
AUC of 0.88 (accuracy, sensitivity, specificity was 0.78, 0.88, 0.60 respectively) with three PET features 
associated with tumor stage on test cohort. In ICC group, the phenotype composed of two PET features and 
carbohydrate antigen 19-9 (CA19-9) achieved AUC of 0.90 (accuracy, sensitivity, specificity was 0.77, 0.75, 
0.80, respectively).
Conclusions: 18F-FDG PET/CT radiomic features integrating clinical factors have potential in HCC 
and ICC classification and MVI prediction, while PET features have dominant predictive power in model 
performance. The prediction model has value in providing a non-invasive biomarker for an earlier indication 
and comprehensive quantification of primary liver cancers.
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Introduction

Liver cancer is a high-risk malignancy which 5-year survival 
rate is only 10% (1). Hepatocellular carcinoma (HCC) and 
intrahepatic cholangiocarcinoma (ICC) account for over 
95% of primary liver cancer and have significant differences 
in clinical treatment and prognosis (2-4). Even in those 
cases when a radical resection is feasible, the probability of 
intrahepatic recurrent cancer and extrahepatic metastases 
is still very high (5). HCC and ICC tend to invade vascular 
structures. Macrovascular invasion (3) refers to tumor 
invasion of larger vessels, and the most common is the 
portal vein tumor thrombus (PVTT), while microvascular 
invasion (MVI) refers to the presence of tumor cells within 
the portal or hepatic venous system (6). The diagnostic gold 
standard of MVI positive in histopathology is defined as 5 or 
more tumor clusters visible within the peritumoral vascular 
(usually covered by endothelium) only on microscopy (7). 
Previous studies have identified MVI as a major risk factor 
for early recurrence after liver resection (8-10). However, 
lacking effective early diagnostic strategies, and with 
highly heterogeneous in clinical features and histological 
morphology (11,12), liver cancer is difficult to distinguish 
from HCC and ICC as well as identify MVI status before 
surgery. Biopsy is a solution with invasive examination, yet 
it increases the risk of metastasis and cannot provide the 
whole status of tumors (13). Therefore, there is an urgent 
need for a non-invasive quantitative evaluation method in 
vivo clinically, which can accurately distinguish pathological 
subtype and reflect the biological characteristics of the 
whole tumor before surgery.

Radiomics, served as a quantitative high-throughput 
analysis method for mining medical images with high 
dimensional extractable data, has attracted increasing 
attention in recent years (14-16). Positron emission 
tomography/computed tomography (PET/CT)-based 
radiomics combined with medical imaging and molecular 
imaging could potentially be used to investigate predictive 
or prognostic biomarkers for tumor diagnosis, treatment, 
efficacy evaluation and prognosis prediction before surgery 
(17,18). Some studies (19-21) have shown that PET/CT 
radiomics applications have obtained encouraging results, 
for instance, in differentiating benign and malignant 
tumors, and identifying tumor stages.

Contrast-enhanced ultrasound (CEUS) is commonly 
used in the differentiation of HCC and ICC (22). Besides, 
researchers have been making great efforts to find more 
precise ways to predict MVI status before surgery. MRI is 
widely used for detection the presence of MVI in ICC and 
HCC (23,24). Compared to CEUS and MRI, PET/CT 
scans noninvasively reflect tumor metabolism and molecular 
level changes in vivo and monitor tumor biological 
characteristics (25). Cassim et al. stated that most HCC 
tumor cells were hypermetabolic activity stemming from 
an increased metabolic plasticity, which can be identified 
by PET/CT (26). Findlay et al. recently reported that 
FDG accumulation correlated with the degree of ICC 
differentiation (27). Hence, PET/CT-based radiomics 
are expected to have great potential for predicting HCC 
and ICC type and MVI status with the advantages of high 
sensitivity, high specificity, repeatability. 

Encouraged by the aforementioned promis ing 
applications, we attempted to explore 18F-FDG PET/
CT imaging’s potential capability in auxiliary diagnosis of 
its additional application in HCC and ICC classification, 
as well as detection in MVI presence before surgery. 
It is efficient and convenient for patients to obtain a 
comprehensive quantification assessment of liver tumors 
after a single preoperative 18F-FDG PET/CT examination. 
Our aim of this article is to build a feasible and robust 
machine learning model with radiomics biomarkers and 
clinical characteristics that may provide preoperative 
prediction of HCC and ICC classification and MVI 
status in patients with primary liver cancer by using 
18F-FDG PET/CT images. We present the following 
article in accordance with the TRIPOD reporting 
checklist (available at https://qims.amegroups.com/article/
view/10.21037/qims-21-1167/rc).

Methods

Patients 

The study was carried out in compliance with the 
International Guidelines for Human Research Protection 
of the Declaration of Helsinki (as revised in 2013) and 
International Conference on Harmonization in Good 
Clinical Practical (ICH-GCP). This retrospective 
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study was approved by the Ethics Committee of Fudan 
University Shanghai Cancer Center and individual consent 
for this retrospective analysis was waived. We collected 
clinicopathological indicators and PET/CT images of 112 
patients (58 females and 54 males) with liver cancer who 
underwent 18F-FDG PET/CT scan between January 2016 
and December 2019 at Fudan University Shanghai Cancer 
Centre (Shanghai, China). 

Inclusion criteria were as follows: (I) pathological 
diagnosis of either HCC or ICC confirmed by partial 
hepatectomy of primary liver lesion; (II) validation of 
18F-FDG PET/CT scan images within two weeks before 
surgery; (III) with normal hematologic, renal, and hepatic 
function; (IV) complete clinical characteristics and 
pathology immunohistochemistry results. Exclusion criteria 
included: (I) metastatic liver tumor; (II) preoperative 
PET/CT showed portal vein tumor thrombosis (PVTT); 
(III) incomplete clinical characteristics and pathology 
immunohistochemistry results, including only performed 
liver biopsy; (IV) blood glucose levels over 7.78 mmol/L or 
with abnormal laboratory indexes.

Preoperative tumor staging followed the Barcelona 
Clinic Liver Cancer (BCLC) criteria revised by American 
Association for the Study of Liver Diseases (AASLD) 
in 2010. Postoperative pathological classification and 
the presence of MVI and number of satellite node were 
confirmed by two experienced pathologists. MVI positive 
is defined as 5 or more tumor clusters visible within the 
peritumoral vascular (usually covered by endothelium) only 
on microscopy. The selected serum alpha-fetoprotein (AFP), 
carbohydrate antigen 19-9 (CA19-9) levels were measured 
within one week before surgery. The threshold value of 
serum AFP and CA19-9 level was 20 ng/mL and 37 U/mL 
respectively.

PET/CT imaging acquisition and reconstruction 
parameters
18F-FDG was produced by an RDS Eclipse ST medical 
cyclotron (Siemens Healthiness, Knoxville, TN, USA) and 
an Explore FDG4 synthesis module.18F-FDG radiochemical 
purity was >95%. Blood glucose levels of all patients were 
less than 7.78 mmol/L. Patients fasted for at least 6 hours 
prior to injection. After intravenous administration of 
18F-FDG (3.7 MBq/kg), all patients laid in a bed for one 
hour and imaged by a Biograph 16HR PET/CT scanner 
(Siemens Medical Systems, Erlangen, Germany). First, an 
unenhanced low-dose whole-body CT scan was performed 

from head to the top of the thighs (tube voltage, 120 kV; 
tube current, 80–250 mA; rotation time, 0.5 s; helical 
pitch 3.6; slice thickness, 5 mm; matrix, 512×512). Images 
were performed for attenuation correction. Then, whole-
body PET scan was acquired over the same extent at three 
minutes per bed position for a total of 6–7 bed positions. 
PET data were reconstructed using iterative protocols with 
gaussian-filter iterative method (iterations, 4; subsets, 8). 
The PET and CT images were imported into the Siemens 
workstation for analysis.

Volume of interest (VOI) segmentation and image 
delineation

To provide an accurate segmentation, the VOI of primary 
liver tumors was first semi-automatically delineated using 
the GrowCut algorithm (28) implemented on 3D Slicer 
(https://www.slicer.org) based on PET standardized-
uptake-value (SUV) data, which shows high reproducibility. 
For the instances where SUV data of tumors were 
similar with adjacent structures, LLC model (29) and an 
improved edge detector were used to separate the tumor 
from the background and highlight the regions with weak 
boundaries. All results were corrected by manual adjustment 
and validated independently by two senior nuclear medical 
physicians to ensure reproducibility and reliability. All 
masks were reshaped to the same pixel spacing as original 
PET-CT images and checked based on PET-CT fusion 
image on 3D Slicer. Besides, pixel value of PET image was 
replaced by SUVbw to eliminate the effects of patients’ 
absorption differences. Conventional PET metrics were also 
considered as radiomics features. On the 18F-FDG-PET, the 
SUVmax (standardized uptake value of the highest-uptake 
voxel within a VOI) and MTV (metabolic tumor volume) 
were automatically calculated on the Siemens workstation. 
TLG was calculated as follows: TLG = MTV×SUVmean.

Radiomics feature selection and machine learning

The workflow of radiomic analysis by machine learning 
method is shown in Figure 1, which consists of four key 
steps. At first, we obtain discriminative radiomics features 
from VOIs by using reproducible feature selection 
method; then the supervised machine learning classifier 
was constructed by random forest algorithm, which 
contributed to two tasks: HCC and ICC classification and 
MVI prediction; besides, we analysed potential correlations 
between radiomics and clinical features as well as each 
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feature’s contribution to model’s results. Especially, for MVI 
prediction task, we divided all patients into HCC group and 
ICC group before feature selection step, then trained the 
MVIs identification models for each group separately.

Totally 1,815 radiomics features including 918 CT 
features and 897 PET features were extracted for each 
patient. PyRadiomics (version 3.0), an open-source 
Python software package was used to pre-process image 
and extract features, which is compliant with the Imaging 
biomarker standardization initiative as well. The matrix size 
of CT was 512×512 with the voxel size 1.0×1.0×3.3 mm3. 
The matrix size of PET was 128×128 with the voxel size 
5.5×5.5×3.3 mm3. The images were discretized with a fixed 
bin size of 40 HU and 30 of SUV, and the mask images 
were resampled to the same pixel spacing as PET and CT 
images. From this package, we applied three filters for each 
PET and CT image before extraction: original channel, 
Laplacian of Gaussian (LoG) channel and wavelet channel. 
The extracted features reflected tumors’ traits including 

intensity distribution, morphological characteristic, and 
texture pattern. The intensity feature is a first-order feature, 
which includes the maximum, mean, and average absolute 
deviation of the voxel values. The shape feature includes 
tumors’ geometry properties such as edges and angles. 
Texture feature is a second-order feature and is used to 
express tumor’s heterogeneity by the distribution of some 
common matrix, i.e., Gray Level Co-occurrence Matrix 
(GLCM), Gray Level Size Zone Matrix (GLSZM), Gray 
Level Run Length Matrix (GLRLM), and Gray Level 
Dependence Matrix (GLDM). High-order feature includes 
first-order features, second-order features and texture 
features from LoG and wavelet images, which aimed to 
reduce noises and obtain the subtle information from image 
at different frequency domains (30).

 At feature selection part (Figure 2), we aimed to build a 
reproducible feature set. Take features’ high dimensionality 
into consideration, we first eliminated statistical insignificant 
by Wilcoxon test (P<0.05 was considered significant). Then 

Figure 1 Outline of the workflow from feature acquisition, model construction, model output and results analysis. (A) The construction of 
optimal radiomics features combination. (B) Machine learning predictive classifier. (C) The output of machine learning models. (D) Result 
analysis of feature selection and model prediction. HCC, hepatocellular carcinoma; ICC, intrahepatic cholangiocarcinoma; MVI+/MVI−, 
microvascular invasion positive/negative.
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we used uni-variable random forest feature selection to 
choose relevant features. Key features with tree importance 
greater than 0.001 were included. To further keep feature 
set discriminative, we use partwise Pearson Correlation 
matrix. We first identified pairs of related features (|r| 
≥0.7 for PET and CT features), then the feature with 
higher prediction ability (higher AUC using random forest 
classifier) will be included. Next, we utilize Sequential 
Forward Floating Algorithm (31-33) to recursively find 
optimal feature combinations and avoid overfitting. We 

perform same steps for both HCC and ICC classification 
task and MVI prediction task in feature selection.

Modelling and validation

The model was evaluated with cross validation and 
independent validation to achieve robustness and 
stability (Figure 3). For HCC and ICC classification task  
(127 patients in total), they were randomly split into training 
(100 out of 127) and validation (27 out of 127) cohort. For 

Figure 2 Outline of feature selection process.

Figure 3 Flowchart for cohort divisions.
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MVI prediction in HCC (76 patients in total), there were 
60 patients for training and 16 patients for validation; for 
MVI prediction in ICC (51 patients in total), there were 
40 patients for training and 11 patients for validation. The 
proportion of positive and negative samples in the training 
and test sets is roughly the same as the proportion in the 
original dataset.

The feature selection procedure and random forest 
classifier were built on the entire training cohort, at which 
the hyper parameters were assured as well. To check 
models’ performances, 20 times of stratified 10-fold cross-
validations were performed on training cohort. To access 
machine learning models’ performances, we used receiver 
operating characteristic curve (9), sensitivity, specificity, 
positive predictive value (PPV), and negative predictive 
value (NPV) in the independent cohort. Statistical analyses 
were performed with ‘Scipy 1.3.0’, and ‘math’ packages in 
Python 3.6.8 programming language and environment.

Results

Clinical characteristics of patients

Patients’ characters with split details are shown in Tables 1,2. 
Totally 112 (55±28 years old) patients were included. The 
clinical indicators include AFP, CA19-9, age, tumor size, 
stage, tumor amount, and number of satellite nodes.

Radiomics features and performance of predictions

The most predictive feature combinations selected by 
feature engineering and corresponding explanation are 
shown in Table 3.

We compare five categories of features: (I) clinical 
characteristic only; (II) optimal CT features only; (III) 
optimal PET features only; (IV) optimal PET and CT 
features combination; (V) best PET, CT, and clinical 
characteristic combination that selected by feature 
engineering. Figure 4  shows the results of model 
performances in testing cohort in five categories. There 
were 2 PET features and one CT features that achieved the 
most prognostic value when working with HCC and ICC 
classification task (AUC =0.86). As to MVI prediction tasks, 
three PET features and tumor stage shown great ability in 
HCC group (AUC =0.88), meanwhile two PET features 
and CA19-9 performed well in ICC group (AUC =0.90). 

For HCC and ICC classification task, PET features 
show an AUC of 0.83. CT features also showed valuable 

information (AUC =0.81), enhancing the results of PET-
CT features combination (AUC =0.86). But clinical features 
failed to give useful information (AUC =0.56), which was 
worse than the results of combination as well (AUC =0.80). 

On the other hand, the results of MVI prediction tasks 
show that PET and clinical features outperform than CT 
features. For HCC in MVI task, three PET features plus 
one clinical feature (tumor stage) gave model highest AUC 
at 0.88. PET features only can achieve AUC of 0.84, but 
CT features have AUC of 0.61. Since CT features’ AUC 
is much lower than PET’s, they not only fail to give useful 
information, but worsening the results of PET-CT features 
(AUC =0.71). 

For ICC in MVI task, two PET features and CA19-9 can 
achieve AUC of 0.90. PET features also gave impressive 
AUC of 0.88. Meanwhile clinical features and CT features 
have AUC of 0.67 and 0.66 respectively, which are unable 
to give results in high accuracy, worsening the results of 
combinations. Table 4 shows detailed performances in 
optimal feature category for three tasks.

We also analysed the radiomics features’ category. As it 
illustrated in Figures 5,6, for all three tasks, PET features 
outperformed than CT features because only one CT 
feature was included. Besides, due to the spatial resolution 
of PET/CT is relatively low, and it has less advantages 
in defining the tumor boundaries all selected radiomics 
features were intensity as well as texture feature, which 
means shape features failed to give predictive information 
for both tasks. In Figure 7, we show four representative 
patient examples.

Correlation with clinical and conventional PET features

We also applied Pearson correlation matrix to discovery 
potential relationships between radiomics features and 
clinical as well as conventional PET features. Figure 8 
shows the results of Pearson partwise correlations with four 
conventional PET features and six clinical features. P<0.05 
was considered significant. We found that for all three 
tasks, the selected feature combinations had significant 
relationships with metabolic indicators, tumor size and 
tumor stage.

Discussion

HCC and ICC are two common subtypes in primary liver 
cancer with distinctive prognosis (34). The metastasis 
and recurrence are the two major obstacles to improve 
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the prognosis of liver cancer patients. More importantly, 
MVI status is an indicator of tumor’s aggressiveness and an 
independent risk factor of metastasis and recurrence (14). 
Hence, to provide precise information and appropriate 
treatment, the prediction of HCC and ICC classification 
and MVI statues before surgery is crucial. CEUS is 
commonly used in HCC and ICC differentiation and 
achieves an AUC of 0.92 (22), and MRI for MVI detection 
can achieve an AUC of 0.86 for HCC (23), an AUC of 

0.81 for ICC (25). Though the specialized medical imaging 
could give relatively high accuracy in detection, it is a great 
burden for patients to do many examinations. Encouraged 
by PET’s promising applications, we aimed to explore 
whether 18F-FDG PET/CT imaging could provide a 
potential possibility for playing an auxiliary diagnosis and 
additional contribution for HCC and ICC classification 
and MVI before surgery, so that patients can obtain the 
comprehensive quantification of tumor phenotypes after 

Table 1 Demographic & Clinical characteristics of 127 patients for HCC and ICC task

Demographic and clinical characteristics Total HCC/ICC P value

Number of patients 127 76/51 –

Age (years), median (range) 55±28 54±28/61±25 0.211

Gender 0.194

Male 79 58/21

Female 33 11/22

AFP (ng/mL) 0.029

≥20 39 37/2

<20 73 33/40

CA19-9 (U/mL) 0.802

≤37 74 52/22

>37 38 18/20

Tumor size (mm) 0.001

3 21 16/5

5 34 23/11

10 38 17/21

>10 21 14/7

Tumor stage 0.001

A 33 25/8

B 46 32/14

C 33 13/20

Tumor amount 0.112

Multiple 12 10/2

Single 100 60/40

Satellite node 0.154

None 81 44/37

1–3 41 26/15

AFP, alpha-fetoprotein; CA19-9, carbohydrate antigen 19-9; HCC, hepatocellular carcinoma; ICC, intrahepatic cholangiocarcinoma.
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a single preoperative 18F-FDG PET/CT examination for 
guiding oncologists or surgeons to establish a personalized 
therapeutic strategy. Generally, there are two findings in 
our study: we constructed a prediction model for HCC 
and ICC classification and MVI statues in primary liver 
cancer based on 18F-FDG PET/CT radiomics features 
and clinical factors. Moreover, we found that PET features 
had an impressive prediction capability in HCC and ICC 
classification and MVI, which outperformed than CT and 
clinical characteristics. 

Raman et al. (35) described that radiomics features using 
computed tomography texture analysis can detect different 
liver lesion types and normal liver tissue. Our results 
showed that PET and CT radiomics features achieved AUC 
of 0.86 (compared to 0.92 in CEUS) and a specificity of 0.88 
for HCC and ICC classification, which has potential for 
informative reference. We also found that factors related 
to tumor intensity and texture were the most important 
components in predicting histological classification. This 
is partly in agreement with the findings of Wu et al. (36). 

Table 2 Demographic & clinical characteristics of 127 patients for MVI task

Demographic and clinical characteristics Total MVI present/MVI absent P value

Number of patients 127 77/50 –

Age (years), median (range) 55±28 55±28/56±27 0.486

Gender 0.347

Male 79 48/31

Female 33 16/17

AFP (ng/mL) 0.1

≥20 39 21/18

<20 73 43/30

CA19-9 (U/mL) 0.399

≤37 74 43/31

>37 38 21/17

Tumor size (mm) 0.0009

3 21 9/12

5 34 16/18

10 38 25/13

>10 21 14/7

Tumor stage 0.090

A 33 11/22

B 46 30/16

C 33 23/10

Tumor amount 0.031

Multiple 12 10/2

Single 100 54/46

Satellite node 0.359

None 81 32/49

1–3 41 32/9

AFP, alpha-fetoprotein; CA19-9, carbohydrate antigen 19-9; MVI, microvascular invasion.
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Table 3 Feature selection results

Task Feature name Feature explanation

Classify HCC and ICC Wavelet-LHL_Median_ct The median gray level intensity within the VOI. A higher value means 
higher density in the image

Wavelet-HHL_Variance_pet Variance is the mean of the squared distances of each intensity value from 
the mean value. This is a measure of the spread of the distribution about 
the mean

Formula: ( )( )
2

1

1 Np

i
variance X i X

Np =

= −∑                                                             [1]

 Log-sigma-3-0-mm-3D_
shortrunhighgraylevelemphasis_pet

SRHGLE measures the joint distribution of shorter run lengths with higher 
gray-level values

Formula:
 ( )

( )

2

21 1

,Ng Nr

i j

p i j Q i
jSRHGLE

Nr Q

= =

=
∑ ∑

                                                      [2]

MVI: HCC Log-sigma-3-0-mm-3D_Range_pet The range of gray values in the VOI

Formula:  ( ) ( )range max X min X= −                                                               [3]

Wavelet-HHH_totalenergy_pet Total energy is the value of energy feature scaled by the volume of the 
voxel in cubic mm

Formula: ( )( )
2

1

Np

voxel
i

total energy V X i c
=

= +∑                                                         [4]

Wavelet-LLH_Entropy_pet Here, 𝜖 is an arbitrarily small positive number (≈2.2×10−16≈2.2×10−16). 
Entropy specifies the uncertainty/randomness in the image values. It 
measures the average amount of information required to encode the 
image values.

Formula: ( ) ( )( )2
1

Ng

i
energy p i log p i ε

=

= − +∑                                                         [5]

MVI: ICC Wavelet-HLL_Minimum_pet 𝐗 be a set of 𝑁𝑝 voxels included in the VOI

Formula: ( )minmun min X=                                                                            [6]

Wavelet-HLL_totalenergy_pet The same as wavelet-HHH_TotalEnergy_pet

Formula: ( )( )
2

1

Np

voxel
i

total energy V X i c
=

= +∑                                                        
 [7]

HCC, hepatocellular carcinoma; ICC, intrahepatic cholangiocarcinoma; LHL, low, high, and low frequency; VOI, volume of interest; 
SRHGLE, short run high gray level emphasis; MVI, microvascular invasion; HHH, HHH, high, high, and high frequency; LLH, low, low, and 
high frequency; HLL, high, low, and low frequency.

Specifically, tumor intensity and texture features can reflect 
subtle information from PET/CT images. For instance, 
median and variance represented tumor area’s degree of 
heterogeneity. Short Run High Gray Level Emphasis, as 
a texture feature, revealed joint distribution of dark small 
areas in VOIs. PET/CT radiomics provides molecular-
based image features and intratumoral heterogeneity (37), 
which could be an effective diagnostic tool in histological 
classification for primary liver cancers. This finding 
contributes to to the evaluation of differentiation between 
HCC and ICC, especially in cases that differentiation using 
conventional medical imaging methods is difficult.

Previous studies (38,39) validated that MVI worsened the 
prognosis of liver cancer. Emerging studies have focused 
on the relationships of contrast-enhanced CT features and 
MVI status (37,40). But prediction model of MVI based 
PET/CT radiomics features has never been reported. In 
our study, three PET features integrating tumor clinical 
stage in HCC and two PET features integrating one clinical 
factor in ICC were selected for MVI prediction. The 
compound (PET, CT, and clinical characteristic) radiomics 
predictors can identify more than 0.77 of the MVI− positive 
cases with the AUC of 0.88–0.90 (compared to 0.86 and 
0.81 in MRI). Our model exhibited better performance 
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Figure 4 Model performance in training cohort [feature combination’s category as x-axis, and feature combination’s AUC (0–1) value as 
y-axis]. (A) HCC and ICC classification task. (B) MVI prediction for HCC. (C) MVI prediction for ICC. Combined is the best feature 
combination of radiomics features and clinical features. HCC, hepatocellular carcinoma; ICC, intrahepatic cholangiocarcinoma; MVI, 
microvascular invasion; AUC, area under curve; PET, positron emission tomography; CT, computed tomography.

Table 4 Model performances of optimal category of features

Task AUC Accuracy Sensitivity Specificity NPV PPV

HCC and ICC classification 0.86 0.82 0.78 0.88 0.91 0.88 

MVI (HCC) 0.88 0.78 0.88 0.60 0.80 0.60 

MVI (ICC) 0.90 0.77 0.75 0.80 0.75 0.80 

AUC, area under the curve; NPV, negative predictive value; PPV, positive predictive value; HCC, hepatocellular carcinoma; ICC, 
intrahepatic cholangiocarcinoma; MVI, microvascular invasion.

Figure 5 Selected feature’s types three tasks. Blue are PET features; purple are CT features and pink are clinical features. (A) HCC and 
ICC classification task. (B) MVI prediction for HCC. (C) MVI prediction for ICC. MED, median; SRH, short run high gray level emphasis; 
VAR, variance; TE, total energy; RAN, range; ENT, entropy; MIN, minimum; PET, positron emission tomography; CT, computed 
tomography; HCC, hepatocellular carcinoma; ICC, intrahepatic cholangiocarcinoma; MVI, microvascular invasion. 
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with the MRI model in both HCC and ICC. Besides, PET 
features were more important than clinical features, and 
intensity features seemed to perform better than texture 
features. One possible interpretation is that tumor intensity 
and texture features implied a range of discrete tumor 
activity and intratumor heterogeneity. Another is that the 
spatial resolution of PET/CT is relatively low, and it has 
less advantages in defining the tumor boundaries. The 
greater values of these factors, the higher probability of 
MVI. This finding is consistent with the previous report 
(41) that the radiomics signature, nonsmoothed tumor 
margin, hypoattenuating halos and internal arteries were 
significantly associated with MVI status. We also found 
a positive association between some higher-order PET 
radiomics features (range, total energy, total energy) and the 
18F-FDG uptake activity (SUVmax, SUVmean, TLG) of the 
lesion. This part of results is important since it may be an 
indicator of disease extent and tumor staging, especially in 
cases where evaluation using conventional clinical imaging 
methods might have been overlooked. 

Notably, our model exhibited equivalent or superior 
performance with the CEUS and MRI model in HCC 
and ICC classification and MVI prediction. Therefore, 
18F-FDG PET/CT imaging would contribute to its key 
role in evaluating and staging tumors and potential value in 
differentiating ICC and HCC and detecting MVI before 
surgery, which could help to provide an earlier indication 
of liver cancer to select a more appropriate treatment and 
relieve the medical burden of patients. Interestingly, our 
model revealed that PET features had dominant predictive 
power in HCC and ICC classification and MVI, which 
outperformed than CT and clinical characteristics. In this 
study only one CT feature was selected by in HCC and 
ICC classification task. The reasons may be as follows: 
CT scanning in PET/CT is unenhanced low-dose CT, 
which only provides limited information and is not capable 

for sufficient tumor detection or distinction. While PET 
reflects the metabolic activity of a whole tumor (42). 
Though the importance of features in unenhanced low-
dose CT has been validated in many studied (43,44), such 
as HCC surveillance analysis (45), esophageal cancer (46) 
and lymphoma (47), the value of CT features on HCC 
and ICC differentiation still requires a larger sample for 
further validation. Further, CT features were not included 
in the MVI model. One potential explanation is that MVI 
detection is relevant to find out the presence of tumor 
cells in inside portal or hepatic venous systems (6), and 
most hepatic cancer cells were hypermetabolic activity 
stemming from an increased metabolic plasticity, which can 
be identified by PET/CT scan, especially in PET images. 
Hence unenhanced low-dose CT is insufficient in MVI 
detection in this study. 

Our study has some limitations. Firstly, most clinical 
characteristics of patients cannot contribute to the accuracy 
of the predictive model. It might be attributed to the small 
sample and a potential selection bias in this single-center 
retrospective study. Multicenter and larger clinical studies 
are necessary to be designed for validating our radiomics 
model. Nonetheless, our findings are still reasonable and 
important. According to Cochran’s formula (48): if it’s 
assumed 50% of patients are positive in 95% confidence 
level and 5% margin error, the ideal sample size is 382. 
Besides, machine learning models require around 50 
patients for algorithm’s training and validation to avoiding 
overfitting. Further, for PET/CT studies, Chalkidou  
et al. (49) found that for one radiomic feature, 10 to 15 
patients are the minimum requirement. For three different 
tasks, though the idea sample size of 382 wasn’t achieved, 
our feature selection model reduced the number of features 
to 3 (out of 127 patients), 4 (out of 76 patients) and 2 
(out of 51 patients), which suggests that our results are 
relatively valid with the minimum false detection rate. In 

Figure 6 Feature importance in three tasks. (A) HCC and ICC classification task. (B) MVI prediction for HCC. (C) MVI prediction for 
ICC. HCC, hepatocellular carcinoma; ICC, intrahepatic cholangiocarcinoma; MVI, microvascular invasion.
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Figure 7 The lesions of all four patients are located in the right lobe of the liver. (A) Patient a is a 43-year-old man with HCC and patient 
b is a 61-year-old woman with ICC. Both A and B showed high uptake and correctly predicted by machine learning model. (B) A joint 
distribution of three selected radiomic features in a 3D space. There is a relatively clear distinction between HCC and ICC. (C) Patient 
c is a 37-year-old man with MVI positive and patient d is a 69-year-old man with MVI negative. Both C and D showed moderate uptake 
and were correctly predicted by machine learning model. (D) A joint distribution of three selected radiomic features in a 3D space. There 
is a relatively clear distinction between MVI+ and MVI−. HCC, hepatocellular carcinoma; ICC, intrahepatic cholangiocarcinoma; MVI, 
microvascular invasion.
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addition, prognosis information with histologic MVI were 
not collected to investigate the predictive effectiveness of 
the model. The prediction model based on 18F-PET/CT 
radiomics features that widely used for liver cancer will be 
continually explored in future studies.

Conclusions

18F-FDG PET/CT radiomics features integrating clinical 
factors have potential in HCC and ICC classification 
and MVI prediction, while PET features have dominant 
predictive power in model performance. Patients may obtain 
the comprehensive quantification of tumor phenotypes after 
a single preoperative 18F-FDG PET/CT examination for 
guiding oncologists or surgeons to establish a personalized 
therapeutic strategy. 
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