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Wavelet transformation can enhance computed tomography 
texture features: a multicenter radiomics study for grade 
assessment of COVID-19 pulmonary lesions
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Background: This study set out to develop a computed tomography (CT)-based wavelet transforming 
radiomics approach for grading pulmonary lesions caused by COVID-19 and to validate it using real-world 
data.
Methods: This retrospective study analyzed 111 patients with 187 pulmonary lesions from 16 hospitals; 
all patients had confirmed COVID-19 and underwent non-contrast chest CT. Data were divided into a 
training cohort (72 patients with 127 lesions from nine hospitals) and an independent test cohort (39 patients 
with 60 lesions from seven hospitals) according to the hospital in which the CT was performed. In all, 73 
texture features were extracted from manually delineated lesion volumes, and 23 three-dimensional (3D) 
wavelets with eight decomposition modes were implemented to compare and validate the value of wavelet 
transformation for grade assessment. Finally, the optimal machine learning pipeline, valuable radiomic 
features, and final radiomic models were determined. The area under the receiver operating characteristic 
(ROC) curve (AUC), calibration curve, and decision curve were used to determine the diagnostic 
performance and clinical utility of the models.
Results: Of the 187 lesions, 108 (57.75%) were diagnosed as mild lesions and 79 (42.25%) as moderate/
severe lesions. All selected radiomic features showed significant correlations with the grade of COVID-19 
pulmonary lesions (P<0.05). Biorthogonal 1.1 (bior1.1) LLL was determined as the optimal wavelet 
transform mode. The wavelet transforming radiomic model had an AUC of 0.910 in the test cohort, 
outperforming the original radiomic model (AUC =0.880; P<0.05). Decision analysis showed the radiomic 
model could add a net benefit at any given threshold of probability.
Conclusions: Wavelet transformation can enhance CT texture features. Wavelet transforming radiomics 
based on CT images can be used to effectively assess the grade of pulmonary lesions caused by COVID-19, 
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Introduction

In early 2020, the COVID-19 outbreak spread rapidly 
around the globe. Many patients who became infected with 
this novel disease developed pneumonia and progressed 
rapidly into severe acute respiratory failure, with a poor 
prognosis and high mortality (1,2). The World Health 
Organization reported that, as of March 17, 2022, there 
had been 460.3 million confirmed cases of COVID-19, 
with more than 6 million confirmed deaths (3). Patients 
with COVID-19 may be at increased risk of developing 
conditions that can seriously threaten their health and lives, 
including mental illness (4). Therefore, the early diagnosis 
and severity assessment of COVID-19 continue to be 
critical in responding to the global pandemic.

Although reverse transcription-polymerase chain reaction 
(RT-PCR) remains the gold standard for COVID-19 
diagnosis, it is associated with some practical problems. 
First, the sensitivity of RT-PCR tests is lacking because 
laboratory errors or low viral loads in test specimens can 
affect the result (5). Moreover, RT-PCR test kits are in short 
supply in some developing countries (6). Consequently, in 
some countries, chest X-ray (CXR) and chest computed 
tomography (CT) are used as first-line investigation and 
patient management tools (7,8). In particular, chest CT can 
show clear early lesions and can achieve high sensitivity if 
the diagnosing radiologist is experienced. Therefore, chest 
CT plays an important role in diagnosing COVID-19-
positive cases and confirming the severity of pneumonia, 
and in many epidemic areas, it could even be considered an 
essential tool (6).

For faster and more accurate examination, many artificial 
intelligence (AI) techniques for automated detection 
and quantitative analysis of COVID-19 lesions from CT 
images have been developed based on deep learning and 
radiomics (9-18). In addition to detecting lesions, assessing 
the grade of COVID-19 pulmonary lesions is important 
for the hierarchical management and treatment of infected  
patients (19). However, few studies have focused on the use 
of AI in grading pulmonary lesions (20), and those that exist 

have only used “pure” datasets accrued from unified vendor 
scanners (21,22), which limits the real generalizability of 
their AI models (23). Thus, it is necessary to develop a more 
robust AI grading tool based on real-world multicenter 
datasets.

Radiomics, as a relatively mature medical image analysis 
technology, can not only be used to build prediction models 
with a high diagnostic performance, but also to mine 
valuable imaging features which can provide guidance for 
clinical practice (24-26). Some previous radiomics studies 
have suggested that wavelet transformation could be helpful 
for radiomics analysis (27-29). However, to date, no study 
has evaluated the effects of various wavelets on radiomic 
features and models.

In the present real-world multicenter study, we used data 
from 16 hospitals with 14 different imaging platforms to 
explore and compare 23 three-dimensional (3D) wavelets 
and develop an intelligent classifier for the grade assessment 
of COVID-19 pulmonary lesions based on CT images. It 
is hoped that the radiomic model developed in this study 
will aid in reducing radiologists’ workloads and cases of 
misdiagnosis, while improving the accuracy of diagnosis 
in patients with COVID-19 infection. We present the 
following article in accordance with the TRIPOD reporting 
checklist (available at https://qims.amegroups.com/article/
view/10.21037/qims-22-252/rc).

Methods

Ethics and study design

This retrospective study was conducted in accordance with 
the Declaration of Helsinki (as revised in 2013). The study 
was approved by the Ethics Committee of West China 
Hospital of Sichuan University (No. 2020190), with the 
need for individual consent waived due to the retrospective 
nature of the analysis.

Wavelet transforming radiomic models were designed 
to quickly and accurately assess the grade of COVID-19 
pulmonary lesions. In all, 111 patients with 187 pulmonary 

which may facilitate individualized management of patients with this disease.
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Figure 1 Overview of the study workflow showing the process from CT images to radiomics features to machine learning models. The red 
arrow indicates the location of the lesion. CT, computed tomography; H, high-pass decomposition filter; L, low-pass decomposition filter; 
FIR, finite impulse response; GLCM, gray-level co-occurrence matrix; GLRLM, gray-level run length matrix; GLSZM, gray-level size zone 
matrix; NGTDM, neighboring gray tone difference matrix; GLDM, gray-level dependence matrix; ROC, receiver operating characteristic; 
AUC, area under the receiver operating characteristic curve.

lesions were analyzed retrospectively in this study. 
Seventy-three quantitative texture features were extracted 
from the volume of interest (VOI) of the pulmonary 
lesion based on the original and 23 wavelet-transformed 
CT images. First, we determined the optimal machine 
learning pipeline by comparing multiple feature selection 
algorithms and modeling methods. Then, we selected 
the valuable features from each image mode. In all, 184 
radiomic models of 23 wavelets with eight decomposition 
modes were built and compared by using the area under 
the receiver operating characteristic (ROC) curve (AUC) 
and DeLong test. The final radiomic model was developed 
using the training cohort and evaluated using the test 
cohort (see below). Radiomic feature analysis and feature 
map analysis were also implemented. The study workflow 
is shown in Figure 1.

Study population and grade assessment

Data were collected from 174 patients with RT-PCR-
confirmed COVID-19 from 16 hospitals in Sichuan, 
China, between January 2020 and March 2020. All patients 
underwent non-contrast chest CT scans. The exclusion 
criteria were as follows: (I) insufficient CT image quality 
(n=42); and (II) uncertain lesion grade (n=21). This left 
187 pulmonary lesions of 111 patients for analysis. Figure 2 

shows a flowchart of the inclusion and exclusion process for 
the patients in this study.

The study data were divided into two cohorts according 
to the hospital in which the patients underwent CT 
scanning: (I) a training cohort (72 patients with 127 lesions 
from nine hospitals); and (II) a test cohort (39 patients with 
60 lesions from seven hospitals).

Grade assessment of chest CT images was performed 
by a radiologist D.Y. with >10 years of experience. Briefly, 
lesions with scattered ground-glass nodules (GGOs) 
were graded as mild, whereas high-density lesions with 
continuous or large areas of GGOs were graded as 
moderate or severe. Lesions with only continuous GGOs 
were graded as moderate, whereas those with continuous 
GGOs, regional texture smoothness, and high CT values 
were graded as severe (8,10,30). Based on these criteria, 
108 lesions were classified as mild and 79 were classified as 
moderate or severe.

The clinical characteristics of the study population as a 
whole and according to lesion grade are provided in Table 1.

Acquisition and segmentation of CT images

As detailed in Table S1, CT imaging was performed using 
different scanners according to manufacturers’ instructions. 
The fact that the CT images were obtained with a variety 

https://cdn.amegroups.cn/static/public/QIMS-22-252-supplementary.pdf
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Patients with COVID-19 confirmed by RT-PCR examinations
(From 16 medical centers; between January 2020 and March 2020)

N=174 patients underwent non-contrast chest CT scans

N=111 patients with M=187 pulmonary lesions in our study

Training cohort 
(From 9 medical centers, N=72, M=127)

Test cohort 
(From 7 medical centers, N=39, M=60)

Insufficient CT image quality N=42

Uncertain grade assessment N=21

Figure 2 Flowchart showing the application of inclusion and exclusion criteria to the study population. RT-PCR, reverse transcription-
polymerase chain reaction; CT, computed tomography; N, the number of patients; M, the number of lesions.

Table 1 Clinical characteristics of the study population

Characteristics All lesions (n=187) Mild lesions (n=108) Moderate/severe lesions (n=79) P value

Age (years), mean ± SD 44.88±12.15 46.51±12.30 42.65±11.58 0.030

Sex, n (%) 0.112

Male 112 (59.89) 70 (64.81) 42 (53.16)

Female 75 (40.11) 38 (35.19) 37 (46.84)

Cohort, n (%) 0.039

Training 127 (67.91) 80 (74.07) 47 (59.50)

Test 60 (32.09) 28 (25.93) 32 (40.50)

SD, standard deviation.

of CT scanners reflects the real-world, multicenter 
design of this study. All CT scans were acquired from the 
Picture Archiving and Communication System for further 
processing.

The VOIs of pulmonary lesions were segmented by two 
radiologists P.H. and S.H. with >5 years of experience each. 
A third radiologist D.Y. with >10 years of experience in 
chest CT imaging checked the results and determined the 
final VOIs through discussion. The VOIs were positioned 
using ITK-SNAP (version 3.8.0; http://www.itksnap.
org/pmwiki/pmwiki.php) (31). During the segmentation 

process, the lesion grade was re-evaluated. If a disagreement 
arose, the final result was determined through discussion.

Radiomic features and wavelet transform

Radiomic features were defined using Python PyRadiomics 
vers ion 3.0.1 (https ://github.com/AIM-Harvard/
pyradiomics) (32), with most of them adhering to the 
definitions of the Imaging Biomarker Standardization 
Initiative (33). The preprocessing settings were as follows: 
the interpolator was siktBSpline, the resampled pixel 

http://www.itksnap.org/pmwiki/pmwiki.php
http://www.itksnap.org/pmwiki/pmwiki.php
https://github.com/AIM-Harvard/pyradiomics
https://github.com/AIM-Harvard/pyradiomics
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Table 2 Details of the wavelets used in this study

Wavelets Abbreviation NA Decomposition mode

Haar haar N/A LLH, LHL, LHH, HLL, HLH, 
HHL, HHH, LLL

Daubechies N dbN 1, 10, 20

Symlets N symN 2, 10, 20

Coiflets N coifN 1, 2, 3, 4, 5

Biorthogonal Nr.Nd bior Nr.Nd 1.1, 2.2, 3.3, 4.4, 5.5

Reverse biorthogonal Nr.Nd rbio Nr.Nd 1.1, 2.2, 3.3, 4.4, 5.5

“Discrete” FIR approximation of Meyer dmey N/A
A, decomposition progression of wavelets. “N” in dbN, symN, and coifN refers to the number of vanishing moments. In biorNr.Nd and 
rbioNr.Nd, “Nr” is the number of the order of the functions used for reconstruction and “Nd” is the order of the functions used for 
decomposition (36). FIR, finite impulse response; N/A, not applicable; L, low-pass decomposition filter; H, high-pass decomposition filter.

spacing was [1, 1, 1], the bin size was 25, and the minimum 
value in Hounsfield units was −1,000, shift +1,000. Seventy-
three texture features were extracted from each VOI in the 
original CT image, including 22 gray-level co-occurrence 
matrix (GLCM) features, 16 gray-level run length matrix 
(GLRLM) features, 16 gray-level size zone matrix (GLSZM) 
features, 14 gray-level dependence matrix (GLDM) 
features, and 5 neighboring gray tone difference matrix 
(NGTDM) features. The details of the extracted texture 
features are provided in Table S2.

To determine the effect of wavelet transformation on 
texture features, 23 3D wavelet transform algorithms were 
used to decompose the original image into eight parts (LLH, 
LHL, LHH, HLL, HLH, HHL, HHH, and LLL; where 
L refers to a low-pass decomposition filter and H refers 
to a high-pass decomposition filter) (34,35). The same 
texture features were then extracted from each VOI in the 
translated images. Table 2 provides details of all the wavelets 
implemented in our study.

Machine learning pipeline

We defined an optimal pipeline for feature selection and 
modeling through comparisons of different machine learning 
pipelines performed on the basis of the original texture 
features. The performance of different machine learning 
pipelines is summarized in Table 3. The optimal pipeline was 
set as follows: first, data normalization was implemented, and 
then the best subset of features was selected by performing a 
BorutaShap algorithm (37,38), which was a wrapper method 
combining the Boruta algorithm (39) with SHapley Additive 
exPlanations (SHAP) (40). Based on the selected features, a 

random forest model was built in the training cohort with 
10-fold cross-validation and then tested in the test cohort.

Comparison of different wavelets

Based on the machine learning pipeline, we determined 
the valuable texture features in the original image before 
selecting the same texture features from all the wavelet-
transformed images (23 wavelets with eight decomposition 
modes). Finally, all selected feature groups were modeled 
and compared. Based on the results of this comparison, 
the optimal wavelet transforming radiomic model was 
determined.

Radiomic model and statistical analysis

The final radiomic model was developed in the training 
cohort and evaluated in the test cohort. To facilitate the 
clinical use of our model, receiver operator characteristic, 
calibration, and decision curves were used to evaluate its 
diagnostic performance and clinical utility.

Statistical analysis was mainly performed using R (version 
3.5.3; https://www.r-project.org/). All the machine learning 
and image processing algorithms were implemented in 
Python (version 3.7.11; https://www.python.org/). The chi-
squared test was used to test the significance of differences 
in count variables, and the Mann-Whiney U test was 
used to test the significance of differences in continuous 
variables. Spearman’s test was used to assess associations 
between different features. Interobserver variability of 
feature extraction was evaluated using intraclass correlation 
coefficients (ICCs). Differences in efficacy between different 

https://cdn.amegroups.cn/static/public/QIMS-22-252-supplementary.pdf
https://www.r-project.org/
https://www.python.org/
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ROC curves were determined by using the DeLong test. 
Two-sided P<0.05 was considered statistically significant.

Results

Clinical characteristics

As shown in Table 1, in all, there were 108 (57.75%) mild 
lesions and 79 (42.25%) moderate or severe lesions. In the 
training cohort, 80 (74.07%) lesions were defined as mild 
lesions, and in the test cohort, 28 (25.93%) lesions were 
defined as mild lesions. In our dataset, age was significantly 
correlated with lesion grade (P=0.030). Due to the 
limitations associated with the retrospective nature of this 
study, many clinical characteristics were not included for 
analysis.

Optimal machine learning pipeline and selected features

As shown in Table 3, BorutaShap + random forest had a 
cross-validation mean AUC of 0.85 and a test AUC of 

0.88, which were higher than the values for other machine 
learning pipelines. An example of BorutaShap selection 
in an original image is shown in Figure S1. Table 4 lists 
the final selected radiomic features, all of which showed 
good reproducibility (ICC >0.75). All the features were 
significantly correlated with the severity grading of 
COVID-19 pulmonary lesions (P<0.05), with features F1–
F6 having correlations with extremely high significance 
(P<0.001). Of all the features examined, the GLCM features 
contributed maximum numbers (~44.44%).

Comparison of wavelet transform models

The same radiomic features were selected from all wavelet-
transformed images (23 wavelets with eight decomposition 
modes; 184 image modes in total). Figure S2 shows 
the main results of the comparisons. Of all the wavelet 
transforming radiomic models, biorthogonal 1.1 (bior1.1) 
showed the best performance, and the LLL decomposition 
mode generally had the highest diagnostic performance 
among all the image modes. As shown in Figure 3, the 

Table 3 Performance of different machine learning pipelines

Machine learning pipeline Training AUC Cross-validation mean AUC Test AUC

BorutaShap + RF* 0.98* 0.85* 0.88*

BorutaShap + SVM 0.99 0.82 0.84

BorutaShap + LR 0.96 0.82 0.83

BorutaShap + MLP 0.99 0.83 0.85

Boruta + RF 0.98 0.84 0.87

Boruta + SVM 0.97 0.84 0.86

Boruta + LR 0.95 0.83 0.84

Boruta + MLP 0.99 0.85 0.87

LASSO + RF 0.94 0.78 0.80

LASSO + SVM 0.94 0.78 0.80

LASSO + LR 0.98 0.84 0.86

LASSO + MLP 0.97 0.83 0.85

RFE + RF 0.97 0.84 0.86

RFE + SVM 0.96 0.85 0.87

RFE + LR 0.97 0.80 0.86

RFE + MLP 0.97 0.82 0.85

*, the best-performing pipeline. AUC, area under the receiver operating characteristic curve; RF, random forest; SVM, support vector 
machine; LR, logistic regression; MLP, multilayer perceptron; LASSO, least absolute shrinkage and selection operator; RFE, recursive 
feature elimination.

https://cdn.amegroups.cn/static/public/QIMS-22-252-supplementary.pdf
https://cdn.amegroups.cn/static/public/QIMS-22-252-supplementary.pdf
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bior1.1 LLL model had AUCs of 0.97 and 0.91 in the 
training and test cohorts, respectively; thus, it performed 
significantly better than the original radiomic model (AUC 
=0.880; P<0.05).

Overall performance of the final radiomic model

Subsequently, the bior1.1 LLL model was chosen as the 
optimal radiomic classifier, and the feature maps were 

calculated. A detailed performance evaluation of the 
radiomic model is provided in Table 5. In the training 
cohort, the radiomic model had a macro average precision 
of 0.93, with a sensitivity of 93.75% and a specificity of 
93.62%. In the test cohort, the model had a macro average 
precision of 0.84, with a sensitivity of 96.43% and a 
specificity of 68.75%.

The calibration and decision curves in the training and 
test cohorts are shown in Figure 4. The calibration curves 
showed that the mean absolute error of the radiomic 
model was 0.012 and 0.030 in the training and test cohorts, 
respectively. Through decision analysis, we found that 
our radiomic model could add more benefit than could a 
treat-all or treat-none scheme at any given threshold of 
probability. Two examples of chest CT diagnosis using the 
radiomic model with feature maps are shown in Figure 5; 
these examples demonstrate that visualization of radiomic 
features can aid in clinical decision making.

Discussion

In clinical practice, grade assessment of COVID-19 
pulmonary lesions (mild or moderate/severe) is of 
considerable importance to the further diagnosis of 
severity and treatment of patients. Intelligent CT-based 
diagnostic tools may help to overcome the subjectivity and 
inconsistencies associated with physicians’ assessments, 
thus supporting the use of precision treatment, especially 
in COVID-19 epidemic areas with limited capacity for 
diagnosis. Herein, we have reported on the development 
and validation of a CT-based wavelet transforming 

Table 4 Radiomic features selected in original images

Feature Feature type Feature value CorrelationA P value

F1 GLRLM Long run high gray-level emphasis 0.441 <0.001

F2 GLCM Autocorrelation 0.408 <0.001

F3 GLCM Joint averages 0.414 <0.001

F4 GLCM Cluster shade −0.476 <0.001

F5 GLDM Large dependence high gray-level emphasis 0.395 <0.001

F6 NGTDM Busyness −0.345 <0.001

F7 GLDM Gray-level non-uniformity −0.227 0.010

F8 GLSZM Gray-level non-uniformity −0.207 0.020

F9 GLCM Correlation 0.168 0.042
A, Spearman correlation coefficient with two-sided test. GLRLM, gray-level run length matrix; GLCM, gray-level co-occurrence matrix; 
GLDM, gray-level dependence matrix; NGTDM, neighboring gray tone difference matrix; GLSZM, gray-level size zone matrix.
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Table 5 Detailed performance evaluation of the radiomic model

Index
Training cohort Test cohort

Precision Recall F1 Support Precision Recall F1 Support

Mild lesions 0.96 0.94 0.95 80 0.73 0.96 0.83 28

Moderate/severe lesions 0.90 0.94 0.92 47 0.96 0.69 0.80 32

Accuracy N/A N/A 0.94 127 N/A N/A 0.82 60

Macro average 0.93 0.94 0.93 127 0.84 0.83 0.82 60

Weighted average 0.94 0.94 0.94 127 0.85 0.82 0.81 60

N/A, not applicable.
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Figure 4 Calibration (A,B) and decision (C,D) curves for our radiomic model in the training (A,C) and test (B,D) cohorts. Apparent curves 
refer to in-sample calibration of the model, ideal curves refer to the perfect prediction model, and bias-corrected curves show results of 
overfitting calibrated by bootstrap sampling, where B is the numbers of bootstraps. For decision curves (C,D), gray lines represent the 
hypothesis that all lesions were moderate or severe and black lines represent the hypothesis that all lesions were mild.

radiomics nomogram based on real-world multicenter data 
that had a high and robust diagnostic performance (AUC 
=97.3% in the training cohort; AUC =92.1% in the test 
cohort).

With the global COVID-19 epidemic, there have been 
many AI-based COVID-19 diagnostic studies (41,42). 

However, most COVID-19-related medical imaging 
AI technologies focus on object detection, assisting 
diagnosis, and predicting progress (20). Compared with 
previously published models to assess the severity of 
COVID-19 (21,22,43), our radiomics nomogram showed 
a very high predictive performance and robustness. 
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Figure 5 CT scans of typical COVID-19 lesions with radiomic feature maps showing the diagnostic performance of our radiomic model. 
(A) Results for a 49-year-old man with a moderate/severe lesion, showing a prediction probability of 0.98 by using the radiomic model. 
(B) Results for a 64-year-old man with a mild lesion, showing a prediction probability of 0.08. The details of radiomic features F1–F9 
are presented in Table 4. Hot color mapping can be used for better visualization. The insets on the CT scans to which arrows point are 
the regions of interest in the lesion in the original image; the different radiomics feature maps are shown to the right. CT, computed 
tomography.

Moreover, in addition to building the diagnostic model, 
this study has also found some interesting insights into 
CT radiomics.

The realization and promotion of AI are seriously 
affected by the multivendor nature of real-world data, 
which contain confounding and discrepant information (23).  
Under this circumstance, the training of deep learning 
models is often difficult, resulting in underperformance, 
and the features of engineering-based radiomics may 
show a superior performance (44,45). Also, advanced 
feature selection algorithms can help solve the issue 
of dimensionality (46). In the present study, we used 
BorutaShap, which combines Boruta built based on a 
random forest model with Shapley values (37), and found 
that this could provide a better features subset and the 
most accurate global feature rankings. In addition, SHAP 
improves the interpretability of machine learning (47). As 
the results of the present study show, BorutaShap is suitable 
for analyzing and processing complex heterogeneous 
biomedical data.

Previous studies have shown the value of texture features 
in the imaging diagnosis of inflammation and tumors 
(48-50). Some studies have also suggested that wavelet 
transform may increase the value of texture features (27,51), 
but specific clinical research is lacking. In the present study, 
we found that wavelet transforming radiomics showed a 
better performance than did original radiomics (AUC: 
0.921 vs. 0.880, respectively; P<0.05). These results indicate 
that wavelet transform may amplify the heterogeneity 
information of texture features in medical images to some 
extent. Zhou et al. similarly found that wavelet-transformed 
textures outperformed original textures in magnetic 
resonance imaging (28), and Chaddad et al. showed that 
multiscale texture features based on 3D wavelet transform 
were more sensitive in discriminating colorectal cancer 
grades (29). Together, these findings provide support for 
further discussions of the effects of wavelet transform on 
texture features. Moreover, we found that haar, db1, sym2, 
coif1, coif2, and bior1.1 wavelets were more valuable 
in our dataset (see Figure S2). Wavelet transform can 
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decompose image signals by using low- and high-pass 
filters. However, it is not usually known which filter is 
better for amplifying critical information. In the present 
study, the LLL decomposition modes of 3D wavelets all 
showed a better diagnostic performance, which may provide 
reference to other studies. To demonstrate the effects 
of different decomposition modes on radiomic features, 
taking GLCM autocorrelation (feature F2) as an example, 
we provide feature maps in eight decomposition modes 
in Figure S3; the feature map shows more hierarchical 
changes and information content in the LLL mode. 
Radiomic feature maps assist clinical decision making in the 
form of secondary imaging, which may help to accelerate 
the promotion and application of radiomics and other AI 
algorithms in medicine (52,53).

The radiomics quality score (RQS) is an important tool 
for evaluating the quality of radiomics research (54), and 
we advocate that every radiomics study should use the RQS 
for self-examination. The highest possible RQS is 36, and 
the RQS of the present study was 20 (checkpoint 1: +1; 
checkpoint 2: +1; checkpoint 3: +18), which is better than 
most radiologic studies (55).

In our dataset, the mean ± standard deviation (SD) age 
of patients with mild lesions was significantly higher than 
that of patients with moderate or severe lesions (46.51±12.3 
vs. 42.65±11.58 years, respectively; P=0.030). We do not 
believe that this observation is clinically important, but 
simply a trend in our dataset. Moreover, it does not affect 
the main points of this study, because our radiomic model 
was constructed purely based on CT images, and clinical 
factors were not incorporated into the model.

This study has some limitations. First, as a retrospective 
study, related potential bias is inevitable and certain clinical 
information was not available for inclusion in the study. A 
prospective study will be able to provide more convincing 
evidence of the utility of our radiomic model in grading 
lesions. Second, the segmentation of pulmonary lesions in 
our study was not fine enough. However, we validated the 
feasibility of using radiomics based on rough segmentation. 
Third, 16 hospitals in the study are located in Sichuan 
province, China. We do not know whether there are 
regional differences that could affect the broader application 
of our results and the use of our radiomic model in other 
populations. Thus, a larger multiregional prospective study 
is needed to verify our findings. Fourth, due to different 
research purposes, we did not explore more advanced AI 
algorithms.

Conclusions

In conclusion, this study has demonstrated that CT-based 
wavelet transforming radiomics outperformed original 
radiomics in the grade assessment of COVID-19 pulmonary 
lesions, and showed high accuracy and robustness in a 
multicenter validation. Therefore, our radiomic model may 
be used as a diagnostic tool to help with efficient clinical 
diagnosis and decision making for patients with COVID-19.
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Table S1 The details of CT imaging models

Index Primary cohort Test cohort

Number of centers 9 7

CT manufacturer’s 
models

GE BrightSpeed, GE LightSpeed VCT, GE Optima 
CT520 Series, NMS NeuViz 128, Philips Brilliance 64, 
Siemens Somatom Definition AS+, Siemens Emotion 
16(2007), UIH uCT 550, UIH uCT 760

GE BrightSpeed, GE Optima CT520 Series,
NMS NeuViz 64 In, Philips Ingenuity CT, Siemens 
Somatom Definition AS, Siemens Somatom go.Now, 
UIH uCT 528

CT, computed tomography.

Table S2 The details of radiomic features

Texture analysis Radiomic features

GLCM Autocorrelation, joint average, cluster prominence, cluster shade, cluster tendency, contrast, correlation, difference 
average, difference entropy, difference variance, joint energy, joint entropy, Imc1, Imc2, Idm, Idmn, Id, Idn, inverse 
variance, maximum probability, sum entropy, sum squares

GLRLM Gray level non uniformity, gray level non uniformity normalized, gray level variance, high gray level run emphasis, 
long run emphasis, long run high gray level emphasis, long run low gray level emphasis, low gray level run 
emphasis, run entropy, run length non uniformity, run length non uniformity normalized, run percentage, run 
variance, short run emphasis, short run high gray level emphasis, short run low gray level emphasis

GLSZM Gray level non uniformity, gray level non uniformity normalized, gray level variance, high gray level zone emphasis, 
large area emphasis, large area high gray level emphasis, large area low gray level emphasis, low gray level zone 
emphasis, size zone non uniformity, size zone non uniformity normalized, small area emphasis, small area high gray 
level emphasis, small area low gray level emphasis, zone entropy, zone percentage, zone variance

GLDM Dependence entropy, dependence non uniformity, gray level non uniformity, dependence non uniformity 
normalized, dependence variance, gray level variance, high gray level emphasis, large dependence emphasis, large 
dependence high gray level emphasis, low gray level emphasis, large dependence low gray level emphasis, small 
dependence emphasis, small dependence high gray level emphasis, small dependence low gray level emphasis

NGTDM Busyness, coarseness, complexity, contrast, strength

The detailed mathematical definitions were shown in https://pyradiomics.readthedocs.io/en/latest/index.html. GLCM, gray level co-
occurrence matrix; GLRLM, gray level run length matrix; GLSZM, gray level size zone matrix; GLDM, gray level dependence matrix; 
NGTDM, neighboring gray tone difference matrix.

Supplementary
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Figure S1 The BorutaShap selection in original image. SHAP, SHapley Additive exPlanations.
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Figure S3 The GLCM autocorrelation feature maps of bior1.1 wavelet transforming. (A) Feature map in bior1.1 HLH, (B) HLL, (C) 
LHH, (D) LHL, (E) LLH, (F) HHH, (G) HHL, and (H) LLL. GLCM, gray level co-occurrence matrix; bior, biorthogonal; L, low-pass 
decomposition filter; H, high-pass decomposition filter.

Figure S2 Diagnostic performance of all the wavelet transforming radiomic models. The AUCs of 184 wavelet transforming radiomic 
models in the test cohort. AUC, area under the receiver operating characteristic curve; L, low-pass decomposition filter; H, high-pass 
decomposition filter; db, daubechies; sym, symlets; coif, coiflets; bior, biorthogonal; rbio, reverse biorthogonal; dmey, “discrete” FIR 
approximation of Meyer.


