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Background: The segmentation of breast ultrasound (US) images has been a challenging task, mainly 
due to limited data and the inherent image characteristics involved, such as low contrast and speckle noise. 
Although convolutional neural network-based (CNN-based) methods have made significant progress over 
the past decade, they lack the ability to model long-range interactions. Recently, the transformer method 
has been successfully applied to the tasks of computer vision. It has a strong ability to capture distant 
interactions. However, most transformer-based methods with excellent performance rely on pre-training on 
large datasets, making it infeasible to directly apply them to medical images analysis, especially that of breast 
US images with limited high-quality labels. Therefore, it is of great significance to find a robust and efficient 
transformer-based method for use on small breast US image datasets.
Methods: We developed a dilated transformer (DT) method which mainly uses the proposed residual axial 
attention layers to build encoder blocks and the introduced dilation module (DM) to further increase the 
receptive field. We evaluated the proposed method on 2 breast US image datasets using the 5-fold cross-
validation method. Dataset A was a public dataset with 562 images, while dataset B was a private dataset with 
878 images. Ground truth (GT) was delineated by 2 radiologists with more than 5 years of experience. The 
evaluation was followed by related ablation experiments.
Results: The DT was found to be comparable with the state-of-the-art (SOTA) CNN-based method and 
outperformed the related transformer-based method, medical transformer (MT), on both datasets. Especially 
on dataset B, the DT outperformed the MT on metrics of Jaccard index (JI) and Dice similarity coefficient 
(DSC) by 2.67% and 4.68%, respectively. Meanwhile, when compared with Unet, the DT improved JI and 
DSC by 4.89% and 4.66%, respectively. Moreover, the results of the ablation experiments showed that each 
add-on part of the DT is important and contributes to the segmentation accuracy.
Conclusions: The proposed transformer-based method could achieve advanced segmentation performance 
on different small breast US image datasets without pretraining.
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Introduction

Image segmentation is one of the essential tasks of 
computer-aided diagnosis (CAD) systems which are 
developed to help doctors make reliable diagnostic 
decisions swiftly, especially during the early screening and 
diagnosis of breast cancer using breast ultrasound (US) (1-3).  
It requires finding actual tumor boundaries contained in 
the US images which are generated in real-time during 
the process of inspection, since only accurate tumor 
segmentation can provide reliable and complete auxiliary 
information for subsequent screening and diagnosis (4). 
However, breast US images are associated with inherent 
issues, such as speckle noise and low contrast. These issues 
are prone to yielding false positives during the process of 
image segmentation (5-7). This presents a challenge to the 
popularization of CAD systems. Therefore, innovating a 
robust image segmentation method is crucial to reducing 
false positives and achieving efficient segmentation of breast 
US images.

Use of a convolutional neural networks (CNN) has 
become the mainstream method due to its ability to 
automatically extract hierarchical feature representation of 
images, and it has developed rapidly in the field of computer 
vision (8). Since 2013, the automated segmentation methods 
applied to CAD systems have mainly been deep learning 
methods based on CNN. In the field of medical image 
segmentation, Unet (9) was the first and is the most classical 
CNN-based segmentation method. Many improved versions 
of Unet have subsequently been proposed and reported to 
perform excellently on medical image segmentation. For 
example, Unet++ (10) concatenates the 4 layers of Unet 
together and aggregates the feature maps with different 
scales into the decoder, which improves the segmentation 
accuracy, and ResUnet (11) replaces each submodule 
of Unet with the form of residual connection. Some 
researchers have focused on improving the main network 
structure of Unet and others have added attention modules 
or information extraction modules which can help control 
the importance of the input feature by changing the weights 
of the input variable. For example, Attention Unet (12) 
introduced a local spatial attention module by adding an 
attention module to each skip connection, and SE-Net (13)  
introduced a channel attention mechanism to increase 
the network awareness of different channels of an image. 
Moreover, considering that the spatial attention module 
only focuses on the target region and the channel attention 
mechanism only focuses on the local information of each 

channel, researchers have proposed a mechanism based on 
the mixed domain, such as convolutional block attention 
module (CBAM) (14) and residual attention learning (15). 
However, although CNN-based deep learning methods 
have made significant progress in the field of medical image 
segmentation (16,17), a bottleneck remains.

The CNN-based methods perform weakly on modeling 
long-range dependencies of an image. They extract 
feature maps by using convolution kernels of different 
sizes to perform convolution operations on a target image; 
one kernel of each convolution layer only captures the 
corresponding local correlations, but global interactions 
information is of great importance for medical images (18). 
Especially for breast US image segmentation—due to the 
existence of speckle noise and low contrast—the lack of 
long-range dependency learning can easily lead to false 
positives in the segmentation results. Many researchers have 
tried to improve the receptive field of CNN by proposing 
methods such as the pyramid scene parsing network (19) 
and atrous convolution (20), but capturing long-range 
interactions is still a challenge due to CNN’s poor scaling 
properties with respect to large receptive fields (21). Since 
the use of self-attention has succeeded in addressing the 
problem of long-range dependencies in the field of natural 
language processing (NLP) (22), CNN-based methods 
have begun to evolve tremendously. Global attention layers 
have been added to the existing convolution networks, such 
as SE-Net and spatially-aware attention mechanism (23). 
Some researchers (24,25) have used self-attention layers 
to replace the convolution layers of ResUnet. Since the 
proposal of the pretrained Vision Transformer (ViT) (26) 
model, which regards the inputting images patches with 
their position embedding information as “word vector” 
of NLP models, the popularity of transformer-based 
segmentation methods has exploded (27-29). Of particular 
note is the swim transformer, which has successfully applied 
a transformer to the image semantic segmentation task (30). 

However, most transformer-based methods require 
pretraining on large datasets to achieve satisfactory 
performance, yet large datasets and labels with high quality 
images are very expensive to obtain in the field of medical 
image segmentation. Some researchers have made related 
attempts to improve the adaptability of transformer-based 
methods to small datasets (16,18,27). The most typical 
work is medical transformer (MT) which was proposed by 
Valanarasu et al. (18). They proposed a gated axial attention 
layer which is used for building multihead attention 
modules and used a transformer-based encoder. Meanwhile, 
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they proposed a LoGo training strategy and achieved good 
segmentation performance on 3 medical image datasets 
without pretraining. However, MT has been found not to 
perform particularly well on breast US images with low 
contrast. As shown in Figure 1, false positives as well as 
incomplete segmentation results (highlighted with a red 
rectangle) are generated by MT, due to its lack of special 
attention to the region of interest (ROI).

Therefore, to achieve robust and efficient segmentation 
performance on small breast US image datasets, we propose 
the dilated transformer (DT), which uses the proposed 
residual axial attention layer as the building layer of a 
multihead attention block. It has a strong ability to model 
long-range interactions of images and achieve efficient 
segmentation of breast US images. The main contributions 
are as follows: (I) a residual axial attention mechanism is 
proposed to help the model capture more detailed local 
information, (II) a dilated-convolution module (DM) is 
introduced to the end of the encoder pipeline to extract 
more global interactions information from a larger receptive 

field, and (III) a transformer-based architecture is proposed 
to achieve robust and efficient segmentation of breast 
US images through use of the proposed residual axial-
attention layer as the main building block of the encoder 
and the introduced DM as the bridge between the end of 
the encoder and the head of the decoder. We present the 
following article in accordance with the TRIPOD reporting 
checklist (available at https://qims.amegroups.com/article/
view/10.21037/qims-22-33/rc).

Methods

The study was conducted in accordance with the 
Declaration of Helsinki (as revised in 2013), and was 
approved by the Biological and Medical Ethics Committee 
of Northeastern University. Individual consent for this 
retrospective analysis was waived. As shown in Figure 2, 
the DT has an encoder-decoder architecture. Its input 
is a feature map obtained by a convolution block with 3 
convolution layers followed by batch normalization (BN) 

Figure 1 Segmentation examples of breast US images obtained by MT (images in the third column and the sixth column). GT, ground 
truth; MT, medical transformer; US, ultrasound.

Image ImageGT GTMT MT

https://qims.amegroups.com/article/view/10.21037/qims-22-33/rc
https://qims.amegroups.com/article/view/10.21037/qims-22-33/rc
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Figure 2 Architecture of the proposed DT model. DT, dilated transformer.
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and rectified linear unit (ReLU), respectively. In the encoder 
pipeline, 4 residual transformer-based encoder blocks of 
different sizes are designed. As shown in Figure 3A, in 
each encoder block, a 1×1 convolution layer is first used to 
change the size of input feature maps in the bottleneck of 
each encoder block. Then, after BN, these feature maps are 
fed into 2 residual multihead attention layers. They are the 
height-axial-based multihead attention layer, which operates 

along the height and width-axial-based multihead attention 
layer, which works along the width. Each is composed of 
8 residual axial attention heads, as shown in Figure 3B. At 
the end of the encoder pipeline, another 1×1 convolution 
layer is used to produce attention maps that are passed to 
DM to capture information from a larger receptive field 
after normalization. Meanwhile, softmax attention scores 
are regarded as residual information to be passed over 

Figure 3 Illustration of the structure of encoder and decoder blocks used in the DT model. (A) Encoder block—the residual axial 
transformer layer. (B) Residual axial attention layer, which is the primary building of both height and width multi-head attention blocks 
found in the residual axial transformer layer. (C) Decoder block—deconvolution layer. BN, batch normalization; ReLU, rectified linear unit; 
DT, dilated transformer.
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all attention layers. As indicated by the arrow in Figure 
3A, softmax attention scores from the previous layer are 
first given as an additional input to the height-axial-based 
multihead attention layer. Then, the new softmax attention 
scores are passed to the width-axial-based multihead 
attention layer. In the decoder pipeline, which is shown as 
Figure 3C, 5 decoder blocks are used for upsampling. Each 
has a convolution layer, an upsampling layer, and ReLU 
activation. After another convolution block and a stand-
alone 1×1 convolution layer, final segmentation results can 
be obtained

The proposed residual axial attention

Standard self-attention
Originally, self-attention was proposed to model the 
relationships of sequences in the field of NLP (31,32). They 
have different forms, such as additive attention (33) and 
dot-product attention. Due to its characteristic of being 
implemented in a space-efficient manner by use of highly 
optimized matrix-operation code and the ability to avoid 

degrade explosion by multiplying  kd1 , the scaled dot-
product attention introduced by Vaswani et al. (22) became 
the most popular. Standard attention is defined in Eq. [1]: if 
we assume a feature map with height of H, the width of W 
and channels of Cin is denoted as  in inC H W C H Wx × × × ×∈ ∈  :

 
( ), , softmax

T

k

QKAttention Q K V V
d

 
=   

 
 [1]

where Q, K, and V are 3 matrices obtained by packing the 
queries q, keys of dimension of dk, and values of dimension 
of dv, respectively.

Axial attention
First, researchers customarily applied a self-attention 
mechanism to augment the outputs of CNN-based 
networks as an additional module (34,35). Later, spatial 
convolution layers were entirely replaced with stacked 
attention layers (19,36), obtaining promising results at a 
great computational cost. To improve the computation 
efficiency, Wang et al. (37) proposed stand-alone axial 
attention by factorizing the common self-attention into 
two 1D attention mechanisms which operate along height-
axial and width-axial, respectively. In addition, the position 
term plays a great role in capturing shapes or boundaries 
of the ROI from a global receptive. Especially for medical 
images, it is crucial to insert position terms when using self-
attention to deal with image segmentation tasks (37). Taking 

width-axial attention for an example, we assume that pixels 
with location (I, j) in feature map have the vectors of qij, kij, 
and vij; self-attention can also be given as follows:

 ( )1 1
softmaxH W T

ij ij hw hwh w
y q k v

= =
=∑ ∑  [2]

where  out outC H W C H Wy yij ij
× × × ×∈ ∈   denotes the output of a 

self-attention layer. Therefore, the width-axial attention 
with position embedding can be defined as follows:

 ( )( )1
softmaxW T T q T k v

ij ij iw ij iw iw iw iw iww
y q k q r k r v r

=
= + + +∑  [3]

where rq, rk, and rv denote the position term inserted into 
the vector of q, k, and v, when traversing point by point 
along the direction of width, respectively. Similarly, height-
axial attention with position encoding can be given as 
follows:

 ( )( )1
softmaxH T T q T k v

ij ij ih ij ih ih ih ih ihh
y q k q r k r v r

=
= + + +∑  [4]

The width-axial attention layer and height-axial attention 
layer are set to work consecutively to capture global 
interactions. They both work alone in their directions. The 
final results are obtained by contacting the total information 
together.

Residual axial attention
Inspired by the use of residual units which have succeeded 
in helping Unet achieve quite good performance in 
the field of medical image segmentation, we sought to 
apply the residual idea to axial attention layers to further 
improve the segmentation performance of self-attention 
mechanism on small breast US image datasets. Similar to 
the residual attention layer proposed by He et al. (38), we 
proposed residual axial attention by creating a “direct” path 
to transport the raw attention scores from the previous 
axial attention layer to the next axial attention layer in the 
whole transformer network. Following the principle that 
height- and width-axial attention are originally obtained in 
a separate way (37), we added height- and width-residual 
axial attention scores to the axial attention mechanism, 
respectively, and concatenated the outputs of the multi-
head on both height-layer and width-axial layer together as 
the new output of the present layer, as shown in Figure 3A.  
We provide a more detailed introduction using the 
corresponding equations expressions. 

We assume that residual attention score from the 
previous attention layer is denoted as Res' and it can be 
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calculated by Eq. [1]. New residual attention score can be 
obtained as follows:

 '
'Res Res

T

k

Q k
d

= +  [5]

Therefore, the proposed residual axial-attention can be 
defined as follows:

 
( )

'
' ' ' ' ' ', , , Res softmax Res

T

k

Q KRAA Q K V V
d

 
= +  

 
 [6]

In addition, it is noted that in each axial-attention layer, 
8 attention heads are included. We can obtain the output of 
each multi-head attention layer as follows:

 ( )1 2, ,..., o
hMh Concat h h h W=  [7]

where  oW  is a matrix which is used to transform the 
concatenation of the outputs of the heads, and hh denotes 
the output of the “height-axial” attention head, which could 
be calculated according to Eq. [1]. 

Therefore, the final output of the multi-head axial-
attention layer can be obtained as follows:

 ( ),h wO Concat Mh Mh=  [8]

where Mhh and Mhw denote the output of height-axial 
multihead layers and width-axial multihead layers, 
respectively. 

In terms of how to propagate residual attention scores, 
we give a brief introduction. First, the outputs of the 
residual axial-attention layer along both height-axial and 
width-axial are obtained sequentially by using Eq. [6]. 
Meanwhile, the new residual attention scores, which are 
defined as Eq. [5], are retained and passed to the next 
attention layer. Then, we can obtain the output of each 
multihead axial-attention layer by Eq. [8]. Finally, we can 
obtain the output of the residual multihead axial attention 
block by concatenating the output of the height-axial 
residual multihead layer and width-axial residual multihead 
layer.

Dilated convolution module

We note that the information of some interactions may be 
missed when using axial-attention layers. For example, the 
intimate information between pixels about the direction 
of diagonal is neglected when axial attention is only used 
in the direction of height and width. However, any global 

interactions information is important for medical image 
segmentation. As shown in Figure 1, we assume that false 
positives in the segmentation results of MT are caused 
by the lack of enough global information obtained by the 
model to some degree. Therefore, in order to capture more 
global interactions information, we introduced a dilated 
convolution module which is often used in the architecture 
of Unet (39-41) to improve the receptive field, and the 
dilation operation can be described as follows:

 ( ) ( ) ( ){ }, , ,
ij

z x y f s i r y j r g i jα β= + × + × × +∑  [9]

where α denotes the activate function, β is a biased unit, 
and r is a changeable parameter used to determine how big 
the receptive field of convolution kernel is. In terms of the 
size of the receptive field of convolution kernel, we give its 
calculation formula Eq. [10]. Referring to Eq. [10], when 
r=2, the size of receptive field is increased to 5×5.

 ( ) ( ){ }2
1 1s sN k r k= + × − +  [10]

where ks denotes the size of a convolution kernel and N 
represents the size of the receptive field.

As shown in Figure 2, a dilated module is inserted 
into the end of the encoder pipeline including five 3×3 
convolution kernels with dilation parameters r of 1, 2, 
4, 8, and 16, respectively. According to Eq. [10], we can 
determine that the sizes of the receptive field are N=3×3, 
7×7, 15×15, 31×31, and 63×63, respectively. Note that the 
output feature maps can contain more information due to 
the wide receptive field of the dilated module.

Results

Datasets and evaluation metrics

We used 2 breast US image datasets to evaluate our 
proposed method. Dataset A was a public dataset from 
Zhang et al. (42) consisting of 562 breast US images, each 
of which contains only 1 tumor which mostly displays a 
relatively regular size and is located in the center of the 
image. According to the demonstrations of Zhang et al. (42),  
images from dataset A were of multiple resolutions 
including 550×357, 555×490, 546×360, and 600×480. 
They were collected from different US devices, including 
GE VIVID 7 (GE Healthcare, Milwaukee, WI, USA), 
Hitachi EUB-6500 (Hitachi Medical Systems, Tokyo, 
Japan), Philips iU22 (Philips Healthcare, Amsterdam, The 
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Netherlands), and Siemens ACUSON S2000 (Siemens 
Healthineers, Erlangen, Germany). Four experienced 
radiologists participated in the generating work of ground 
truth (GT). More details about dataset A and how to 
obtain the final GT are provided in a previous paper (42). 
Different from dataset A, dataset B was a private breast 
US image dataset including 878 breast US images with the 
resolutions of 775×580, 1,024×768, and 850×649. They 
mostly contained tumors of different sizes and uncertain 
locations. With the approval of the local biological and 
medical Ethics Committee of the Northeastern University, 
Shenyang, China, we collected them from different US 
devices, including GE LOGIQ E9 (GE Healthcare) and 
Philips EPIQ 5 (Philips Healthcare), in a local hospital. 
The exclusion criteria were contraindications to undergoing 
breast US screening, dot-enhancements distributed in 
multiple quadrants, and non-mass enhancement lesions 
(none were excluded). We concealed the information of all 
patients and invited 2 experienced radiologists to ascertain 
the GT. One radiologist was responsible for sketching 
contours, and the other was responsible for the examination.

In order to compare our proposed method with state-
of-the-art (SOTA) segmentation methods fairly and 
subjectively, the metrics used in previous papers (42,43) 
were adopted. The metrics included accuracy (ACC), true-
positive ratio (TPR), false-positive ratio (FPR), Jaccard 
index (JI), Dice similarity coefficient (DSC), area error 
ratio (AER), Hausdorff error (HE), and mean absolute 
error (MAE), respectively. As previously illustrated (38), the 
segmentation performance is indicated as quite good when 
JI and DSC are both large, and AER, HE, and MAE are all 
small.

Implementation details

We used PyTorch (Meta AI, New York, NY, USA) to 
implement the proposed method on 1 Nvidia GeForce 
GTX 1080ti GPU (Nvidia, Santa Clara, CA, USA), and set 
the learning rate, batch size, and epoch number to 0.001, 4, 
and 400, respectively. All of the input images were resized 
to 256×256. Identical with MT (18), we also used the same 
data preprocessing method which had been given a detailed 
introduction in the supplement file of MT (18), as well as 
the binary cross-entropy loss function to measure the error 
between GT and predictions.

In similarity with the testing method used in the paper (42),  
for both dataset A and dataset B segmentation, we used 
the 5-fold cross-validation experiment method to test 

our proposed method, as well as MT which is the most 
similar to the DT. Meanwhile, in order to demonstrate 
that transformer-based methods have a better ability to 
model the distant dependencies than do convolution-based 
methods, we also compared our proposed method with 
Unet (9) and Unet++ (10), which are typical convolution-
based medical image segmentation models with excellent 
performance. The average result of the 5-fold tests was 
taken as the final result for each metric, which decreased 
the possibility of unstable performance of the model and 
guaranteed persuasiveness to a great degree. In addition, we 
used the Mann-Whitney U test to statistically analyze these 
results. A 95% confidence level was used for obtaining the 
corresponding confidence interval (95% CI). 

Additionally, for dataset A segmentation, we also 
compared the DT with some fully automated segmentation 
methods (44-46) which have achieved SOTA on dataset 
A. The salient attention Unet (SAUnet) (43) was the most 
recent method to achieve SOTA performance on dataset A. 
It is also an improved CNN-based method and incorporates 
radiologists’ visual attention. To compare the DT with it 
subjectively, we took the test result obtained by the model 
with the best performance in the 5-fold test.

Dataset A

Quantitative results of comparison experiments on dataset 
A are shown in Table 1. It shows that the DT achieves the 
highest TPR of 0.887, highest JI of 0.813, and highest DSC 
of 0.889. Meanwhile, the DT has the lowest FPR of 0.104, 
lowest AER of 0.224, and lowest HE of 38.890. Compared 
with MT (18), the DT improves TPR, JI, and DSC by 1.3%, 
2.4%, and 1.6%, respectively. Especially, on metrics of 
FPR, AER, HE, and MAE, DT outperforms MT by 1.7%, 
2.7%, 25.21, and 15.53, respectively. Compared with typical 
medical images segmentation methods such as Unet and 
Unet++, DT outperforms them on all metrics. Especially 
on the metrics of FPR, HE, and MAE, DT reduces them 
significantly by 5.8%, 15.02, and 10.12, respectively, which 
indicates that DT has a strong ability to model global 
interactions. Compared with fully automated segmentation 
methods which have performed SOTA on dataset A (42), 
the DT improves TPR, JI, and DSC by 7.7%, 9.3%, and 
5.9%, respectively and reduces FPR, AER, and HE by 5.5%, 
1.4%, and 10.33, respectively, although DT is second only 
to the SOTA on metric of MAE at a disadvantage of 1.76.

In addition, Tables 2,3 list the standard error of mean on 
all metrics for each method and the 95% CI and P values, 
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Table 1 Quantitative results of comparison experiments on dataset A

Baseline Method TPR FPR JI DSC AER HE MAE

Transformer-based MT 0.874 0.121 0.789 0.873 0.251 64.101 30.011

DT 0.887 0.104 0.813 0.889 0.224 38.890 14.484

Convolution-based Unet 0.843 0.228 0.754 0.840 0.378 53.909 24.601

Unet++ 0.849 0.162 0.759 0.849 0.310 83.893 42.834

Others (44) 0.810 0.159 0.720 0.830 0.362 49.221 12.721

(45) 0.809 1.063 0.592 0.701 1.251 107.610 26.619

(46) 0.674 0.180 0.612 0.710 0.510 69.202 21.306

TPR, true-positive ratio; FPR, false-positive ratio; JI, Jaccard index; DSC, Dice similarity coefficient; AER, area error ratio; HE, Hausdorff 
error; MAE, mean absolute error; MT, medical transformer; DT, dilated transformer.

Table 2 Standard error analysis of the comparison experiment on dataset A (± standard error)

Method TPR (±) FPR (±) JI (±) DSC (±) AER (±) HE (±) MAE (±)

MT 0.005 0.011 0.006 0.004 0.012 2.445 1.193

DT 0.005 0.008 0.005 0.004 0.009 2.032 1.0541

Unet 0.007 0.031 0.008 0.007 0.032 2.551 1.566

Unet++ 0.007 0.018 0.007 0.006 0.019 3.067 1.939

TPR, true-positive ratio; FPR, false-positive ratio; JI, Jaccard index; DSC, Dice similarity coefficient; AER, area error ratio; HE, Hausdorff 
error; MAE, mean absolute error; MT, medical transformer; DT, dilated transformer.

Table 3 CI and P value analysis in the comparison experiment on dataset A

Metrics
95% CI P value

MT DT Unet Unet++ DT vs. MT DT vs. Unet DT vs. Unet++

TPR (0.862, 0.881) (0.877, 0.895) (0.829, 0.859) (0.829, 0.859) 0.006 0.021 0.097

FPR (0.096, 0.138) (0.088, 0.121) (0.168, 0.290) (0.122, 0.194) 0.110 0.733 0.088

JI (0.786, 0.808) (0.803, 0.822) (0.730, 0.762) (0.747, 0.776) 0.070 1.681e-6 1.294e-6

DSC (0.872, 0.889) (0.884, 0.898) (0.823, 0.850) (0.839, 0.863) 0.070 1.681e-6 1.291e-6

AER (0.223, 0.268) (0.201, 0.237) (0.322, 0.448) (0.268, 0.342) 0.111 2.394e-6 9.843e-7

HE (45.940, 55.521) (34.961, 42.933) (48.914, 58.911) (77.870, 89.891) 0.005 0.001 6.929e-21

MAE (27.361, 32.040) (12.440, 16.572) (21.532, 27.671) (39.020, 46.621) 0.008 3.038e-5 8.201e-22

CI, confidence interval; MT, medical transformer; DT, dilated transformer; TPR, true-positive ratio; FPR, false-positive ratio; JI, Jaccard 
index; DSC, Dice similarity coefficient; AER, area error ratio; HE, Hausdorff error; MAE, mean absolute error.

respectively. From Table 3, we can observe that the results in 
Table 1 all are contained in the corresponding CI, and 3 of 
7 of P values of DT vs. MT, 6 out of 7 of P values of DT vs. 
Unet, and 5 out of 7 of P values of DT vs. Unet++ are less 
than 0.05. Therefore, we conclude that the DT outperformed 
other methods significantly and statistically on dataset A.

Table 4 lists the quantitative results obtained by 
comparing the DT with SAUnet. It shows that DT 
outperforms SAUnet slightly on all metrics of TPR, 
FPR, DSC, and ACC, as well as JI. Therefore, from the 
perspective of quantitative evaluation metrics, DT has 
achieved SOTA segmentation performance on dataset A, 
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Table 4 Quantitative result obtained by comparing DT with SAUnet on dataset A

Method TPR FPR JI DSC ACC

SAUnet 0.899 0.106 0.825 0.896 0.978

DT 0.903 0.102 0.825 0.901 0.980

The JI value shown in this table are after rounding, and the exact value of JI for DT is 0.034 percentage points higher than that of SAUnet. 
DT, dilated transformer; SAUnet, salient attention Unet; TPR, true-positive ratio; FPR, false-positive ratio; JI, Jaccard index; DSC, Dice 
similarity coefficient; ACC, accuracy.

especially in reducing false positives, which can also be 
observed intuitively from Figure 4.

As shown in Figure 4, the segmentation results obtained 
by both the DT and SAUnet have relatively few false 
positives, indicating that both methods perform well in 
distinguishing precise boundaries of the ROI. In addition, 
the DT has a better ability to refine segmentation. It 
could capture more detailed information than SAUnet. 
Taking the image in the fourth row as an example, the DT 
could distinguish the invaginated part at the top of the 
tumor, but SAUnet could not. Similarly, the DT could 
identify the raised feature which is located at the 7 o’clock 
position of the tumor in the second row, but SAUnet 
could not. Especially for the image in the fifth row, due 
to the influence of the glandular tissue with high echo 
characteristics, SAUnet was unable to predict well at the  
5 o’clock position although the DT could. This is mainly 
on account of the self-attention mechanism used in the 
main building blocks. Therefore, MT also has a better 
ability to model long-range dependencies than convolution-
based methods such as Unet and Unet++. Taking images in 
the second and fifth row as examples, compared with Unet 
and Unet++, MT reduces false positives significantly. Due 
to the interference caused by low contrast or subcutaneous 
fat tissue or duct tissue with hypoechoic characteristics 
and the insufficient ability to grasp global dependencies, 
MT performs relatively weakly in distinguishing the actual 
boundary of the ROI and also caused a few false positives 
(such as images in the first, fourth, seventh, and eighth 
row), while the DT could better identify the tumor location 
precisely by capturing more global information than could 
the MT. Therefore, the DT has a strong ability to model 
distant interactions and capture more features of an ROI, 
with enhanced attention given to tumor boundaries.

Dataset B

Table 5 lists the quantitative results of comparison 
experiments on dataset B. It shows that the DT achieves 

the highest TPR of 0.798, highest JI of 0.662, highest 
DSC of 0.769, and the lowest HE of 83.500 and lowest 
MAE of 35.741, which indicates that the DT has the best 
segmentation performance. Due to the self-attention 
mechanism used in the main building blocks of the encoder, 
when compared with convolution-based methods, DT 
and MT both have a stronger ability to model the distant 
dependencies and could identify the actual location of 
the ROI with the lowest false positives. Especially, on the 
metrics of FPR and AER, MT outperformed Unet by 9.3% 
and 8.2%, respectively. On the metrics of TPR, JI, DSC, 
HE, and MAE, the DT outperformed Unet by 5.0%, 4.9%, 
4.6%, 10.88, and 16.27, respectively. When compared with 
MT, the DT improved TPR, JI, and DSC by 5.90%, 2.67%, 
and 4.68%, respectively. This indicates that the DT has 
a better ability to capture more and detailed information 
of the ROI than does MT. In addition, MT achieved the 
lowest FPR of 0.303 and the lowest AER of 0.565 although 
it has disadvantages in metrics of TPR, JI, and DSC, which 
indicates that MT lacks the ability to learn enough detailed 
information on the ROI, especially in the precision of 
boundary identification. 

The results of statistical analysis on the test results of 
dataset B are shown in Tables 6,7, respectively. We can 
observe that the results in Table 5 are all contained in the 
corresponding CIs, and 5 of 7 of the P values of the DT vs. 
MT, 6 out of 7 of the P values of the DT vs. Unet, and 6 
out of 7 of the P values of the DT vs. Unet++ are less than 
0.05. Therefore, we conclude that the DT outperformed 
other methods significantly and statistically on dataset B. It 
can also be observed from Figure 5 intuitively.

In Figure 5, from left to right, the sample images, GT, 
and segmentation results obtained by MT, DT, Unet, and 
Unet++ are shown respectively. Compared with GT, it is 
easy for us to observe that the segmentation results of MT 
(images in the third column) are incomplete. Moreover, 
they locate the correct position of the ROI with few false 
positives, which indicates that although MT could find 
the location of ROI, it could not capture enough detailed 
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Figure 4 Segmentation results obtained by different segmentation methods on dataset A. From left to right, they are sample images, GT, 
segmentation results obtained by MT, DT, Unet, Unet++ and SAUnet, respectively. GT, ground truth; MT, medical transformer; DT, 
dilated transformer; SAUnet, salient attention Unet.
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Table 5 Quantitative results of comparison experiments on dataset B

Baseline Method TPR FPR JI DSC AER HE MAE

Transformer-based MT 0.739 0.303 0.635 0.723 0.565 89.181 48.922

DT 0.798 0.386 0.662 0.769 0.588 83.500 35.741

Convolution-based Unet 0.748 0.396 0.613 0.723 0.647 94.381 52.013

Unet++ 0.726 0.428 0.587 0.704 0.702 105.480 65.180

TPR, true-positive ratio; FPR, false-positive ratio; JI, Jaccard index; DSC, Dice similarity coefficient; AER, area error ratio; HE, Hausdorff 
error; MAE, mean absolute error; MT, medical transformer; DT, dilated transformer.

Table 6 Standard error analysis of the comparison experiment on dataset B (± standard error)

Method TPR (±) FPR (±) JI (±) DSC (±) AER (±) HE (±) MAE (±)

MT 0.008 0.027 0.007 0.007 0.029 1.902 1.361

DT 0.008 0.035 0.008 0.007 0.036 1.985 1.181

Unet 0.009 0.033 0.008 0.008 0.034 1.944 1.360

Unet++ 0.009 0.035 0.008 0.008 0.037 1.939 1.492

TPR, true-positive ratio; FPR, false-positive ratio; JI, Jaccard index; DSC, Dice similarity coefficient; AER, area error ratio; HE, Hausdorff 
error; MAE, mean absolute error; MT, medical transformer; DT, dilated transformer. 

Table 7 CI and P value analysis in the comparison experiment on dataset B

Metrics
95% CI P value

MT DT Unet Unet++ DT vs. MT DT vs. Unet DT vs. Unet++

TPR (0.721, 0.753) (0.782, 0.812) (0.731, 0.766) (0.709, 0.743) 2.912e-12 1.490e-5 1.750e-13

FPR (0.242, 0.350) (0.318, 0.453) (0.332, 0.460) (0.360, 0.496) 3.310e-8 0.847 0.103

JI (0.732, 0.761) (0.647, 0.676) (0.597, 0.630) (0.570, 0.602) 0.004 5.021e-5 1.221e-13

DSC (0.732, 0.761) (0.755, 0.782) (0.706, 0.739) (0.688, 0.720) 0.004 5.021e-5 1.231e-13

AER (0.502, 0.616) (0.518, 0.659) (0.581, 0.714) (0.631, 0.774) 0.087 1.852e-4 2.922e-12

HE (84.172, 91.631) (79.612, 87.393) (90.571, 598.190) (101.721, 109.313) 0.060 6.050e-5 4.790e-15

MAE (45.671, 51.001) (33.431, 38.061) (49.371, 54.701) (62.301, 68.160) 7.152e-13 2.992e-22 6.460e-56

CI, confidence interval; MT, medical transformer; DT, dilated transformer; TPR, true-positive ratio; FPR, false-positive ratio; JI, Jaccard 
index; DSC, Dice similarity coefficient; AER, area error ratio; HE, Hausdorff error; MAE, mean absolute error.

information. In addition, in Figure 5, we can see that there 
are many false positives in the segmentation results of 
Unet and Unet++, yet MT and the DT could avoid these 
false positives to a certain degree. Taking the image in 
the seventh row as an example, fat tissue with hypoechoic 
characteristics can easily be mistaken by Unet and Unet++ 
as a tumor region, but the DT could identify the actual 
ROI, which is shown in the fourth column and seventh 
row. This indicates that transformer-based methods are 
superior to convolution-based methods in modeling global 

interactions and reducing false positives of segmentation 
results.

Discussion

Due to the strong ability to model global interactions 
information, transformer-based methods have become 
increasingly popular in the area of computer vision as well 
as medical image analysis. However, limited datasets in 
the field of medical images restricts the development of 
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Figure 5 Segmentation results obtained by different segmentation methods on dataset B. From left to right are original images, GT, 
segmentation results obtained by MT, the DT, Unet and Unet++, respectively. GT, ground truth; MT, medical transformer; DT, dilated 
transformer.



Shen et al. DT for breast US images segmentation4524

© Quantitative Imaging in Medicine and Surgery. All rights reserved.   Quant Imaging Med Surg 2022;12(9):4512-4528 | https://dx.doi.org/10.21037/qims-22-33

transformers, because most transformer-based methods 
rely heavily on pretraining on large datasets. Therefore, we 
proposed the DT, which is based on the proposed residual 
axial-attention mechanism. The DT could perform well on 
small breast US image datasets without pretraining, which is 
of significance to the popularity of CADs. Of note, the DT 
significantly outperformed other related methods on dataset 
B when compared to dataset A. This indicates that the DT 
has a more stable and better generalization performance 
since we found it more challenging to accurate locate the 
tumors in dataset B than in dataset A. The method most 
closely related to the DT is the MT (18). Compared with 
the MT, the DT has only 1 branch of encoder-decoder 
architecture. We set 4 encoder blocks in the encoder path 
(in terms of the number of encoder blocks we set, more 
detailed demonstration is given in the following subsection). 
In addition, a dilation module (DM) was added to the end 
of the encoder pipeline to improve the receptive field and 
compensate for the loss of global interactions information 
caused by the process of changing 2D attention to axial 
attention with only 1 dimension. In addition, we added a 
path used to propagate residual information between axial-
attention layers to capture more detailed local information. 
To give an illustration of the critical role that each add-on 
part plays, we conducted the following ablation study on 
both dataset A and dataset B. Three typical metrics of JI, 
DSC, and FPR were taken as the evaluation metrics.

Setting of the number of encoder blocks

To verify that the DT network with four encoder blocks 
has a better performance, we conducted the following 
study. The number of encoder blocks was set to 2, 3, 4, 
and 5, respectively. Other network components were kept 
the same as those of the DT. During the training period, 
batch size, epoch, and learning rates were set to 4, 400, 
and 0.001, respectively. After training the DT with 2, 3, 

4, and 5 encoder blocks on both dataset A and dataset B, 
4 models which were denoted as DT2, DT3, DT4, and DT5 
were obtained on dataset A and dataset B, respectively. 
After evaluation on dataset A and dataset B, respectively, the 
quantitative results were obtained (Table 8).

From Table 8, we can observe that DT4 achieves the 
highest JI and DSC both on dataset A and dataset B, and it 
outperforms DT5 on the metrics of JI and DSC by 3.94% 
and 2.87%, respectively. This indicates that the DT with 4 
encoder blocks has the best ability to capture enough details 
to find a complete tumor region and that the performance 
would not be necessarily improved if the number of encoder 
blocks were increased to 5. In dataset B, when the encoder 
blocks number was increased from 2 to 5, three evaluation 
metrics did not show a common trend of positive growth. 
However, when the encoder blocks number was increased 
from 2 to 4, JI and DSC generally had a positive growth 
trend. This indicates that adding encoder blocks could 
help to learn more features of the ROI and capture more 
global interactions when the number of encoder blocks 
is less than 5. We assume that the risk of overfitting that 
easily causes unstable prediction results also increases when 
adding encoder blocks. To further verify this assumption, 
we plotted 2 figures to illustrate how validation loss changes 
during the period of training on both dataset A and dataset B, 
respectively.

As shown in Figures 6,7, we can observe that when the 
encoder blocks number is set to 2 and 4, the validation 
loss curves (line in blue and red) all show a better and 
stable decline, while the curves in cyan and green show 
a sudden “rise” where there is an inflection point both 
on dataset A and dataset B. This indicates that when the 
number of encoder blocks is set to 3 and 5, the model is 
unstable and has a greater risk of over-fitting. However, 
when the encoder blocs number is 2 and 4, the model 
shows a relatively stable condition. Especially on dataset B,  
the curve in the red line converges faster than the curve 

Table 8 Study on the setting of the number of encoder blocks

Block number
A B

JI DSC FPR JI DSC FPR

2 0.815 0.894 0.109 0.677 0.780 0.384

3 0.816 0.894 0.145 0.664 0.786 0.072

4 0.825 0.901 0.102 0.702 0.803 0.456

5 0.786 0.872 0.140 0.681 0.787 0.289

JI, Jaccard index; DSC, Dice similarity coefficient; FPR, false-positive ratio.
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Figure 7 Validation loss on dataset B.Figure 6 Validation loss on dataset A
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in blue, which indicates that when the number of encoder 
blocks is set to 4, the model has a better adaptability and 
generalization performance on both datasets.

Contribution made by each of add-on parts

To verify the contribution made by the dilated module and 
residual score path, we conducted the following ablation 
study on both dataset A and dataset B. As shown in Table 9, 
a check mark indicates that the module is used, and a cross 
mark indicates that it is not used. First, we can observe that 
the DT with both DM and Res has the highest JI of 0.702 
and highest DSC of 0.803 on dataset A; and has the highest 
JI of 0.825, highest DSC of 0.901, and the lowest FPR of 
0.103 on dataset B. This indicates that the proposed DT 
method can achieve the best performance with the help 
of DM and Res path together. Second, for both dataset A  
and dataset B segmentation, the DT with only DM or 
only Res both outperform the DT without DM and Res 
on the 3 metrics, which indicates that DM and Res both 
contribute to the excellent final performance. In particular, 

when only adding the DM module, the FPR is reduced by 
22.06% and 4.91% on dataset A and dataset B, respectively. 
This indicates that DM plays a significant role in reducing 
false positives and helps the DT capture much global 
information by improving the receptive field. In addition, 
when only adding Res, JI and DSC are all improved by 
4.50% and 3.72%, and 1.7% and 1.28% on dataset A and 
dataset B, respectively. This indicates that residual axial-
attention information passed between layers matters and 
contributes to capturing more detailed local information. 
On the whole, the introduced DM and the proposed 
residual axial attention are both important and help the DT 
to achieve the best performance together.

Computational complexity

The proposed DT method was implemented by PyTorch and 
evaluated on 2 breast US image datasets using 1 NVIDIA 
GeForce GTX 1080ti GPU. Table 10 shows the results of 
analysis on the computation complexity which measures the 
amount of computing resources that a particular algorithm 

Table 9 Results of the ablation experiment

DM Res
A B

JI DSC FPR JI DSC FPR

× × 0.648 0.759 0.578 0.797 0.881 0.156

√ × 0.687 0.789 0.357 0.814 0.893 0.107

× √ 0.693 0.797 0.439 0.815 0.894 0.110

√ √ 0.702 0.803 0.456 0.825 0.901 0.103

DM, dilation module; Res, residual path; JI, Jaccard index; DSC, Dice similarity coefficient; FPR, false-positive ratio. 
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Table 10 Analysis of the computation complexity 

Method Trainable parameters (M) GFLOPs Inference time (s/image) Training time (h)

MT 5.97 7.77 0.44 11.5

DT 16.37 9.03 0.13 7.25

Training time is the average of the training time spent on the 2 datasets. GFLOPs, Giga Floating point Operations Per Second; MT, medical 
transformer; DT, dilated transformer. 

consumes when it runs. We can observe that the DT has 
a few more trainable parameters and Giga Floating point 
Operations Per Second (GFLOPs) than does the most 
related work, MT. This is mainly due to the introduced 
DM modules where multiple convolution operations 
are introduced. However, it is worth noting that the DT 
requires less training and inference time than does the MT, 
which indicates the superiority of the architecture and the 
practicality of the DT. Therefore, the DT has relatively good 
spatial and computational complexity and has both precise 
segmentation performance and high efficiency.

Conclusions

This paper proposes a DT that uses the proposed residual 
axial attention layers to build up transformer encoders to 
improve the segmentation performance of transformer-
based methods on small breast US images datasets. It was 
evaluated on 2 small breast US image datasets and was 
shown to effectively without pretraining, especially in 
identifying the accurate location and precise boundary of 
ROIs and reducing false positives. In addition, ablation 
experiments were conducted, and the results showed 
that the DT with 4 encoder blocks has a relatively stable 
performance and that both the introduced DM and the 
proposed residual axial-attention contribute to accurate 
segmentation with high efficiency.
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