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Background: The aim of this study was to establish a correlation model between external surface motion 
and internal diaphragm apex movement using machine learning and to realize online automatic prediction of 
the diaphragm motion trajectory based on optical surface monitoring.
Methods: The optical body surface parameters and kilovoltage (kV) X-ray fluoroscopic images of 7 liver 
tumor patients were captured synchronously for 50 seconds. The location of the diaphragm apex was manually 
delineated by a radiation oncologist and automatically detected with a convolutional network model in 
fluoroscopic images. The correlation model between the body surface parameters and the diaphragm apex of 
each patient was developed through linear regression (LR) based on synchronous datasets before radiotherapy. 
Model 1 (M1) was trained with data from the first 30 seconds of the datasets and tested with data from the 
following 20 seconds of the datasets in the first fraction to evaluate the intra-fractional prediction accuracy. 
Model 2 (M2) was trained with data from the first 30 seconds of the datasets in the next fraction. The motion 
trajectory of the diaphragm apex during the following 20 seconds in the next fraction was predicted with M1 
and M2, respectively, to evaluate the inter-fractional prediction accuracy. The prediction errors of the 2 models 
were compared to analyze whether the correlation model needed to be re-established.
Results: The average mean absolute error (MAE) and root mean square error (RMSE) using M1 trained 
with automatic detection location for the first fraction were 3.12±0.80 and 3.82±0.98 mm in the superior-
inferior (SI) direction and 1.38±0.24 and 1.74±0.32 mm in the anterior-posterior (AP) direction, respectively. 
The average MAE and RMSE of M1 versus M2 in the AP direction were 2.63±0.71 versus 1.28±0.48 mm 
and 3.26±0.90 versus 1.61±0.60 mm, respectively. The average MAE and RMSE of M1 versus M2 in the 
SI direction were 5.84±1.22 versus 3.37±0.43 mm and 7.22±1.45 versus 4.07±0.54 mm, respectively. The 
prediction accuracy of M2 was significantly higher than that of M1.
Conclusions: This study shows that it is feasible to use optical body surface information to automatically 
predict the diaphragm motion trajectory. At the same time, it is necessary to establish a new correlation 
model for the current fraction before each treatment. 
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Introduction 

Stereotactic body radiation therapy (SBRT) has become 
a favorable treatment approach for liver tumor patients, 
having a high tumor control rate and low probability of 
complications (1). However, a liver tumor may move out 
of the radiation field due to respiratory motion during 
radiotherapy. It is necessary to develop online tumor-tracking 
technology for precise radiotherapy (2). Real-time tumor 
tracking is mainly achieved by implanting metal fiducials for 
CyberKnife (Accuray Inc., Sunnyvale, CA, USA) or radio-
frequency electromagnetic fiducials for Calypso (Calypso 
Medical Technologies, Seattle, WA, USA) (3,4). The tracking 
margins for SBRT with invasive markers are generally set 
to 3 mm in the superior-inferior (SI) direction, 2 mm in the 
right-left (RL) direction, and 2 mm in the anterior-posterior 
(AP) direction (5). Although implanted fiducial markers 
can provide the accurate location of a tumor, they also 
increase the risk of liver hemorrhage. Markerless tracking 
is potentially an alternative approach during liver tumor 
SBRT (6). Fluoroscopic imaging in the linear accelerator 
is a conventional tool for position verification before 
radiotherapy. Some studies have reported using fluoroscopic 
imaging for direct tumor tracking with template matching 
applied as the localization algorithm (7-10). However, the 
problem with tracking tumor motion in fluoroscopic images 
is that it is difficult to identify tumor targets because of the 
poor image contrast. The upper edge of the diaphragm is 
sharp in contrast to the neighboring tissue and, therefore, 
can be more reliably identified than the tumor in the 
abdominal region (11). Studies have reported that tumor 
motion near the diaphragm has a high correlation with 
diaphragm motion, suggesting that the diaphragm could 
be used as an internal surrogate for predicting tumor 
motion without the need for fiducial implants (12,13). This 
approach could be clinically useful for the management of 
liver tumor motion located near the diaphragm. Several 
groups have proposed methods for direct diaphragm 
tracking using kilovoltage (kV) X-ray images (14,15). Hirai 
et al. (16) proposed a method for tracking the internal 
target based on fluoroscopic images using deep learning. 

The drawback of deep learning is that it requires a large 
number of samples, which is lacking for this particular 
application. An alternative method is to train a convolutional 
neural network (CNN) on a large public dataset and perform 
transfer learning by fine-tuning the pre-trained model for 
target tracking in fluoroscopic images (17). Some studies 
have reported tumor motion estimation by external surface 
surrogate location using an optical monitoring system (18-22). 
However, it is difficult to construct a reliable correlation 
model between external surrogates and an internal tumor, 
and the model is subject to the changes of respiratory 
patterns (23). Bertholet et al. (24) developed an automatic 
tumor-motion monitoring approach by combining an 
external one-dimensional (1D) optical marker and kV X-ray 
imaging. The correlation model could track the internal 
tumor online using implanted fiducials and an external 
optical signal with a 2.31 mm root-mean-square error 
(RMSE). The problem with this method is that the tumor is 
invasively located by implanting metal fiducials. The body 
surface marker can only monitor 1D respiratory waveforms, 
yet both the body surface and the tumor move in three 
dimensions. Vedam et al. (25) formulated a linear model 
for 5 lung tumor patients to predict the diaphragm motion 
from 1D respiration signals using a reflective marker on 
the abdominal wall. However, 1D respiratory signals in the 
vertical direction may not adequately reflect 3D diaphragm 
motion, as respiration is an anisotropic movement in 
three dimensions. Glide-Hurst et al. (26) investigated the 
feasibility of 3D surface imaging as an external surrogate 
of diaphragm motion through synchronization with kV 
fluoroscopic imaging. Glide-Hurst’s study did not predict 
internal diaphragm movement based on surface imaging. 
Fayad et al. (27) studied the correlation between external 
surface abdominal areas and the internal diaphragm with 
the tumor using correlation coefficients 0.80±0.18. This 
approach used 4D computed tomography (CT) to construct 
a motion model which did not track the internal target in 
real time based on the external surface. Seregni et al. (28) 
proposed 2 internal/external correlation models in infra-red 
optical tracking. The geometric and dosimetric accuracies 
were increased with this tumor-tracking approach. The 
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limitations of previous studies have included problems with 
invasive procedures or off-line modes of motion tracking. 

The goal of this study was to realize the non-invasive, 
real-time tracking of tumor motion near the diaphragm 
by predicting the motion of the diaphragm based on 
optical body surface information. We developed a tracking 
model combining a discriminative correlation filter (DCF) 
with fully convolutional network (FCN) to automatically 
detect the diaphragm apex in fluoroscopic images. A linear 
regression (LR) method was used to construct an internal/
external correlation model based on the synchronized 
diaphragm apex position and pre-treatment optical 
information of the body surface. The diaphragm motion 
trajectory was predicted in real time based on the optical 
information of the body surface without X-ray fluoroscopy 
during subsequent radiotherapy. We present the following 
article in accordance with the TRIPOD reporting 
checklist (available at https://qims.amegroups.com/article/
view/10.21037/qims-22-242/rc).

Methods 

Patient datasets

The motion datasets were acquired from 7 liver cancer 
patients who underwent external beam radiotherapy with 25 

fractions (2 Gy/fraction) from January 2021 to October 2021 
at The Second Affiliated Hospital of Guangzhou University 
of Chinese Medicine. The characteristics of the patients 
are shown in Table S1. The kV fluoroscopic imaging and 
optical surface monitoring system (OSMS) of a Varian Edge 
linear accelerator (Varian Medical Systems, Palo Alto, CA, 
USA) were used to acquire the datasets used in this study, as 
shown in Figure 1. The inclusion criteria were as follows: (I) 
patients with liver cancer and (II) patients with fluoroscopic 
imaging and optical surface monitoring conducted over  
50 seconds. Patients were excluded for the following reasons: 
(I) inability to cooperate with fluoroscopic or optical surface 
monitoring and (II) the breathing amplitude of the body 
surface was less than 3 mm. A total of 10 patients with liver 
tumors underwent fluoroscopic imaging synchronized with 
optical body surface monitoring. We excluded 3 patients 
with a surface motion amplitude of less than 3 mm from the 
datasets, with 7 patients included in the final dataset. The 
flow diagram of patient selection is shown in Figure S1. 
The On-Board Imager (Varian Medical Systems) equipped 
in the accelerator worked in the radiography mode  
(100 kV, 80 mA), acquiring kV fluoroscopic images for each 
patient at a rate of 15 frames per second for 50 seconds. The 
pixel sizes of the obtained images were 0.388×0.388 mm  
with a matrix size of 1,024×768 pixels. The X-ray 

Figure 1 The schematic diagram of a Varian Edge linear accelerator with kV fluoroscopic imaging and OSMS. AP, anterior-posterior; RL, 
right-left; SI, superior-inferior; kV, kilovolt; OSMS, optical surface monitoring system. 
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fluoroscopic imaging was performed in the RL direction. 
The fluoroscopic images reflected the motion information 
of the diaphragm apex in the SI direction and the AP 
direction. The direction signs are shown in Figure 1. The 
body surface motion in real-time was monitored with an 
OSMS which consisted of 3 cameras. The cameras capture 
the reflected light to reconstruct 3D distance maps of 
the complete patient body surface. AlignRT (Vision RT 
Ltd., London, UK) was used to acquire body surface 
information, including 8 variables, which are listed in  
Table 1. The monitoring region of interest (ROI) covered 
the diaphragm area on the chest and abdominal body 
surface with obvious and regular fluctuation. The body 
surface region below the xiphoid process and between the 
left and right costal arches was selected as the ROI. In this 
study, the reference surface was captured at the end of the 
expiratory phase. The information, including the 8D body 
surface parameters, was saved into the “RealTimeDeltas” 
file of the OSMS. The fluoroscopic images and the body 
surface motion parameters were acquired synchronously 
to build the internal-external correlation model. The 
OSMS data and fluoroscopic images of 4 of the 7 patients 
were acquired synchronously on different days to verify 
the inter-fractional accuracy of the prediction model. 
The synchronization was achieved by extracting the 
corresponding frame of the fluoroscopic image closest to 
the acquisition time of each sampling point of the optical 
body surface monitoring system.

In this study, the diaphragm motion was represented 
by its apex. The diaphragm apex was detected from the 
2D fluoroscopic images to acquire the location in the 
SI and AP directions. As Schwarz et al. (29) stated, the 

motion of the diaphragm apex in the RL direction was only 
0.8–1.6 mm. Therefore, movement in the RL direction 
was not considered in this study. An experienced radiation 
oncologist was asked to manually delineate the apex of 
the right diaphragm in all fluoroscopic images from the 
datasets of 7 patients to provide the ground truth for the 
diaphragm apex location. The 2D coordinates of these 
points were used to describe the motion information of the 
right diaphragm. The study was approved by the Human 
Research Ethics Committee of The Second Affiliated 
Hospital of Guangzhou University of Chinese Medicine 
(No. BE2021-141-01) and informed consent was provided 
by all participants. The study was conducted in accordance 
with the Declaration of Helsinki (as revised in 2013).

Automatic detection of the diaphragm apex

In order to construct the internal/external correlation 
model online, we proposed a deep learning framework to 
detect the diaphragm apex automatically in fluoroscopic 
images without prior knowledge or additional learning 
time. The network structure that we used was that proposed 
by Shen et al. (30). The network input image size was 
125×125×3 pixels. The loss function was mean square error 
(MSE). The learning rate was set to 0.001. Our algorithm 
was implemented in Pytorch (https://pytorch.org/). All 
experiments were carried out on a computer with an Intel 
Core i9-9900X CPU at 3.6 GHz and 2 NVIDIA RTX 
2080Ti 11GB GPUs. 

In this work, a CNN was first trained on the ImageNet 
datasets (http://image-net.org) of the ImageNet Large-Scale 
Visual Recognition Challenge (ILSVRC; 2017). The pre-

Table 1 Parameters of the optical information of the body surface

Parameters Implication

Translation (mm) The overall distance (distance between the current surface and the reference surface)

D.VRT (mm) The distance in the AP direction, to move the current surface back to the reference surface

D.LNG (mm) The distance in the SI direction, to move the current surface back to the reference surface

D.LAT (mm) The distance in the RL direction, to move the current surface back to the reference surface

D.Rtn (deg) Rotation angle in the AP direction, to move the current surface back to the reference surface

D.Roll (deg) Rotation angle in the SI direction, to move the current surface back to the reference surface

D.pitch (deg) Rotation angle in the RL direction, to move the current surface back to the reference surface

D.Amp (mm) Distance measured perpendicular to the average direction of the reference surface

D.VRT, vertical distance; AP, anterior-posterior; D.LNG, longitudinal distance; SI, superior-inferior; D.LAT, lateral distance; RL, right-left; 
D.Rtn, degree of rotation; D.Amp, amplitude distance.
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trained CNN was then applied to the X-ray fluoroscopic 
images through an image-enhancement operation. We 
used fluoroscopic images of 7 patients for testing, and 
approximately 320–340 fluoroscopic images were acquired 
for each patient. We performed power-law transform and 
grayscale inversion for the fluoroscopic images and fed the 
enhanced image directly into the network. Figure 2 contains 
2 parts: Figure 2A,2B. The flow chart of the automatic 
detection of the diaphragm apex is shown in Figure 2A. 

Figure 2B shows the flow chart of the construction of the 
internal/external correlation model. We reformulated 
the DCF as a differentiable neural network layer (30,31) 
and connected it with the FCN to develop an end-to-
end network. We took the first frame of the video stream 
as the template patch, z, where the tracking target in the 
diaphragm boundary was manually selected. The template 
patch, z, was inputted to the feature extraction function ϕ(·) 
to get the feature map ϕ(z), then ϕ(z) was inputted to the 

Figure 2 The flowchart of the construction of the correlation model, (A) the framework of automatic diaphragm apex detection in the 
fluoroscopic images and (B) the internal/external correlation model. LRN, local response normalization; DCF, discriminative correlation 
filter; OSMS, optical surface monitoring system; kV, kilovolt; LR, linear regression; M1, correlation model 1; M2, correlation model 2.
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DCF layer, as described by: 

( ) 2
w z yφ= ∗ −  [1]

For template patch z, the DCF layer operates by 
minimizing ϵ to find the parameters of our desired DCF w, 
where ϵ is a ridge regression function, y denotes the label 
of the template patch z, and * denotes circular correlation; 
y is generated using a Gaussian distribution with a band-
width of 0.50. The bandwidth is a hyperparameter that can 
be modified; in our case, we used 0.50. In fact, the DCF 
layer is a ridge regression function. We obtained a series of 
parameters by solving the ridge regression function. When 
tracking the target in subsequent frames, the search patch 
x was inputted to the same feature extraction function ϕ(·), 
ϕ(x) was obtained and later inputted to the DCF layer. For 
search patch x, the DCF layer operates by applying w to 
ϕ(x) to get a response map of x, as described in Eq. [2]:

( )xResponse w xφ= ∗  [2]

Finally, we obtained the response map, Responsex, 
whereby the peak of Responsex is the location of the tracking 
target. We used FCN as the feature extraction function 
ϕ(·) which was not limited to the size of the input image. 
However, we found that the image size of 125×125×3 
was more stable, and the 3 channels contained identical 
grayscale data of the 1-channel image, so we applied the 
125×125×3 pixel size uniformly in our experiments. In this 
way, a tracker model was developed which could detect 
the diaphragm apex automatically on pre-treatment kV 
X-ray fluoroscopic images of the liver tumor patients if the 
point of interest in the diaphragm boundary was manually 
selected in the first frame image. The automatic tracking 
with the proposed algorithm was compared with the 
manual delineation by the clinical oncologist to evaluate 
the accuracy of this model.

Internal and external correlation models

The correlation model was trained by offline learning 
with pre-treatment data and used in online tumor tracking 
during the subsequent treatment delivery, as shown in 
Figure 2B. The gray triangle region in Figure 2B represents 
the monitoring ROI of OSMS. For the training stage, the 
acquired fluoroscopic images were fed into the trained 
diaphragm apex detection model to obtain the motion of 
the diaphragm apex in the SI and AP directions. Then, 

the 8 extracted body surface motion parameters and the 
diaphragm apex movement information of each patient 
were fed into the LR model for establishing patient-
specific correlation models. In the testing stage, the 8 
extracted body surface motion parameters were fed into 
the trained correlation models to acquire the diaphragm 
apex motion in the SI and AP directions. The formula of 
the LR model was defined as follows:

1 1, 2 2, 8,0 8t t t t ty x x xβ β β β ε= + + + + +  [3]

where, yt is the predicted variable which denotes the 
location of the diaphragm apex, 1, 8,, ,t tx x  are the predictor 
variables which denote the parameters of translation, 
D.VRT, D.LNG, D.LAT, D.Rtn, D.Roll, D.Pitch, and 
D.Amp, respectively, β0 denotes the intercept of the 
regression line, 1 8, ,β β  measure the degree of influence of 
the predictor variable on the predicted variable, respectively, 
while keeping all other predictor variables unchanged, and 
εt is an offset value. These coefficients were optimized with 
the least squares method.

Experiment setup 

In this study, 2 correlation models (M1, M2) were 
constructed with LR based on the data of a single patient 
in the first treatment fraction and the next fraction 
respectively, as shown in Figure 1B. The datasets of each 
patient contain fluoroscopic images and optical surface 
information collected synchronously for 50 seconds. The 
correlation model was built for each patient as an individual 
model. The M1 was trained with data from the first  
30 seconds of the datasets and tested with data from the 
following 20 seconds of the datasets in the first treatment 
fraction to evaluate the intra-fractional prediction accuracy. 
We constructed 3 models (M1a, M1b, M1c) based on 
automatic detection of the diaphragm apex and the 8D body 
surface parameters, manual detection of the diaphragm apex 
and the 8D body surface parameters, and manual detection 
of the diaphragm apex and the 1D body surface parameter 
(D.VRT), respectively. The prediction accuracy of the 
M1a was compared with that of the M1b to verify whether 
the automatically detected location could be used for 
subsequent model construction. The prediction accuracy 
of the M1b was compared with that of the M1c to evaluate 
the advantage of the OSMS compared with the 1D optical 
marker.

The M2 was constructed with data from the first  
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30 seconds of the datasets in the next treatment fraction 
of 4 patients. The motion trajectory of the diaphragm 
apex during the following 20 seconds in the next fraction 
was predicted with M1a and M2, respectively, to evaluate 
the inter-fractional prediction accuracy. Some 4 of the  
7 patients were tested in order to avoid additional radiation. 
Both models were trained based on the internal diaphragm 
apex position acquired by automatic detection and the 
8D body surface parameters. The prediction errors of the  
2 models were compared to analyze whether the correlation 
model needed to be re-established for inter-fractional 
motion management.

Evaluation metrics

To evaluate the difference between the prediction and 
manually identified diaphragm apex position, the mean 
absolute error (MAE), RMSE, and Euclidean distance were 
calculated between the prediction location and the actual 
position of the diaphragm apex. The Euclidean distance 
is defined as the straight-line distance, d, between the 
prediction location and the ground truth. The formulas for 
these metrics were defined as follows:

1

1 n

t i
i

MAE p t
n =

= −∑  [4]

( )2

1

n

i i
i

p t
RMSE

n
=

−
=
∑  [5]

( ) ( ) ( )2 2
1 1 2 2,d P T P T P T= − + −  [6]

where, p is the prediction value, t is the true value, n is 
the total number of values, P = (P1, P2) is the prediction 
location, and T = (T1, T2) is the true location.

Since the signals of external body surface motion and 
internal diaphragm motion were recorded synchronously, 
the 2 signals could be analyzed on the same time scale. The 
relative diaphragm location instead of absolute location was 
used in this study.

Statistical analysis

The software MATLAB (version 2018b; MathWorks Inc., 
Natick, MA, USA) was used for the statistical analysis. A 
t-test was performed between M1a and M1b and M1b and 
M1c, respectively. A t-test was used to test the statistical 
significance of the difference between M1a and M2. All P 

values were 2-sided P values and P<0.05 was considered 
significant.

Results

Automatic detection of the diaphragm apex

An example of 1 of the 7 patients with automatic versus 
manual detection of the diaphragm apex motion trajectory 
in the SI and AP direction is illustrated in Figure 3. The 
red lines denote the automatic detection position, while the 
black lines denote the manually marked diaphragm apex 
position. The results of automatic tracking were consistent 
with that of manual detection. The errors between the 
automatic detection with FCN and manual detection for 7 
patients are listed in Table 2. The average MAE and RMSE 
of automatic detection were 0.69±0.21 and 0.97±0.40 mm 
in the AP direction and 1.02±0.28 and 1.28±0.37 mm in 
the SI direction, respectively. The mean Euclidean distance 
between the automatic detection location and truth location 
for each patient ranged from 1.05 to 1.89 mm.

Internal and external correlation models

The regression coefficients of the LR model of 7 patients 
are summarized in Table 3. Regression coefficients indicate 
the strength of the relationship between the 8 body surface 
motion parameters and the diaphragm apex location by 
manual detection. The values of β2 and β6 in more than 5 
patients were relatively large in most models which shows 
that the correlation between D.VRT and D.Roll and 
internal motion was stronger than the other parameters. 
The visualization of the regression coefficients is shown in 
Figure S2.

Evaluation of the intra-fractional prediction accuracy

The actual and prediction trajectories of the diaphragm 
apex of patient 1 in the first fraction are shown in Figure 4.  
Figure 4A,4B present the trajectories of the diaphragm 
apex in the AP and SI directions, respectively. The red 
line denotes the prediction results of M1b based on the 
internal apex by manual detection, and the black line 
denotes the actual motion trajectories of the diaphragm 
apex. It can be seen that the prediction trajectories match 
well with the actual ones, especially in the SI direction. The 
movement of the diaphragm apex in the SI direction had 
a certain regularity, and the prediction accuracy in the SI 

https://cdn.amegroups.cn/static/public/QIMS-22-242-Supplementary.pdf
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Figure 3 Automatic detection and manual detection of the diaphragm apex motion trajectories, (A) AP direction, (B) SI direction. AP, 
anterior-posterior; SI, superior-inferior. 
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Table 2 The error between the automatic detection location and the manual detection location of the diaphragm apex 

Patient no.
AP SI

Euclidean distance (mm)
MAE (mm) RMSE (mm) MAE (mm) RMSE (mm)

1 0.87 1.74 1.42 1.83 1.89±1.56

2 0.58 0.77 1.13 1.29 1.38±0.59

3 0.80 1.07 0.69 0.86 1.20±0.65

4 1.02 1.27 1.14 1.49 1.72±0.94

5 0.51 0.69 0.82 0.99 1.05±0.61

6 0.69 0.79 0.66 0.84 1.05±0.48

7 0.36 0.46 1.31 1.69 1.41±1.04

Average 0.69±0.21 0.97±0.40 1.02±0.28 1.28±0.37 –

95% CI 0.54–0.85 0.73–1.33 0.81–1.23 1.02–1.57 –

The data in the “Average” row and the “Euclidean distance” column are presented as mean ± standard deviation. AP, anterior-posterior; 
MAE, mean absolute error; RMSE, root mean square error; SI, superior-inferior; CI, confidence interval.
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direction was higher than that in the AP direction. Some 
variations were observed between the prediction results 
and the ground truth in the AP direction. Most of the large 
errors appeared near the peak and trough positions of the 
trajectory in the AP direction. This may be due to the larger 
baseline shift of the diaphragm moving in the AP direction.

The prediction errors with M1 in the first fraction for 7 
patients are summarized in Table 4. The prediction accuracy 
of M1b was comparable with that of M1a. The average MAE 
and RMSE in the SI direction of M1a were 3.12±0.80 and 
3.82±0.98 mm, respectively. The average MAE and RMSE 
in the AP direction were 1.38±0.24 and 1.74±0.32 mm, 
respectively. The average MAE and RMSE in the SI direction 
of M1b were 3.09±0.80 and 3.75±1.01 mm, respectively. The 
average MAE and RMSE in the AP direction were 1.34±0.24 
and 1.69±0.29 mm, respectively. The average MAE and 
RMSE in the SI direction of M1c were 3.78±0.42 and 
4.73±0.47 mm, respectively. The average MAE and RMSE 
in the AP direction were 2.22±0.71 and 2.75±0.90 mm, 
respectively, as shown in Figure 5. 

The comparison of prediction errors between M1a 
and M1b (Figure 5A) and M1b and M1c (Figure 5B) is 
shown in Figure 5. The prediction errors between M1b 
and M1c achieved a significant difference (all P<0.05), and 
the pairwise comparison showed that the performance of 

M1b was better than that of M1c. There was no significant 
difference between M1a and M1b (all P>0.05).

Evaluation of the inter-fractional prediction accuracy

Figure 6 shows the actual and prediction diaphragm apex 
trajectories obtained by M1a and M2 of patient 7 in the 
next fraction. The black lines denote the ground truth of 
the motion trajectory. The blue dotted line represents the 
prediction results for M1a. The red solid line represents the 
prediction results for M2. It can be seen that the prediction 
accuracy of M2 constructed with the data of the current 
fraction was higher than that of M1a constructed with the 
first fractional data. Most of the significant differences 
between the prediction results and ground truth occurred 
near the peaks and troughs of the motion trajectories, with 
the position error larger than 4 mm.

The prediction errors with M1a and M2 for the next 
fraction in the AP and SI direction are summarized in Table 5. 
The average MAE and RMSE with M1a versus M2 in the AP 
direction for 4 patients were 2.63±0.71 versus 1.28±0.48 mm  
and 3.26±0.90 versus 1.61±0.60 mm, respectively. The 
average MAE and RMSE with M1a versus M2 in the SI 
direction for 4 patients were 5.84±1.22 versus 3.37±0.43 mm  
and 7.22±1.45 versus 4.07±0.54 mm, respectively. The 

Table 3 Regression coefficients of model M1b

Direction Patient no. β0 β1 β2 β3 β4 β5 β6 β7 β8

AP 1 228.60 −29.59 −96.74 −13.98 24.26 −69.26 29.26 14.98 58.14

2 360.85 −26.88 −44.93 19.55 15.27 −4.88 −8.16 15.07 27.99

3 296.49 −2.52 48.29 −6.37 14.08 31.26 26.59 8.90 −40.50

4 379.60 −26.49 −37.04 5.70 −7.47 −9.82 35.23 50.28 24.68

5 392.48 0.14 15.57 −1.62 −10.44 −5.55 14.22 −11.68 2.62

6 293.64 −3.69 4.98 −4.75 −14.67 28.59 −8.47 7.94 3.71

7 214.97 3.10 14.03 8.68 −2.05 5.42 −19.41 −0.72 −1.74

SI 1 551.83 23.44 114.98 3.29 −3.53 41.61 −112.88 −62.15 −51.26

2 683.33 −36.52 38.85 38.73 −0.07 81.68 −163.62 0.53 20.75

3 464.51 −5.98 126.97 −17.07 38.82 88.68 54.16 18.02 −105.66

4 629.99 −53.83 −93.41 −5.65 −42.51 49.65 129.95 101.08 82.92

5 647.28 −1.83 27.62 0.14 −12.02 −13.23 14.55 −24.33 2.34

6 676.54 −6.56 34.89 −32.09 −40.17 89.50 27.38 20.99 −19.57

7 609.84 12.02 40.88 19.85 −2.29 7.44 −62.14 −9.45 −6.04

AP, anterior-posterior; SI, superior-inferior.
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Figure 4 The actual and prediction diaphragm apex trajectories obtained by M1b, (A) AP direction, (B) SI direction. AP, anterior-posterior; 
SI, superior-inferior. 

prediction performance of M2 was significantly higher than 
that of M1a. The differences of prediction errors between 
M1a and M2 were statistically significant (all P<0.05), as 
shown in Figure 7.

Discussion

Tumor tracking is one of the most important requirements 
in precise radiotherapy for liver tumors. However, non-
invasive and real-time tracking of liver tumors is difficult 
to achieve directly. Previous studies have demonstrated 
that the diaphragm can be used as the surrogate to track 
liver tumors near the diaphragm (12,13). In this work, 

we proposed an automatic, online diaphragm-motion 
prediction framework based on the monitoring of optical 
body surface information through machine learning. The 
method, which avoids invasive procedures, can be used for 
real-time tumor tracking near the diaphragm in liver tumor 
radiotherapy. The diaphragm apex position in fluoroscopic 
images can be automatically detected with an FCN 
combined with a DCF (FCN-DCF). The correlation model 
based on pre-treatment data with offline machine learning 
could be reliably used online to predict diaphragm motion 
from body surface information during subsequent intra-
fraction treatment. Omitting fluoroscopy during tumor 
tracking can significantly reduce additional radiation doses 
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to patients.
In our study, the DCF was used as a differentiable neural 

network layer and connected with the FCN to develop 
the tracker model. The FCN-DCF is a template matching 
process which searches for the most similar content in 
the search patch compared to the template patch. In 
the framework, the FCN-DCF network was trained on 
ImageNet datasets to develop the feature extraction model 
with better generalization. The model could detect the 
diaphragm apex automatically on X-ray fluoroscopic images 
if the point of interest was manually selected in the first 
frame image. The average MAE of automatic detection 

was 0.69±0.21 mm in the AP direction and 1.02±0.28 mm 
in the SI direction. The detection accuracy of our model 
was consistent with that reported by Keatley et al. (32). 
The learned target features under noisy conditions may 
cause a slight decrease in accuracy since the background 
samples may be incorrectly identified as the diaphragm 
apex. From the results in our study, it could be seen that 
the diaphragm motion trajectory predicted based on the 
optical body surface was consistent with the manually 
delineated diaphragm motion trajectory. Most of the large 
errors occurred near the peaks and troughs of the motion 
trajectory, and the error at the regular breathing interval 

Table 4 Intra-fractional errors (prediction-actual position) with M1a and M1b

Patient no.

M1a M1b 

AP SI AP SI

MAE (mm) RMSE (mm) MAE (mm) RMSE (mm) MAE (mm) RMSE (mm) MAE (mm) RMSE (mm)

1 1.49 1.98 2.16 2.67 1.36 1.90 2.13 2.71 

2 0.85 1.04 2.18 2.76 0.80 1.04 2.13 2.63 

3 1.62 2.03 2.44 3.03 1.63 1.97 2.47 3.08 

4 1.32 1.65 3.84 4.69 1.27 1.56 3.69 4.48 

5 1.58 1.98 4.35 5.44 1.52 1.82 4.35 5.48 

6 1.38 1.84 3.56 4.36 1.41 1.86 3.62 4.52 

7 1.40 1.68 3.28 3.77 1.36 1.69 3.21 3.33 

Average 1.38±0.24 1.74±0.32 3.12±0.80 3.82±0.98 1.34±0.24 1.69±0.29 3.09±0.80 3.75±1.01 

95% CI 1.13–1.50 1.40–1.91 2.53–3.71 3.15–4.60 1.09–1.47 1.37–1.85 2.51–3.70 3.10–4.61

The data in the “Average” row are presented as mean ± standard deviation. AP, anterior-posterior; MAE, mean absolute error; RMSE, root 
mean square error; SI, superior-inferior; CI, confidence interval. 

Figure 5 The comparison of prediction errors, (A) comparison between M1a and M1b, (B) comparison between M1b and M1c. AP, 
anterior-posterior; SI, superior-inferior; MAE, mean absolute error; RMSE, root mean square error. 
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Figure 6 The actual and prediction diaphragm apex trajectories obtained by M1a and M2, (A) AP direction, (B) SI direction. AP, anterior-
posterior; SI, superior-inferior. 

of the middle of the trajectory was small, as shown by the 
red line in Figure 6. The higher prediction accuracy of 
regular breathing indicated that the irregular respiration 
at the peaks and troughs of different cycles led to large 
prediction errors. The accuracy of the correlation model 
may be affected by the changes of breathing types within 
the acquisition time of a single patient in the training data. 
The motion amplitude of the diaphragm apex in the SI 
and AP direction was about 30 and 10 mm, respectively. 
The average MAE and RMSE of M1b were 3.09±0.80 
and 3.75±1.01 mm in the SI direction, respectively. The 
average MAE and RMSE were 1.34±0.24 and 1.69±0.29 mm  
in the AP direction, respectively. The relative accuracy 
improvement for the SI direction was much greater than 

that for the AP direction. The movement in the SI direction 
was more related to the body surface than that in the AP 
direction. The larger the training datasets, the more robust 
the prediction results were, and prolonged fluoroscopy time 
led to an increase in the exposure dose for patients. 

Compared to the previous study utilizing 1D body 
surface signals (24), the correlation model in the current 
study used a more comprehensive 3D body surface 
movement with 8 parameters to accurately predict the 
movement of the diaphragm and did not require imaging 
to update the model during the monitoring process. 
The prediction errors of M1b based on 8D body surface 
parameters were significantly smaller than those of M1c 
based on the 1D body surface parameters of D.VRT, 
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especially in the AP direction. The surface information 
containing 8 parameters can reflect the actual movement of 
the body surface by capturing the rigid transformation of a 
reference surface. More comprehensive information about 
the movement of the body surface was not available because 
the optical system could not track each point on the body 
surface. Obviously, real-time acquisition of the movement 
of the complete patient’s external surface during radiation 
therapy would reduce prediction variability and related 
errors. This can be achieved by selecting the ROI on the 
body surface that is most relevant to the diaphragm during 
motion synchronization and modeling. The correlation 
between D.VRT and D.Roll of the body surface parameters 

and internal motion was higher than that of other 
parameters. This may be due to greater motion amplitude of 
the body surface in the VRT and Roll directions. Generally, 
a higher frame rate can ensure timely capture of body surface 
changes over time. Using frequently updated input data to 
train a prediction model may get higher prediction accuracy. 
It is recommended to use the data with a sampling interval 
of less than 1 second to build a prediction model (33). The 
frame rates of the OSMS were 3–6 frame/s with a sampling 
time interval of 0.16–0.33 seconds, and the frame rate of the 
fluoroscopy in this study was 15 frames/s.

The prediction accuracy of M1b was comparable with 
that of M1a. The results indicated that the diaphragm apex 
position in fluoroscopic image with automatic detection can 
be used to construct the internal/external correlation model 
in real time. To test the reliability and robustness of the 
correlation model, 2 correlation models (M1a, M2) were 
constructed based on the data in the first treatment fraction 
and the next fraction, respectively. The results showed that 
M1a could predict the diaphragm motion trend in the next 
fraction, but the accuracy was significantly lower than M2 
which was constructed based on the data of the current 
fraction. The prediction results demonstrated that there was 
reproducibility of the inter-fractional correlation model, 
indicating that the selected ROI of the body surface could 
be used as a surrogate of the internal diaphragm motion. 
However, baseline drift of the diaphragm apex or changes 
in the correlations between internal/external motion for 
different treatment fractions may reduce the prediction 
accuracy. The MAE of the inter-fraction prediction was 
over 5 mm, which could affect the clinical application. To 
obtain higher prediction accuracy, it is necessary to update 

Table 5 Inter-fractional errors (prediction-actual position)

Patient no.

M1a M2

AP SI AP SI

MAE (mm) RMSE (mm) MAE (mm) RMSE (mm) MAE (mm) RMSE (mm) MAE (mm) RMSE (mm)

4 3.51 4.52 5.37 7.04 1.87 2.33 3.46 4.15 

5 2.95 3.45 6.75 8.17 0.64 0.80 3.86 4.76 

6 2.49 3.04 7.16 8.73 1.60 2.02 3.48 4.13 

7 1.58 2.01 4.07 4.95 1.02 1.28 2.67 3.25 

Average 2.63±0.71 3.26±0.90 5.84±1.22 7.22±1.45 1.28±0.48 1.61±0.60 3.37±0.43 4.07±0.54 

95% CI 1.81–3.23 2.27–3.99 4.40–6.85 5.47–8.31 0.74–1.73 1.04–2.18 2.87–3.67 3.47–4.45

The data in the “Average” row are presented as mean ± standard deviation. AP, anterior-posterior; MAE, mean absolute error; RMSE, root 
mean square error; SI, superior-inferior; CI, confidence interval. 
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the internal and external correlation model before each 
treatment. The prediction accuracy of the correlation model 
was verified online by comparing the prediction position 
of the diaphragm apex based on the body surface with the 
automatic detection position based on fluoroscopic images 
taken before treatment. Once the location of the diaphragm 
apex was obtained with the automatic detection model, the 
total training and prediction time of the correlation model 
was less than 1 ms, which has the potential to meet the 
clinical requirements of online tracking. The correlation 
model could be used to guide tumor tracking in real time 
during subsequent radiotherapy if the prediction accuracy 
meets the requirements by the radiation oncologist of the 
local institution. The conventional margin between the 
clinical target volume (CTV) and planning target volume 
(PTV) was 10 mm because of the tumor motion during 
radiotherapy (25). There is no uniform standard for the 
accuracy of tumor motion tracking. Whether the prediction 
accuracy meets the requirements is judged by the radiation 
oncologist based on the protection of organs at risk. In 
the clinical setting, this tracking error could be added as a 
margin to the target volume. In our study, the average MAE 
and RMSE of intra-fraction motion in the SI direction were 
3.09 and 3.75 mm, respectively, which are comparable with 
previous studies (18,24). The error of all other components, 
including planning, residual setup, and machine quality 
assurance, was about 3 mm (34). The CTV-PTV margin 
could be set to 6 mm. The side effects of radiotherapy 
will be greatly reduced if the margin is reduced from over  
10 to 6 mm. The advantage of our method is that it not only 
ensures tracking accuracy but can also realize non-invasive 
tracking with an online mode during radiotherapy. Most 
of the significant errors occurred due to sudden changes in 
the transition between exhalation and inhalation. In actual 
treatment, the delivery beam is held by the gating window 
of OSMS when the error exceeds the default threshold to 
minimize the impact of large errors. If the error is below 
the threshold, the irradiation field continues to beam on. 
It is feasible to predict the diaphragm motion with body 
surface in the clinical application.

There were some limitations to this study: (I) the original 
point of the diaphragm apex in the first frame needed to be 
marked manually so that the diaphragm apex was identified 
and tracked automatically in other fluoroscopic images; (II) 
the correlation model was able to be constructed quickly 
based on a minimal amount of input data and worked well 
to reduce the exposure dose. (III) The breathing pattern in 
the model training process could be quite different from 

the breathing of the subsequent treatment process. Hence, 
the correlation model needs to have the ability to accurately 
predict irregular breathing. In the future, another method 
should be developed to identify the point of interest 
automatically without any artificial assistance. More 
complex and high-performance correlation models need 
to be developed to efficiently and robustly predict internal 
motion.

Conclusions

Our work presents the first attempt to establish a correlation 
model with offline learning and online prediction of the 
diaphragm motion trajectories based on the 3D body 
surface during radiotherapy. The prediction model is a non-
invasive tool to quantify the motion of the diaphragm based 
on optical surface information. It is necessary to update 
the correlation model for the current fraction before each 
treatment.
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Supplementary

Table S1 Patient characteristics

Characteristics Number

Number of patients 7

Age (years)

Range 42–60

Median 50.5

Gender

Male 2

Female 5

Clinical stage

II 3

III 4

Total patients with liver cancer (n=10)

Cooperate with data acquisition?

Patients with fluoroscopy imaging 
and optical surface monitoring over 

50 s (n=10)

Breathing amplitude over 3 mm?

Patients included (n=7)

Yes

Yes

Patients excluded (n=3)

Figure S1 The flow diagram of patient selection. 

No
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Figure S2 The visualization of the regression coefficients of M1b for 7 patients, (A) regression coefficients for AP, (B) regression coefficients 
for SI. AP, anterior-posterior; SI, superior-inferior. 
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