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Background: Linked deoxyribonucleic acid (DNA) hypermethylation investigations of promoter 
methylation levels of candidate genes may help to increase the progressiveness and mortality rates of juvenile 
myelomonocytic leukemia (JMML), which is a unique myelodysplastic/myeloproliferative neoplasm caused 
by excessive monocyte and granulocyte proliferation in infancy/early childhood. However, the roles of 
hypermethylation in this malignant disease are uncertain.
Methods: Bone marrow samples from a JMML patient and peripheral blood samples from a healthy 
monozygotic twin and an unrelated healthy donor were collected with the informed consent of the 
participant’s parents. Whole-genome bisulfite sequencing (WGBS) was then performed. Gene Ontology 
(GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses were performed to 
analyze specific differentially methylated region (DMG) related genes. The target genes were screened with 
Cytoscape and Search Tool for the Retrieval of Interacting Genes/Proteins (STRING), which are gene/
protein interaction databases. A data mining platform was used to examine the expression level data of the 
healthy control and JMML patient tissues in Gene Expression Omnibus data sets, and a survival analysis was 
performed for all the JMML patients. 
Results: The STRING analysis revealed that the red node [i.e., the cystic fibrosis transmembrane 
conductance regulator (CFTR)] was the gene of interest. The gene-expression microarray data set analysis 
suggested that the CFTR expression levels did not differ significantly between the JMML patients and healthy 
controls (P=0.81). A statistically significant difference was observed in the CFTR promoter methylation level 
but not in the CFTR gene body methylation level. The overall survival analysis demonstrated that a high 
level of CFTR expression was associated with a worse survival rate in patients with JMML (P=0.039).
Conclusions: CFTR promoter hypermethylation may be a novel biomarker for the diagnosis, monitoring 
of disease progression, and prognosis of JMML.
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Introduction

Juvenile myelomonocytic leukemia (JMML) is a unique 
myelodysplastic/myeloproliferative neoplasm caused by 
the excessive proliferation of monocytes and granulocytes 
in infancy/early childhood (1). Its clinical manifestations 
include hepatosplenomegaly, lymphadenopathy, skin rash, 
leukocytosis, monocytosis, thrombocytopenia, anemia, 
and respiratory failure. With a global annual incidence 
of 1.2/1,000,000, JMML accounts for 2–3% of all 
hematological malignancies. The median age of JMML 
patients at the time of diagnosis is 2 years, and the male-to-
female ratio is 2–3 to 1 (2). Allogeneic hematopoietic stem 
cell transplantation (allo-HSCT) remains the only cure for 
JMML. However, the low 5-year overall survival rate of 
50–60% and the high post-HSCT recurrence rate remain 
major challenges for allo-HSCT (3). Recurrence is still the 
main reason for treatment failure in JMML patients.

Approximately 90% of JMML patients harbor germline 
or somatic mutations in Protein Tyrosine Phosphatase 
Non-Receptor Type 11 (PTPN11), NRAS Proto-Oncogene, 
GTPase  (NRAS),  KRAS Proto-Oncogene, GTPase 
(KRAS), Cbl Proto-Oncogene (CBL), or Neurofibromin 1  
(NF1) (4). The mutation of these genes can activate the 
RAS signaling pathway (5). Epigenetics is the study of 
heritable alterations in gene expression that are not due 
to changes in the deoxyribonucleic acid (DNA) sequence. 
Epigenetic modifications alter DNA accessibility and/or 
the chromatin structure by which the expression levels of 
certain genes are regulated (6). DNA methylation (DNAm) 
involves the addition of a methyl group at position C5 in 
the DNA cytosine ring catalyzed by DNA methyltransferase 
enzymes (7). As an epigenetic mechanism involving the 
transfer of a methyl group onto the C5 position of the 
cytosine to form 5-methylcytosine-, the DNAm patterns 
observed in cancer genomes can be classified as either 
gene promoter hypormethylated and hypermethylated. 
CpG islands (CGIs) located in promoter regions in normal 
human tissues are in a hypomethylated state. However, the 
promoter hypermethylation of tumor suppressor genes can 
silence those genes and cause cancer (8). Thus, DNAm is an 
important aspect to consider when studying human diseases. 
Whole-genome bisulfite sequencing (WGBS) can detect the 
precise boundaries between methylated and unmethylated 
regions at single-base resolution and is considered the gold-
standard method for DNAm analysis (9).

A study showed that some genes are hypermethylated or 
have superhigh methylation in JMML patients. This study 

also reported 4 hypermethylated genes (i.e., BMP4, CALCA, 
CDKN2B, and RARB) (10). Previous studies have shown 
an association between activation of the DNA methylation 
machinery and specific JMML mutational profiles (11). 
Moreover, numerous studies have suggested that aberrant 
DNAm is linked to poor outcomes in JMML (10,12,13). 
However, clinical outcomes were significantly improved by 
treatment with the DNA-hypomethylating agent azacitidine 
prior to HSCT in patients with JMML (14). Thus, DNA 
hypermethylation is a novel independent prognostic 
factor for the poor prognosis of JMML (15). Identifying 
promising key genes associated with the progression and 
prognosis of JMML could lead to a marked improvement 
in the long-term survival of patients. Previous research has 
mainly focused on quantitative measurements of DNAm 
in large cohorts using the Infinium Human Methylation 
450 Bead Chip (Illumina), quantitative high-resolution 
mass spectrometry (Sequenom MassARRAY), or bisulfite 
conversion and pyrosequencing techniques (13,16). To the 
best of the authors’ knowledge, the relationship between 
gene methylation and the carcinogenesis of JMML has not 
been reported. Monozygotic (MZ) twins essentially share 
identical genomes and early-childhood family environments. 
An MZ twin study is thus an ideal approach for examining 
the effects of epigenetic modifications on various diseases. 
In this study, we conducted the WGBS of twins, a JMML 
patient and his healthy brother, and data mined from a 
Gene Expression Omnibus (GEO) data set to explore the 
causative genes and their potential effects on JMML. We 
present the following article in accordance with the MDAR 
reporting checklist (available at https://tp.amegroups.com/
article/view/10.21037/tp-22-381/rc).

Methods

General information about the patient

The study was conducted in accordance with the 
Declaration of Helsinki (as revised in 2013). The study was 
approved by the Medical Ethics Committees of Nanfang 
Hospital, Southern Medical University (No. NFEC-2020-
203). Before participating in this study, the patient’s parents 
provided written informed consent. The patient was a 
6-year-old boy diagnosed with JMML. On first admission, 
his white blood cell count was 42.79×109/L, his monocyte 
count was 13.48×109/L, his platelet count was 21×109/L, 
and his hemoglobin was 21 g/dL. The examination showed 
that the bone marrow of the patient contained 8% naive 

https://tp.amegroups.com/article/view/10.21037/tp-22-381/rc
https://tp.amegroups.com/article/view/10.21037/tp-22-381/rc
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granulocytes and 7% promyelocytes. The cytogenetic 
analysis showed a normal karyotype (46, XY), while targeted 
next-generation sequencing revealed an NF1 (S1399fs/
R1748X) mutation. A physical examination showed 
splenomegaly, with a mean spleen size of 7 cm under the 
costal margin, and hepatomegaly, with a mean liver size of  
2 cm under the costal margin. The patient appeared pale 
and had many café-au-lait spots on his lower limbs and 
trunk. His older brother was in good health.

Sample preparation

Bone marrow samples of the patient and peripheral blood 
samples of his older sibling and a healthy donor were 
collected. Total DNA from the above-mentioned samples 
was extracted using DNA extraction kits (TIANGEN, 
Beijing, China) following the manufacturer’s protocol.

WGBS

Isolated genomic DNA was sheared into fragments of 100–
300 bp in length. The 3' and 5' overhangs were repaired to 
create blunt ends, and a single “A” was added to the 3' end 
of the blunt fragment. Methylated adapters were ligated to 
the A-tailed fragment and bisulfite modified using a ZYMO 
EZ DNA Methylation-Gold Kit. A final polymerase chain 
reaction (PCR) amplification step was then performed for 
library qualification. Only the qualified library with the 
targeted size range was sent for sequencing.

Genome-wide methylation analysis and gene set 
enrichment analysis

Global DNAm profiles in all 3 samples were examined. 
The data were then analyzed by a pairwise comparison to 
identify the key genes. DNA methylation in eukaryotes 
occurs on cytosine bases in the context of CG, CHG, and 
CHH (H = A, C, or T). First, the CG, CHG, and CHH 
methylation in each sample were analyzed separately to 
compare the DNAm features. Next, the average DNAm 
levels of 7 different transcription elements in the genome, 
including the upstream region, first exon, first intron, 
internal exon, internal intron, last exon, and downstream 
region, were analyzed. Next, the differentially methylated 
regions (DMRs) among the samples were analyzed and 
compared. We performed a Kyoto Encyclopedia of Genes 
and Genomes (KEGG) pathway enrichment analysis and 
a Gene Ontology (GO) enrichment analysis of the DMR-

related genes to explore the role of epigenetic variations 
in pathways and biological processes and identified the 
overlapping differential signaling pathways. Network an 
enrichment analysis of the overlapping genes was performed 
using Cytoscape and Search Tool for the Retrieval of 
Interacting Genes/Proteins (STRING), which are gene/
protein interaction databases, to identify the hub genes.

Real-time qPCR

The total ribonucleic acid (RNA) was extracted using 
TRIzol reagent (Invitrogen) from bone marrow blood 
samples from 3 JMML patients and peripheral blood 
samples from 3 healthy donors, and complementary DNA 
(cDNA) was reverse transcribed using a cDNA synthesis 
kit (Yeasen, Shanghai, China). The quantitative gene 
expression analysis was performed in an ABI7500 Real-
Time PCR System (Applied Biosystems, California, USA) 
with a quantitative PCR (qPCR) SYBR Green Master 
Mix Kit (Yeasen, Shanghai, China). β-actin was used as 
the housekeeping gene, and the 2−ΔΔCt method was used 
to quantify the relative expression levels of the genes 
of interest. The primers used to amplify cystic fibrosis 
transmembrane conductance regulator (CFTR) and β-actin 
are listed in Table S1.

Data mining and survival analysis

A data mining platform was used to query the expression 
level data for the hub genes identified in the healthy controls 
and the JMML patient samples in the GEO database, and 
differences between the means were compared by using 
a 2-tailed Student’s t-test. For the survival analysis, the 
samples were divided into 2 groups according to the median 
expression levels of the hub genes, and the overall survival 
rates of the 2 groups were compared. A result was deemed to 
be statistically significant if the P value was <0.05.

Results

The analysis showed that the CHG and CHH methylation 
levels in the 3 children were similar. However, the distribution 
of cytosine methylation (mC) and CG methylation (mCG) 
in the JMML patients differed significantly between the 
healthy sibling and the healthy control (see Figure 1). We also 
analyzed the average DNAm levels of different transcription 
elements in the genomes of the 3 subjects and found no 
significant differences (see Figure 2).

https://cdn.amegroups.cn/static/public/TP-22-381-Supplementary.pdf
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A KEGG pathway enrichment analysis and GO 
functional annotation analysis were performed on the 
DMR-associated genes in the 3 subjects. The DMR-related 
genes in the subjects had high consistency in functional 
clustering (P>0.05; see Figure 3). Interestingly, we found 
no significant differences between the heathy controls and 
the patient in the genes, but the results of KEGG pathway 
enrichment analysis showed significant differences in 
multiple signaling pathways in the promoter region (P<0.01; 
see Figure 4 and https://cdn.amegroups.cn/static/public/
tp-22-381-1.xlsx, https://cdn.amegroups.cn/static/public/
tp-22-381-2.xlsx). As the Venn diagram analysis shows, 57 
pathways, including the RAS signaling pathway and the 
pathways associated with cancer, were significantly enriched 
and overlapped in the 3 subjects (see Figure 5 and https://
cdn.amegroups.cn/static/public/tp-22-381-3.xlsx).

We performed a gene set enrichment analysis followed by 
network visualization of the gene data in the 57 overlapping 
pathways using the Cytoscape and STRING databases. The 
nodes represent the indicated genes, and the colored nodes 

represent the genes enriched in certain signaling pathways. 
The gene set enrichment analysis revealed that the node in 
red (i.e., CFTR) was the hub gene (see Figure 6).

qPCR was used for validation

The relative expression levels of the target genes were 
verified in the 3 selected JMML patients and 3 healthy 
children’s bone marrow or peripheral blood. The leukemia 
group showed slightly higher expression levels of CFTR; 
however, the difference was not statistically significant 
(P=0.22; see Figure 7).

Data mining and statistical analysis

Publicly available data from the GEO database (https://
www.ncbi.nlm.nih.gov/gds/) were mined. We removed batch 
effects between the 2 cohorts using the ComBat function in 
the sva package (17). The mean values between the patients 
and controls were compared using 2-tailed t-tests. As the 
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Figure 1 Schematic representations of the cytosine methylation levels in each subject, as determined by WGBS. The x-axis shows the 
methylation level. (A) Cytosine methylation levels in the healthy control. (B) Cytosine methylation levels in the healthy control MZ twin. (C) 
Cytosine methylation levels in the patient. WGBS, whole-genome bisulfite sequencing; MZ, monozygotic; C, cytosine; G, guanine; CHG, 
where H is non-G nucleotides.
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box plot shows (see Figure 8A), the CFTR expression levels 
did not differ significantly between the JMML patients and 
healthy donors (GEO: GSE71935–JMML =38, normal 
=9; GEO: GSE71449–JMML =44, normal =7; P=0.81). 
However, according to the median gene expression levels in 
the microarray analysis, we divided patients into low- and 
high-expression subgroups. The Kaplan-Meier curve for 
the 82 well-defined JMML patients enrolled in the database 
revealed that higher CFTR expression was linked to lower 
survival probability (P=0.019; see Figure 8B). A comparison 
of the different prognosis subgroups of the JMML patients 
with the healthy controls showed that the expression of 
CFTR was significantly elevated in the poor prognosis 
group (P=0.0049; see Figure 8C). Conversely, patients with 
a lower expression level of CFTR may had a relatively better 
prognosis (P=0.00097; see Figure 8D).

Discussion

JMML is a clonal myeloproliferative/myelodysplastic 
neoplasia. Approximately 35% of JMML patients who 

receive HSCT relapse within 5 years, indicating the 
strong need for a better understanding of the molecular 
mechanisms of JMML (3). Our study identified the 
important role of DNAm in the development and 
progression of JMML. A total of 57 overlapping signaling 
pathways, including RAS, were identified as target 
pathways that were involved in the pathogenesis of JMML. 
Some studies have described candidate genes that are 
transcriptionally regulated by methylation in JMML 
(10,12); however, this study is the first to show that CFTR 
gene methylation is significantly correlated with JMML. 
A total of 5 signaling pathways (i.e., the Cyclic Adenosine 
monophosphate (cAMP) signaling, AMP-activated 
protein kinase (AMPK) signaling, bile secretion, gastric 
acid secretion, and pancreatic secretion pathways) were 
identified in this study (see https://cdn.amegroups.cn/static/
public/tp-22-381-4.xlsx). Due to the limited sample size, 
no significant difference between the JMML patients and 
healthy children was found in relation to the expression 
of CFTR. However, a survival analysis of a larger cohort 
indicated that patients with high expression levels of CFTR 
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Figure 2 Methylation trends in gene regions. (A) Methylation trends in the healthy control. (B) Methylation trends in the healthy control 
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Figure 3 GO enrichment analysis of DMR-associated genes. (A,B) Expression of DMR-related genes and promoters between the twins. 
(C,D) Expression of DMR-related genes and promoters between the JMML patient and the healthy controls. GO, Gene Ontology; DMR, 
differentially methylated regions; JMML, juvenile myelomonocytic leukemia.

may exhibit a poorer prognosis than patients with low 
expression levels of CFTR.

CFTR, which is critical for carcinogenesis, was identified 
as one of the hub genes (18). CFTR is a glycoprotein with 
1480 amino acids that belongs to the family of Adenosine 
triphosphate binding cassette (ABC) transporters (15). ABC 
transporters are frequently overexpressed in metastatic 
cancers, contributing to chemoresistance (19). Additionally, 
CFTR is a cAMP-regulated chloride channel that contains 
2 nucleotide-binding domains (NBDs) (i.e., NBD1, and 
NBD2), and a cytosolic region called the R domain in 
addition to 12 transmembrane helices (15). A function 
of CFTR is to transport Cl− and HCO3−, and it also 

regulates other ion channels (Na+, K+, Ca2+, and other Cl− 
channels) (20-22). Additionally, CFTR also has roles in 
osmoregulation, membrane potential maintenance, lipid 
homeostasis, cell polarity, the metabolism of glucose and 
other substrates, oxidative stress, inflammation, mucus 
production, microbiome alterations, pH regulation, cell 
motility, autophagy, mitochondrial dysfunction, apoptosis, 
cell polarity, cell-cell contact, stem cell function, and 
cellular immune responses (23-33). Some studies have 
shown multiple associations between CFTR and cancer; 
however, its expression levels vary between different types 
of tumors. DNAm is the major epigenetic approach for 
gene regulation, and the destruction of DNAm is related to 
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a variety of diseases (34). The downregulation of the CFTR 
gene by promoter methylation has been demonstrated 
in various cancer types, including lung cancer (35), liver  
cancer (36), and head and neck cancer (37). However, CFTR 
is overexpressed in other cancers, such as ovarian cancer (38). 
This discrepancy indicates that the CFTR gene may act as 
both a proto-oncogene and an anti-oncogene.

The dual role of CFTR may be linked to its complex 
gene expression pattern, and the interaction of its 
promoter with intronic enhancers may coordinate gene 
transcription (39,40). In addition to being expressed 

in actively proliferating epithelial cells, CFTR is also 
widely expressed in immune cells of the blood system 
and exerts biological functions, and its anion transport 
and regulation characteristics are the same as those of 
epithelial cells (41,42). The epigenetic regulation of CFTR 
has been discovered in other solid tumors, but very few 
studies of hematologic malignancies have been reported. 
Indeed, until 2017, only 1 study had shown that CFTR 
acts as an oncogene in Ph+ acute lymphoblastic leukemia  
(Ph+ALL) (43), and the expression level of the CFTR 
in Ph+ALL patients was found to be higher than that 
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Figure 4 Bubble diagram of KEGG enrichment analysis results. (A,B) Pathway enrichment analysis of DMR-associated genes and relevant 
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of healthy controls in another study (44). However, the 
relationship between CFTR and the development of JMML 
remains unclear.

In this study, consistent with similar results for other 
solid tumors, we found that the promoter of CFTR was 
hypermethylated in JMML patients. The CFTR promoter 
is a “housekeeping” type promoter rich in CpG. In addition 
to promoter methylation, hypoxia-responsive elements, 
intronic enhancers, and insulator elements that functionally 
interact with promoters in a cell-type-specific manner can 
also partially control the spatial regulation of CpG CFTR 
expression (45). Generally, DNA promoter methylation 
and gene expression are negatively correlated, but the high 
expression levels of some genes can be maintained even 
when their promoter regions are methylated (46). Further, 
promoter methylation status has been shown to be correlated 
with prognosis; for example, the hypermethylation of CFTR 
was found to be associated with an unfavorable survival rate 
in patients with prostate cancer (47).

Based on the role of CFTR in other tumors and the 
results of our methylation analysis, it is reasonable to 
assume that CFTR is an important JMML-associated gene. 
Thus, we downloaded microarray data sets and clinical 
follow-up data from the GEO database. The Kaplan-Meier 
curves revealed that high CFTR expression was associated 
with inferior prognosis in JMML, suggesting that CFTR 
and JMML may have a close relationship. However, this 
possibility requires further exploration.

Autophagy has emerged as an effective escape mechanism 
for promoting tolerance to chemotherapeutic drugs, 
ultimately leading to poor clinical outcomes (48). The 
constitutive activation of the RAS signaling pathway, the 
main pathogenic mechanism of JMML, is closely related 
to autophagy. Inhibition of KRAS→RAF→MEK→ERK 
signaling triggers autophagy, protecting cancer cells 
from the cytotoxic effects of RAS signaling pathway  
inhibition (49). However, high expression of CFTR may 
lead to autophagy and resistance to chemotherapeutic drugs 
in cancer cells (50). In terms of treatment efficiency, there 
is currently no type of chemotherapy that can lead to long-
term remission in JMML patients.

Studies have shown that CFTR expression is also 
upregulated in ovarian cancer (37). The Ras-MAPK/
Erk-ETS1/CFTR1 axis was found to be upregulated 
in ovarian cancer cell lines. This upregulation may 
increase the proliferation and invasion and reduce the 
drug absorption and apoptosis of tumor cells, ultimately 
resulting in chemotherapeutic resistance (51). ETS1, a main 
downstream effector in the Ras/ERK signaling pathway, 
is generally considered a transcriptional activator and is 
commonly hyperactivated in cancer. More specifically, the 
Ras-MAPK signaling pathway can be activated by ETS1 
via a dual functional role (52). Increased ETS1 expression 
in ovarian cancer was found to be associated with a poor  
prognosis (53), and ETS1 can regulate the expression of 
CFTR by binding to its promoter regions (50). These 
findings suggest that CFTR is associated with the ETS1 and 
Ras signaling pathways. Additionally, the overexpression 
of CFTR in serous ovarian cancer can activate the c-Src 
signaling pathways (54), which cooperate with the 
RAS signaling pathway to promote tumorigenesis (55). 
Despite this evidence, more studies need to be conducted 
to demonstrate the direct relationship between the 
overexpression of CFTR and the activation of the RAS/ERK 
signaling pathway.

Conversely, the high expression of CFTR is positively 
correlated with nuclear factor kappa beta (NF-κB) 
activation (56). Activated NF-κB binds to the src homology 
2 (SH2) domain-containing tyrosine phosphatase-2 
(SHP2) promoter, leading to increased SHP2 expression, 
which enhances the activation of the RAS/RAF/MEK/
ERK pathway (57). The constitutive activation of the 
RAS pathway is the main pathogenic mechanism of 
JMML (4,5). Conversely, microRNA -150-5p, a small 
non-coding RNA, was discovered to play roles in both 
cancer and autoimmune disease (58,59). CFTR-mediated 

Figure 5 Venn diagram showing the overlap among the 3 subjects. 
(A) Pathway enrichment analysis of the differentially expressed 
genes between the twins (light color). (B) Pathway enrichment 
analysis of the differentially expressed genes between JMML 
patients and healthy controls. Pathway enrichment analysis of 
the overlapping differentially expressed genes. JMML, juvenile 
myelomonocytic leukemia.
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HCO3− influx can activate soluble adenylate cyclase (sAC), 
which in turn activates protein kinase A (PKA)-dependent  
NF-κB signaling (60). Activated NF-κB1 interacts with 
miR-150-5p, which negatively regulates the miR-150-5p 
expression level (61). The downregulation of miR-150-
5p leads to the phosphorylation of STAT5b and activates 
KRAS, NRAS, NF1, and PTPN11 in JMML (62). This 
observation suggests that microRNAs might function as 

intermediate links between CFTR and JMML pathogenesis/
disease progression. Thus, we speculate that CFTR and the 
pathogenesis of JMML may be closely connected via RAS 
pathway regulation. Further investigations urgently need 
to be conducted to identify the mechanisms underlying this 
relationship. Subsequent research work will focus on genome-
wide methylation analysis in expanded samples of JMML 
patients, and functional verification at the cellular level.

Figure 6 Network visualization based on pathway enrichment analysis with Cytoscape and STRING. STRING, Search Tool for the 
Retrieval of Interacting Genes/Proteins.
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This was a preliminary laboratory study; thus, further 
investigation of CFTR function both in vivo and in vitro 
are required, and more investigations are needed to 
identify the mechanisms of CFTR in JMML development 
and progression. In future clinical research, to evaluate 
the relationship between CFTR promoter methylation 
and the clinical prognosis of JMML, we will increase the 
number of cases to dynamically monitor any changes in 
CFTR promoter methylation in JMML patients during 
treatment. Due to restrictions related to our sample size, 
our research lacked genome-wide methylation data and 
the corresponding gene expression profiling data from a 
large sample. In the next study, the sample size needs to 
be increased to elucidate this mechanism through a more 
thorough experimental analysis.

In conclusion, this study was the first to show that the 
promoter of CFTR is hypermethylated in JMML. This 
was a preliminary laboratory study but combined with the 
clinical data demonstrated in the study, we are of the view 
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that CFTR could be a promising diagnostic, therapeutic, 
and prognostic biomarker for JMML. However, further 
investigations of CFTR function both in vivo and in vitro 
are required, and more investigations are needed to reveal 
the role of the CFTR gene in JMML development and 
progression. In future clinical research, to deepen the 
knowledge of the relationship between CFTR promoter 
methylation and the clinical prognosis of JMML, the 
authors will increase the sample size to dynamically monitor 
the changes in CFTR promoter methylation in JMML 
patients during treatment. Genome-wide methylation 
data of more cases will also be taken into consideration to 
elucidate the matter.
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Supplementary

Table S1 The oligonucleotide primer sequences for RT-qPCR

Gene Up/down Primer sequence

Human CFTR Up GCCTGGCACCATTAAAGAAA

Down GTGTGATTCCACCTTCTCCAA

β-actin Up
Down

GAGCACAGAGCCTCGCCTTT
ACATGCCGGAGCCGTTGTC

p: forward primer; Down: reverse primer.


