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Introduction

Pediatric epilepsy is a relatively common disorder afflicting 
1 of every 100 children, and up to one third of these patients 
demonstrate drug-resistant epilepsy (DRE) (1,2). In a 
2009 statement, the International League Against Epilepsy 
defined DRE as the “failure of adequate trials of two 
tolerated, appropriately chosen and used antiepileptic drug 
schedules (whether as monotherapies or in combination) 
to achieve sustained seizure freedom” (1). DRE represents 
a major therapeutic challenge and can be associated with 
significant comorbidities, including cognitive impairment, 
depression, anxiety, developmental delay, and impaired 
activities of daily living (3,4). Although it was initially 
perceived as a therapeutic option only after all other options 

were exhausted, surgical treatment of properly selected 
patients can provide long-term seizure control rates of 
50–70% (5). In fact, surgical intervention remains grossly 
underutilized, with approximately 100,000–500,000 surgical 
candidates in the U.S. but less than one percent of eligible 
patients undergoing epilepsy surgery each year (6). In light 
of improved seizure-control rates and reduced morbidity 
of modern epilepsy treatments, the American Academy of 
Neurology published a practice parameter recommending 
surgery as a treatment of choice for certain patients 
with DRE, as earlier referral can help avoid the adverse 
developmental and social effects of uncontrolled seizures (7). 
Despite this recommendation, several studies have shown 
that there has been no improvement in the delay from 
diagnosis to surgical referral for patients with DRE (8,9). 
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The reluctance to refer patients for evaluation at an 
epilepsy center is multifactorial, with reasons for delay 
including fear of surgical comorbidity, expense, and limited 
experience with modern, multidisciplinary treatment 
options (6). The recent emergence of novel surgical 
diagnostic and therapeutic strategies has the potential to 
increase the number of children who can benefit from 
surgical therapy, improve its efficacy, and decrease morbidity. 
This may turn the tide of misperception among families and 
community physicians regarding the surgical treatment of 
DRE in children. This review will discuss the application 
of several emerging diagnostic and therapeutic surgical 
techniques in pediatric epilepsy, including stereotactic 
electroencephalography (SEEG), MRI-guided laser 
interstitial thermal therapy (MRgLITT), and responsive 
neurostimulation (RNS). 

Stereotactic electroencephalography (SEEG)

SEEG, the stereotactic placement of multiple depth 
electrodes for intracranial EEG recording, which was 
originally described more than 50 years ago by Talairach 
and Bancaud (10,11), has enjoyed a renaissance over the 
past decade in the context of improved stereotaxis, imaging, 
and seizure monitoring technologies (Figure 1). Diagnostic 
intracranial EEG evaluation of pediatric DRE is critical 
when seizure foci are poorly localized by noninvasive means 
and after interdisciplinary evaluation (12). SEEG particularly 

facilitates a three-dimensional spatiotemporal understanding 
of seizure onset and progression. Targets are individualized 
based on hypothesized ictal foci using clinical semiology, 
scalp video EEG monitoring, structural and metabolic 
imaging, and interdisciplinary evaluation. Patients for whom 
SEEG is commonly indicated are those children with DRE 
whose magnetic resonance imaging scans are normal and 
those with multifocal lesions, nonlateralized seizure onset 
on scalp video EEG, proximity of ictal onset to putative 
functionally eloquent cortex, or discordant noninvasive data 
(Table 1). In comparison to surface electrode monitoring 
with subdural electrodes, SEEG may be particularly useful 
in the evaluation of children with multiple lesions including 
tuberous sclerosis complex, as well as for sampling deep 
targets such as insular cortex, the cingulate gyrus, and 
mesial temporal structures. In addition, placement does 
not require craniotomy (67). Furthermore, SEEG can be 
useful during the investigation of epileptic networks, such as 
limbic circuitry (67). Robotic assistance in depth electrode 
placement has demonstrated benefits in planning safe 
trajectories and reducing operating time and is associated 
with excellent target accuracy of 1–3 mm (35,68).

SEEG successfully identified the ictal onset zone in 90% 
of children in one large series (69), and these results have 
been confirmed by multiple reports (Tables 1 and 2). The 
first consecutive study of SEEG in the pediatric population 
reported 15 children (mean age 34.1 months), with 14 
undergoing subsequent surgical resection (22). Ten of 14 
children had at least 12-month follow-up: six patients were 
seizure free (Engel I), 2 had rare seizures (Engel II), and 2 
patients had no meaningful improvement (Engel IV) (70). 
Cortical dysplasia (10 children) was the most frequent 
underlying ictal substrate. One patient died after electrode 
placement because of severe cerebral edema in the setting 
of hyponatremia of unclear etiology. A large retrospective 
cohort study of 200 patients, including children and 
adults, with 2663 SEEG electrode implantations, reported 
successful identification of the ictal onset zone in 154 
patients (77%) (67). In this cohort, 134 patients underwent 
subsequent resection and 61 patients (68%) were seizure-
free at 12 months. Again, the most common underlying 
etiology was cortical dysplasia. Minimal morbidity occurred 
after SEEG, with an extremely low incidence of surgical site 
infection (0.08%), intracranial hemorrhage (0.08%), or new 
focal neurologic deficit (0.04%). Results demonstrating low 
morbidity and mortality with SEEG have been confirmed 
by multiple reports from different centers in both adult and 
pediatric cohorts. Some studies have reported a higher rate of 

Figure 1 NeuroPace System. The NeuroPace device is shown 
with a depth electrode (top lead) and cortical surface electrode 
(bottom lead) attached to the device, which is implanted in the 
skull. Reproduced with permission from NeuroPace, Inc. (Mountain 
View, CA).
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Table 1 Summary of various emerging technologies in the surgical management of epilepsy

Technique Indications References

Stereotactic  
electroencephalography 
(SEEG)

•	 Drug-resistant epilepsy† Smith et al. 1992 (13); Munari et al. 1994 (14); Behrens et al. 1994, 
1997 (15,16); Kramer et al. 1994 (17); Wiggins et al. 1999 (18); Lee 
et al. 2000 (19); Guenot et al. 2001 (20); Rydenhag and Silander 
2001 (21); Cossu et al. 2005, 2012, 2014, 2015 (22-25); De Almeida  
et al. 2006 (26); Burneo et al. 2006 (27); Johnston et al. 2006 (28); 
McGonigal et al. 2007 (29); Tanriverdi et al. 2009 (30); MacDougall 
et al. 2009 (31); Ozlen et al. 2010 (32); Blauwblomme et al. 2011 (33); 
Derrey et al. 2012 (34); Cardinale et al. 2013 (35);  
Gonzalez-Martinez et al. 2013, 2014a, 2014b (36-38); Van Roojen 
et al. 2013 (39); Nowell et al. 2014 (40); Taussig et al. 2014 (41); 
Serletis et al. 2014 (42); Liava et al. 2014 (43); Dylgjeri et al. 2014 
(44); Dorfmuller et al. 2014 (45); Enatsu et al. 2015 (46); Suresh et 
al. 2015 (47); Ciurea et al. 2015 (48); Craiu et al. 2015 (49); Oderiz 
et al. 2015 (50); Mathon et al. 2015 (51); Catenoix et al. 2015 (52) 

•	 MRI-negative seizure zone identification

•	 Anatomo-electro-clinical and MRI data 
discordance

•	 Multiple discordant lesions  
(e.g., tuberous sclerosis)

•	 Overlap with eloquent cortex

•	 Need for bilateral explorations

•	 After subdural grid failure

•	 Hypothesized involvement of widespread 
epileptogenic networks

Laser interstitial thermal 
therapy (LITT)

•	 Drug-resistant epilepsy† Curry et al. 2012 (53); Esquenazi et al. 2014 (54); Hawasli et al. 
2014 (55); Willie et al. 2014 (56); Drane et al. 2015 (57); Kang et al. 
2015 (58); Lewis et al. 2015 (59); Waseem et al. 2015 (60)

• Deep-seated epileptogenic lesions  
(e.g., mesial temporal sclerosis,  
hypothalamic hamartoma, deep tumors)

Responsive  
neurostimulation (RNS), 
NeuroPace

•	 ≥18 years of age Morrell 2011, 2014 (61,62); Heck et al. 2014 (63); King-Stephens 
et al. 2015 (64); Loring et al. 2015 (65); Meador et al. 2015 (66)• Drug-resistant epilepsy†

• Partial-onset seizures

• ≤2 epileptogenic foci

• Average of ≥3 seizures per 3 months  
average

†, failure of adequate trials of two tolerated, appropriately chosen and used antiepileptic drug schedules (whether as monotherapies or 
in combination) to achieve sustained seizure freedom (1). LITT, laser interstitial thermal therapy; MRI, magnetic resonance imaging; RNS,  
responsive neurostimulation; SEEG, stereotactic electroencephalography.

permanent morbidity after evaluation with surface electrodes 
(3–6%) compared with the use of SEEG electrodes (0–3%) 
because of the need for craniotomy and invasive grid 
placement in both adult and pediatric patients (34-37,42); 
however, comparisons of surface electrodes and SEEG as well 
as complication rates have been limited because of differing 
study indications, methodology, and techniques.

Larger studies of SEEG monitoring in pediatric patients 
have reported that efficacy of seizure foci identification 
and safety are similar to those reported in studies of adults 
(22,41,43,44). A study of 15 patients (mean age seizure onset 
6.4 months, SEEG placement 34.1 months) showed Engel 
I seizure freedom in 60% of patients (22). Liava et al. (43) 
evaluated 62 children (mean age epilepsy onset 3.2 years, 
surgery 7.9 years) with SEEG used in 39% of patients. The 
preoperative MRI demonstrated one or more structural 
lesions in over 90% of patients, including focal cortical 
dysplasia (50%), tumor (24%), and gliosis (14.5%). After 
surgery, 85.5% of patients achieved Engel I seizure freedom. 

In a study of ten children (mean age at epilepsy onset 
1.3 years, SEEG placement 6.4 years, surgery 6.6 years), 
Dylgjeri et al. (44) reported Engel I seizure freedom in 70% 
of cases. No patient complications from SEEG placement 
were reported in this study. Taussig et al. (41) evaluated 65 
pediatric patients (mean age at epilepsy onset 29.8 months, 
SEEG placement 98.6 months) who underwent SEEG 
placement. MRI results were normal or unremarkable 
in 20% of cases and 78% of patients underwent eventual 
surgery, with focal cortical dysplasia the most common 
diagnosis (51%). With a mean follow-up of 24 months, 
Engel I seizure freedom was achieved in 67% of patients. 
Overall Engel I seizure freedom outcomes are 60–80% in 
pediatric patients, a rate achieved with low morbidity and 
mortality from SEEG placement.

SEEG has enabled the development of quantitative 
algorithms to aid in seizure localization. A recent study 
used an algorithm-derived SEEG pattern to successfully 
identify the ictal onset zone using interictal fast activity 
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Table 2 Meta-analysis of studies evaluating stereotactic electroencephalography (SEEG) for epilepsy evaluation

Reference Number of patients Number and type of electrode Patient age groups

Smith et al. 1992 (13) 164 171 depth

Munari et al. 1994 (14) 70 714 SEEG Adult and pediatric

Behrens et al. 1994 (16) 160 26 depth

Kramer et al. 1994 (17) 56 16 depth Adult and pediatric

Behrens et al. 1997 (15) 429 279 strip, grid and depth 

Wiggins et al. 1999 (18) 38 Strip, grid and depth 

Lee et al. 2000 (19) 49 Strip, grid and depth 

Rydenhag and Silander 2001 (21) 182 205 strip, grid and depth Adult and pediatric

Guenot et al. 2001 (20) 100 1,118 SEEG electrodes

Cossu et al. 2005 (23) 211 215 SEEG 

De Almeida et al. 2006 (26) 217 3,022 SEEG Adult

Burneo et al. 2006 (27) 116 Strip, grid and depth 

Johnston et al. 2006 (28) 112 Strip, grid and depth Adult and pediatric

McGonigal et al. 2007 (29) 100 SEEG Adult and pediatric

Tanriverdi et al. 2009 (30) 491 6,415 SEEG Adult and pediatric

MacDougall et al. 2009 (31) 172 177 strip, grid and depth Adult

Ozlen et al. 2010 (32) 70 276 strip, grid and depth Adult and pediatric

Blauwblomme et al. 2011 (33) 95 Strip, grid and depth Pediatric

Cossu et al. 2012 (22) 15 SEEG Pediatric

Derrey et al. 2012 (34) 1 14 SEEG Pediatric

Cardinale et al. 2013 (35) 500 6,496 SEEG Adult and pediatric

Gonzalez-Martinez et al. 2013 (36) 100 1,310 SEEG Adult and pediatric

Van Roojen et al. 2013 (39) 14 SEEG

Gonzalez-Martinez et al. 2014 (37) 122 1,586 SEEG Adult and pediatric

Cossu et al. 2014 (24) 5 SEEG and radiofrequency thermal ablation

Nowell et al. 2014 (40) 22 187 SEEG Adult

Taussig et al. 2014 (41) 65 SEEG Pediatric

Serletis et al. 2014 (42) 200 2,663 SEEG Adult and pediatric

Liava et al. 2014 (43) 62 SEEG Pediatric

Dylgjeri et al. 2014 (44) 10 SEEG Pediatric

Cossu et al. 2015 (25) 89 SEEG and thermal ablation Adult and pediatric

Enatsu et al. 2015 (46) 18 SEEG Adult and pediatric

Suresh et al. 2015 (47) 18 SEEG Adult

Ciurea et al. 2015 (48) 1 SEEG Adult

Craiu et al. 2015 (49) 1 SEEG Adult

Oderiz et al. 2015 (50) 3 SEEG Adult and pediatric

Mathon et al. 2015 (51) 163 163 strip, grid and depth Adult

Catenoix et al. 2015 (52) 14 SEEG and thermal ablation Adult

Medline literature search using MeSH search term “SEEG” or “stereoelectroencephalography” since 1990 for English-language manuscripts 
involving clinical use of SEEG. SEEG, stereotactic electroencephalography.
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(80–120 Hz) associated with slow transient polarizing 
shifts and voltage depression (71). A three-dimensional 
model of seizure activity was created from the position of 
the SEEG electrodes. This method was validated using a 
separate cohort of 14 patients, with complete correlation 
with clinician-identified seizure onset in 13 cases and partial 
correlation in 1 case. Single-pulse electrical stimulation 
(SPES) has also been used to improve detection of epileptic 
sites (72). Electrodes may act as either activators or 
bidirectional activator/detectors, and stimulation was able 
to generate three-dimensional reconstructed networks. 
Other studies have used various SEEG data measurements 
to model the epileptogenic zone, including absolute signal 
slope (e.g., change in signal strength/time), ordinal patterns 
of EEG activity, multivariate cross-correlation matrices 
of EEG activity, and multivariate model-free information 
theory (73). Other methods of EEG quantitation include 
the joint sign periodogram event characterization 
transformation algorithm (74), epilepticity index (75), and 
high-frequency oscillations (76). As quantitative algorithms 
analyzing specific interictal and ictal features of intracranial 
EEG recordings become more clinically informative, 
SEEG is playing a rapidly expanding role in modeling the 
epileptogenic zone in appropriately selected children.

MRI-guided laser interstitial thermal therapy 
(MRgLITT) 

In parallel with the development of robot-assisted, 

minimally invasive intracranial EEG recordings and 
quantitative algorithms to model the epileptogenic zone, 
novel minimally invasive surgical treatment strategies have 
emerged. Specifically, MRgLITT has been an exciting new 
minimally invasive tool in the management of a variety of 
neurosurgical lesions, especially DRE in children (Tables 1 
and 3). MRgLITT utilizes an optical fiber with a diffusing 
tip heated by a diode laser insulated in an outer cannula 
that cools the laser with either saline or carbon dioxide (78). 
The probe is delivered by frame-based stereotaxis, robotic 
stereotaxis, or MRI-based frameless stereotactic techniques 
to a defined target. After placement, heat diffused from the 
probe is monitored in real-time using MR thermography. 
Heating of tissue results in time- and temperature-
dependent thermal denaturation of critical enzymes and 
eventually cell death. 

Two MRgLITT systems are currently approved by the 
Food and Drug Administration (FDA) for clinical use in 
the United States: Visualase (Medtronic, Minneapolis, 
MN) and NeuroBlate (Monteris Medical, Plymouth, NM). 
Although these systems are built around the same concept, 
there are differences between them, including computer-
guided robotic catheter movement, directional manipulation 
of thermal energy, and low-temperature safety controls to 
protect critical structures from injury (78,79). Advantages 
of MRgLITT include the ability to target deep lesions 
(e.g., hypothalamic hamartomas, mesial temporal sclerosis) 
via a minimally invasive approach and monitoring of the 
treatment in real time. This contrasts with other minimally 

Table 3 Meta-analysis of patients undergoing laser interstitial thermal therapy (LITT) for epilepsy treatment

Reference Population Sample size

Curry et al. 2012 (53) Mixed 5

Kang et al. 2015 (58) MTS 20

Willie et al. 2014 (56) MTS 13

Drane et al. 2015 (57) TLE 19

Waseem et al. 2015 (60) TLE 7

Hawasli et al. 2014 (55) Insular 1

Esquenazi et al. 2014 (54) Periventricular nodular heterotopia 2

Gonzalez-Martinez et al. 2014 (77) Periventricular nodular heterotopia 1

Cossu et al. 2014 (24) Periventricular nodular heterotopia 5

Cossu et al. 2015 (25) Hippocampal sclerosis, periventricular nodular heterotopy, focal cortical dysplasia, 

other

89

Catenoix et al. 2015 (52) Periventricular nodular heterotopy, focal cortical dysplasia 14

Medline literature search using Mesh search term “LITT” or “laser” and “epilepsy” or “seizure” since 1990 for English-language 

manuscripts involving clinical use of MRgLITT. MTS, mesial temporal sclerosis; TLE, temporal lobe epilepsy.
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invasive or noninvasive treatment methods, including gamma 
knife radiosurgery or radiofrequency ablation (80-82).  
Further, MRgLITT can easily reach deep lesions close to 
the skull base, in contrast with focused ultrasound (83).

Multiple studies have shown an expanding role for 
MRgLITT in the treatment of pediatric DRE. A recent 
report evaluated MRgLITT in the management of 17 
pediatric (mean age 15.3 years) patients with DRE and a 
variety of epileptogenic substrates, including focal cortical 
dysplasia (n=12), tuberous sclerosis (n=5), hypothalamic 
hamartoma (n=1), mesial temporal sclerosis (n=1), 
Rasmussen encephalitis (n=1), and tumor (n=1) (59). 
Seizure control rates were promising, with 41% of patients 
achieving seizure freedom and 59% achieving an Engel I 
or Engel II outcome. Four complications were reported, 
namely inaccurate probe placement (n=2), probe system 
failure (n=1), and postoperative dexamethasone-induced 
gastritis (n=1). The use of MRgLITT in the treatment 
of hypothalamic hamartomas was evaluated in a study of 
14 pediatric patients (median age 8 years); postoperative 
Engel I seizure freedom was achieved in 86% of patients 
with a mean followup of 9 months (84). Another study 
evaluated the role of MRgLITT in five pediatric patients 
(age 5–15 years) for a combination of tuberous sclerosis, 
mesial temporal lobe epilepsy, cortical dysplasia, and 
hypothalamic hamartoma (53). Engel I seizure freedom was 
achieved in three patients with limited follow-up ranging 
from 2 to 13 months. MRgLITT has also been reportedly 
used for treatment of various other conditions including 
periventricular nodular heterotopia (54,77), insular epileptic 
foci (55), glial neoplasms (85), brain metastases (86), and 
teratoma (87). 

To date, the most well-studied application of MRgLITT 
in DRE is the minimally invasive treatment of mesial 
temporal sclerosis (MTS). Although randomized trials 
have clearly demonstrated the efficacy of craniotomy 
and temporal lobectomy in patients with DRE and MTS 
(88,89), this procedure is frequently associated with a 
decline in verbal memory when performed in the dominant 
hemisphere (90,91). Minimally invasive approaches 
including radiofrequency ablation have shown good 
outcomes (81), suggesting a role for MRgLITT. A recent 
report of 20 children and adults (age range 0.9–50 years) 
undergoing MRgLITT for MTS demonstrated seizure 
control rates of 53% at 6 months, with 4 patients requiring 
anterior temporal lobectomy after MRgLITT for definitive 
seizure control (58). Unfortunately, although a median 
follow-up of 13.4 months (range, 1.3–38.5 months) was 

achieved, a large number of patients were lost to follow-up, 
limiting the available data on long-term seizure freedom. 
Another study of 13 adult patients from a single institution 
(9 with MTS) showed seizure control rates of 77% along 
with control of 67% in patients with MTS (n=6/9) (56). 
One prospective study of temporal lobe epilepsy compared 
19 adult patients undergoing MRgLITT treatment with 
39 adult patients undergoing standard temporal lobectomy 
for temporal lobe epilepsy in the dominant hemisphere. 
Patients undergoing craniotomy had a more significant 
decline in facial recognition and naming (P<0.0001) (57). 
Rates of seizure control were similar in both groups, with 
57.9% of patients treated with MRgLITT and 61.5% who 
underwent craniotomy achieving seizure freedom. Although 
most of the data regarding MRgLITT in MTS treatment 
are from the adult literature, efficacy and safety in pediatric 
patients have been shown in several reports, suggesting an 
expanding role for MRgLITT in children in the future (58). 

Responsive neurostimulation (RNS) 

Initial evaluation of electrical stimulation in the study of 
epilepsy was performed by Penfield and Jasper in 1954 
(92,93). Deep brain stimulation has been used successfully 
for treatment of epilepsy in small series targeting the 
cerebellum (94), centromedian thalamic nucleus (95,96), 
and anterior nucleus of the thalamus (97-99). Targeting of 
the hippocampus, subthalamic nucleus, and caudate have 
also been reported (100-108). These early studies of open-
loop stimulation technology were important benchmarks in 
the use of neurostimulation to treat epilepsy and provided 
the foundation for RNS (109). 

RNS is a novel treatment paradigm that is distinct 
from other types of neurostimulation because it employs 
continuous monitoring of a focal EEG signal via intracranial 
electrodes placed over an ictal onset zone, with cortical 
stimulation based on computer analysis of EEG signal input 
to abort seizure onset (Table 1). The first commercially 
available implantable system was introduced by NeuroPace, 
Inc. (Mountain View, CA, USA) and received FDA approval 
in the U.S. in 2013 for patients ≥18 years of age with 
medically refractory (appropriate selection and trial of ≥2 
medications), partial-onset seizures, ≤2 epileptogenic foci, 
and an average of ≥3 seizures per 3-month average (Figure 2)  
(61,63). NeuroPace is compatible with both surface and 
depth electrodes that both detect epileptogenic activity and 
produce electrical stimulation to disrupt seizure onset. The 
device measures epileptic activity by the bandpass, line-
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length, and area algorithms to delivery stimulation ranging 
from 1 to 333 Hz, amplitudes of 0.5 to 12 mA, and pulse-
widths from 40 to 1,000 μs, device settings familiar to most 
clinicians managing deep brain stimulation systems. 

A landmark study leading to FDA approval of NeuroPace 
was conducted by the RNS System in Epilepsy Study 
Group (61). This study involved 191 adults (mean age  
34.9 years) with refractory epilepsy undergoing subdural or 
depth electrode placement at 1 or 2 specified epileptogenic 
foci. Double-blind randomization to either stimulation 
or sham stimulation was performed, followed by a three-
month evaluation period. Thereafter, the sham group was 
also stimulated. An initial reduction in seizure frequency 
was seen, as in prior trials evaluating surgical treatment for 
epilepsy; however, a sustained reduction in mean seizure 
frequency was seen in 37.9% of stimulated patients vs. 
17.3% of sham patients (P=0.012). Overall, 46% of patients 

showed a 50% reduction in mean seizure frequency as well 
as improvement in secondary outcomes, including quality-
of-life assessment (63,66). Long-term reduction in median 
seizure frequency of 48–66% was observed over a mean 
follow-up of 5.4 years, with improvement in quality-of-
life measures (110). No patient showed complete seizure 
freedom but 36.7% had 1 seizure-free period of >3 months, 
23% had a seizure-free period of >6 months, and 12.9% 
had a seizure-free period of >12 months. Since follow-up, 
11 deaths from the study group cohort were reported, with 
7 due to sudden unexpected death in epilepsy (SUDEP), 2 
from suicide in patients with histories of depression, 1 from 
status epilepticus, and 1 from lymphoma. Notably, rates of 
SUDEP were not decreased in patients treated via RNS 
compared with the overall epilepsy population. A follow-up 
secondary analysis of neuropsychological outcomes showed 
sustained improvements two years after implantation (65). 

Figure 2  Case example of stereotactic electroencephalogram (SEEG) planning and electrode placement. This is a case of a 12-year-old boy 
presenting with medically refractory epilepsy described as complex, partial seizures with automatisms and confusion. Despite workup by 
video EEG and imaging, no definitive locus for the epileptic zone could be identified. The patient underwent placement of bilateral SEEG 
electrodes and, during video monitoring, a deep-seated epileptogenic zone on the right side was identified suggestive of a deep cortical 
dysplasia. Because of the location of the lesion and epileptogenic zone, traditional diagnostic methods could not delineate the area.

A B

C D
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Moreover, a 32% improvement in naming scores among 
patients (n=76) with focal neocortical epilepsy and 8.5% 
improvement in verbal memory among patients (n=86) 
with mesial temporal onset seizures were also observed. 
Evaluation of device activity after implantation as well as 
stimulation data show that the device can drastically alter 
the severity and character of patient seizures (62); however, 
the relationship between these electroencephalographic 
changes and clinical seizure behavior remains unclear.

While currently only FDA approved for adults, the 
NeuroPace system may have a role in the treatment of 
children with DRE who are not candidates for or who 
have failed other surgical treatments. To date, there have 
been no reports of the use of NeuroPace to treat patients 
younger than 18 years of age; however, a number of features 
of NeuroPace may appeal for use in a pediatric population. 
One study explored the possibility of using the device as 
an outpatient chronic ambulatory electrocorticography 
(ECoG) device using the original trial data (64). Among 
191 patients in the study cohort, 82 had received bilateral 
mesial temporal lobe implants with the NeuroPace device 
because clear lateralization was not present on preoperative 
evaluation. After analysis of the captured electrographic 
data in this subgroup, bilateral ictal onset was confirmed 
in 84% after a mean of 41.6 days (range, 0–376 days) after 
implantation; however, unilateral localization was apparent 
in 16% of patients, suggesting the possibility of resection. 
Conversely, among 11 patients with presumed unilateral 
onset, 64% demonstrated bilateral electrographic seizures. 
Therefore, the potential of the NeuroPace device to serve 
as an ambulatory ECoG may make it a useful tool in a 
pediatric setting where patients may not tolerate the stress 
and morbidity of intracranial monitoring as well as adult 
patients do. Overall, RNS promises to be a useful tool in the 
arsenal of epilepsy treatment for patients with epileptogenic 
foci not amenable for surgical resection. Multiple questions 
remain regarding the use of RNS, including further 
elucidation of the mechanism of action to improve future 
trials and patient selection. Evaluation in pediatric patients 
remains to be explored. 

Conclusions

The combination of novel seizure modifying approaches, 
such as RNS, and minimally invasive methods of 
intracranial monitoring with SEEG, quantitative algorithms 
for modeling the epileptogenic zone, and minimally invasive 
treatment paradigms such as laser ablation has the power 

to significantly change the surgical management of DRE 
in children in the future. The further development of these 
technologies in parallel may truly represent a disruptive 
innovation that significantly improves outcomes and 
decreases morbidity in children with disabling seizures. 
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