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Background and Objective: Traditional targeted metabolomic investigations identify a pre-defined 
list of analytes in samples and have been widely used for decades in the diagnosis and monitoring of 
inborn errors of metabolism (IEMs). Recent technological advances have resulted in the development and 
maturation of untargeted metabolomics: a holistic, unbiased, analytical approach to detecting metabolic 
disturbances in human disease. We aim to provide a summary of untargeted metabolomics [focusing on 
tandem mass spectrometry (MS-MS)] and its application in the field of IEMs.
Methods: Data for this review was identified through a literature search using PubMed, Google Scholar, 
and personal repositories of articles collected by the authors. Findings are presented within several sections 
describing the metabolome, the current use of targeted metabolomics in the diagnostic pathway of patients 
with IEMs, the more recent integration of untargeted metabolomics into clinical care, and the limitations of 
this newly employed analytical technique.
Key Content and Findings: Untargeted metabolomic investigations are increasingly utilized in 
screening for rare disorders, improving understanding of cellular and subcellular physiology, discovering 
novel biomarkers, monitoring therapy, and functionally validating genomic variants. Although the untargeted 
metabolomic approach has some limitations, this “next generation metabolic screening” platform is 
becoming increasingly affordable and accessible.
Conclusions: When used in conjunction with genomics and the other promising “-omic” technologies, 
untargeted metabolomics has the potential to revolutionize the diagnostics of IEMs (and other rare 
disorders), improving both clinical and health economic outcomes.
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Introduction

Metabolites are small organic molecules (≤1,000 m/z) 
that are the intermediate or end products of enzymatic 
processes. Their levels in cells, tissues, or biological fluids 
may vary due to gene function, disease processes, diet, 
environment, medications, and other factors (1,2).

Inborn errors of metabolism (IEMs), although individually 
rare, are a key group of over 1,000 inherited disorders that 
result in altered levels of metabolites (3). Some of these 
disorders affect the processing of carbohydrates, lipids, or 
proteins, leading to intoxication or energy deficiency in the 
case of small molecules, and storage or deficiency in the case 
of complex molecules (4). In many of these conditions, early 
diagnosis allows for timely medical intervention, reducing 
mortality and significantly improving quality of life. Such 
prompt diagnoses of IEMs can be achieved through newborn 
screening (NBS) programs, which involve dried blood 
spot (DBS) analysis using mass spectrometry techniques. 
Depending on the country and region, these programs 
can detect around 30 disorders in the pre-symptomatic 
phase, facilitating early intervention and improving clinical 
outcomes (5-8). 

Diagnosis of many IEMs, either through NBS or diagnostic 
testing, requires metabolomic analysis. This traditional 
approach to the investigation of metabolites is referred to as 
“targeted metabolomics”. Different techniques (such as gas 
or liquid chromatography-mass spectrometry) are used to 
analyze a predefined, small list of metabolites so that they can 
be separated, detected, annotated, and quantified. For decades, 
these approaches have been widely and successfully used for 
the diagnosis and monitoring of patients with IEMs.

More recently, a powerful “next-generation metabolic 
screening” technology has become available to assess 
the metabolome in an unbiased fashion. This has been 
facilitated by the development of high-resolution accurate 
mass spectrometers, as well as progress in the understanding 
of biochemical pathways and bioinformatics. As a result, 
untargeted metabolomics has significantly matured in the 
last decade and offers an increased diagnostic yield when 
compared to traditional approaches (9-14). The applications 
of both targeted and untargeted metabolomics may be 
varied; however, one crucial application is in the diagnosis 
and therapeutic monitoring of patients with IEMs (15,16).

Similar to what has occurred in the field of genomic 
testing with next generation sequencing (NGS), untargeted 
metabolomics is beginning to alter the diagnostic 
approach to the investigation of IEMs due to its broader 
coverage and scope. Over the past two decades untargeted 

metabolomic approaches are increasingly being utilized in 
the investigation and diagnosis of patients with IEMs (15). 

Not only does untargeted metabolomics assist with 
diagnosis, it also allows for increased understanding 
of disease mechanisms (17-19), customization of drug 
treatments (20), and monitoring of therapeutic response 
(21-24). As genomic studies unravel new disorders, 
understanding their effects on cellular and subcellular 
function becomes essential to confirm causation of disease 
and develop effective therapies (25). In addition to the use 
of traditional sample types (urine, plasma and cerebrospinal 
fluid), other tissue and cell types are also amenable to 
metabolomic studies, which will advance the understanding 
of intracellular and organ-specific metabolic pathways (26).  
Concurrently, the other rapidly expanding “-omic” fields 
(including transcriptomics, epigenomics, proteomics, 
lipidomics and glycomics) will also be increasingly 
contributing to these improvements (25,27). 

This review aims to highlight the clinical utility of 
untargeted metabolomics, and its complementary nature to 
currently utilized “-omic” approaches, for the diagnosis and 
monitoring of IEMs. Current methods and limitations of 
untargeted metabolomics will be reviewed, in comparison 
to targeted metabolomics. Future applications of untargeted 
metabolomics in the field of IEMs, including identifying 
‘metabolomic signatures’, monitoring therapeutic responses 
and integrating genomic and metabolomic data, will also 
be discussed. Over time, widespread availability of this 
technology will improve understanding of molecular 
mechanisms of disease and increase diagnostic yield, 
resulting in positive impacts on patient outcomes. We 
present the following article in accordance with the 
Narrative Review reporting checklist (available at https://
tp.amegroups.com/article/view/10.21037/tp-22-105/rc).

Methods

In this narrative review, authors performed a literature 
search using PubMed and Google Scholar using the 
MeSH terms: “Metabolomic”, “Diagnosis”, “Untargeted 
Metabolomics”, “Inborn Errors of Metabolism”. Article 
inclusion and exclusion criteria are outlined in Table 1. 
Additionally, where applicable, authors also utilized their 
own repositories of articles.

Evaluating the metabolome 

For targeted metabolomics, gas chromatography-mass 

https://tp.amegroups.com/article/view/10.21037/tp-22-105/rc
https://tp.amegroups.com/article/view/10.21037/tp-22-105/rc
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spectrometry and liquid chromatography tandem mass 
spectrometry (LC/MS-MS) are both heavily utilized in 
the clinical setting, as sample preparation is often simple 
and analytical results can be available rapidly. With these 
techniques, a finite number of compounds are analyzed, 
allowing optimization of sensitivity and specificity (28,29). 
There are now universal databases that provide reference 
spectra (30).

In untargeted metabolomics, the sheer number and 
complexity of metabolites detected is far greater (even 
up to 40,000 metabolites has been reported) (14) and 
provides an unbiased view of the entire metabolome 
similar to whole genome sequencing (WGS) in genomic 
evaluation. Untargeted metabolomics can be performed 
by ultra-high performance mass spectrometry based 
approaches in tandem with liquid chromatography (31,32). 
Additionally, there are other modern technologies and 
methodologies that are being employed to detect large 
numbers of metabolites, including the ultra-high resolution 
of Orbitrap-mass spectrometry which leads to accurate 
detection of molecular ions (<1 ppm mass deviations) with 
extremely high specificity (33). Matrix-associated laser 
desorption ionization time-of-flight (MALDI-TOF) mass 
spectrometry carries the benefits of short sample analysis 
time, wide mass range of detectable metabolites and low 
sample consumption (<1 µL) (34). Other platforms, such as 
1H-nuclear magnetic resonance (NMR) spectral analysis, are 
now employed in both targeted and untargeted approaches 
(35,36). However, this mini-review will focus primarily on 

mass spectrometry-based techniques. 
Automated bioinformatic curation, based on population 

z-scores, reduces the number of compounds requiring 
manual review downstream (37,38). Similar to genomic 
pipelines assisting in interpretation of large volumes of 
genomic data, biochemical pipelines that help streamline and 
prioritize metabolite analysis have also been developed (10).

Current diagnostic pathways: targeted 
metabolomics 

Traditionally, IEMs have been diagnosed in a targeted 
manner (driven by phenotypic or molecular findings) 
(29,39). Such biomarker assays, as outlined by Saudubray 
and colleagues, are developed and validated with a high 
level of sensitivity and specificity for disease and are 
suitable for use in clinical practice (4). This targeted 
approach streamlines the diagnostic pathway, allowing for 
timely implementation of treatment in patients presenting 
during an acute metabolic crisis. However, a targeted 
approach comes with limitations in terms of the quantity of 
metabolites analyzed, as well as an inability to easily assess 
interactions between metabolic pathways.

With the targeted approach, patients presenting with 
clinical features of an IEM (acute metabolic encephalopathy, 
with basic biochemistry suggestive of small molecule 
intoxication), are rapidly diagnosed through tests such 
as urine metabolic screening (including organic acids), 
plasma acylcarnitine and/or amino acid analyses (29).  

Table 1 The search strategy summary

Items Specification

Date of search July 25th, 2022

Databases and other sources searched PubMed; Google Scholar

Search terms used “Metabolomic”, “Diagnosis”, “Untargeted Metabolomics”, “Inborn Errors of Metabolism” 

Please refer to Table S1 for detailed search strategy

Timeframe January 1st, 2002 to July 25th, 2022

Inclusion and exclusion criteria Inclusion criteria: articles in English pertaining to the use of “Metabolomic”, “Diagnosis”, 
“Inborn Errors of Metabolism” published from 2002 onwards, and “Untargeted 
Metabolomics” in “Inborn Errors of Metabolism” published from 2013 onwards

Exclusion criteria: articles not focusing on “untargeted metabolomics” or “inborn errors of 
metabolism”

Selection process AH, AS and AAT selected candidate articles for inclusion. Articles were not included 
unless 50% of the authorship agreed

https://cdn.amegroups.cn/static/public/TP-22-105-Supplementary.pdf
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Other patients presenting with a more chronic process 
due to accumulation of a complex molecule, such as 
glycosaminoglycans, sphingolipids or very long chain fatty 
acids, have a separate set of metabolomic biomarkers that 
are evaluated to arrive at a diagnosis. The benefits of a 
targeted metabolomic approach include comprehensive 
understanding of the relevant enzyme pathways, optimized 
sample preparation (with reduction in high-abundance 
molecules) and the ability to more effectively filter out 
analytical artefacts (40,41). Newer technologies, such as 
flow injection mass spectrometry, can reduce run times, 
enabling faster analysis that could be suitable for high-
throughput testing (38).

With the increasing utility of NGS technologies, targeted 
metabolomic studies are also playing a role in assisting with 
molecular diagnostics. Detection of a specific metabolic 
derangement can facilitate a simpler bioinformatic gene 
panel analysis, rather than an open whole exome approach 
with a non-specific phenotype (42). However, it is important 
to consider that the absence of a metabolomic marker does 
not preclude a diagnosis, as these may only be elevated 
during times of metabolic stress.

Whilst the clinical utility of metabolomics currently 
lies in targeted approaches, advances in technology and 
bioinformatics have facilitated untargeted metabolic analysis 
in both the clinical and research spheres, allowing for 
subsequent integration into the clinical workflow.

Future trends and integration of untargeted 
metabolomics to the bedside 

Untargeted metabolomic technologies allow for analysis of 
a comprehensive array of metabolites that would otherwise 
require individualized assays and sample preparations (43). 
This technology is also likely to offer substantial clinical 
benefit not achieved by targeted metabolomic testing, and 
may be further enhanced by developments in machine 
learning (44) and statistical modelling (45,46). The clinical 
potential of untargeted metabolomics in diagnosis of IEM 
has been investigated extensively (11,13,15,18,22,33,47-53),  
and complements other “-omic” approaches in the diagnosis 
of IEM and other genetic disorders (16,42,54-58).

Biomarker discovery and increased understanding of 
disease pathophysiology

A key application of untargeted metabolomics is in 
identification of novel, or more sensitive biomarkers 

for disease. To be considered an ideal biomarker (for 
diagnostic and prognostic features) of disease, the candidate 
analytes derived in a research setting need to be validated 
extensively before translating into clinical practice (59). 
There are multiple considerations when identifying an 
ideal disease biomarker. These analytes must be sensitive, 
in that patients with the disease should have a derangement 
in the biomarker (such as allo-isoleucine in maple syrup 
urine disease) (60). They should be specific; for instance, 
lactate is a poor biomarker for IEMs because its elevation 
can occur due to multiple other aetiologies (including 
sepsis, seizures or cardiac dysfunction) (61). The extent 
of biomarker derangement should correlate with disease 
severity, as well as clinical response to therapy. There are 
also analytical factors that should be considered, such as 
sample robustness (during handling, storage and freeze-
thaw cycles) and reproducibility (62,63). It is unlikely that 
new candidate biomarkers would be found using targeted, 
or even semi-targeted approaches, given the limited number 
of metabolites and pathways interrogated. However, with 
untargeted analytical approaches, the unbiased screening of 
the metabolome facilitates biomarker discovery.

For instance, Burrage and colleagues (17) performed 
untargeted metabolomics using mass spectrometry on 
plasma samples of 48 patients with urea cycle disorders. 
This involved the detection of over 900 different 
metabolites and normalization of subject samples to 
an invariant anchor specimen, which could then be 
compared to population reference ranges to generate 
z-scores. Metabolites of sodium benzoate and sodium 
phenylbutyrate were detected, allowing for monitoring of 
therapeutic compliance. In addition, marked increases in 
multiple guanidino compounds were observed in patients 
with arginase deficiency, which were elevated over-and-
above the plasma arginine level. Wangler and colleagues 
studied individuals with confirmed peroxisome biogenesis 
disorders in the Zellweger spectrum (PBD-ZSD). The 
untargeted metabolomic profiling results from plasma 
detected over 650 compounds, with increases observed in 
pipecolic acid and long-chain lysophosphatidylcholines, 
along with unexpected decreases in multiple sphingomyelin 
species (64). These findings could serve as more sensitive 
biomarkers for the initial diagnosis, act as early signs of 
impending clinical deterioration, determine prognosis or 
prove beneficial in monitoring response to novel therapies. 
Once identified, these biomarkers, or patterns of biomarkers 
can be incorporated into targeted metabolomic analysis.

Identification of novel markers of disease also provides 
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additional insight into disease mechanisms and pathogenesis. 
Glinton and colleagues, utilizing untargeted metabolomic 
profiling for four patients with serine biosynthetic defects, 
demonstrated low levels of glycerophosphocholine, 
glycerophosphoethanolamine and sphingomyelin, as well 
as the well-known deficiencies of serine and glycine (18).  
Most of these phospholipid compounds normalized 
following treatment with serine and glycine. The authors 
suggested that deficiency of phospholipids (secondary to 
serine deficiency) may be contributing to the neurological 
manifestations of the condition, and this could lend itself to 
additional targeted therapies in the future. As exemplified 
by this study, and others, untargeted methods allow for 
a better understanding of disease pathogenesis, as whole 
pathways can be analyzed, rather than individual metabolites 
(32,56,57,65-69).

The use of untargeted approaches can also help generate 
a ‘metabolomic signature’ similar to the increasing utility of 
methylation episignatures for detection of BAFopathies (70). 
Venter and colleagues performed untargeted metabolomic 
testing on urine samples for patients with suspected 
respiratory chain disorders, identifying a 12-compound 
signature that distinguished patients with biopsy-proven 

respiratory chain abnormalities in muscle, from those with 
a suspicion of a mitochondrial myopathy who did not have 
these changes (with a sensitivity of 98%, and specificity of 
80%) (71). There are also several other reports of utilization 
of untargeted metabolomics to generate disease specific 
‘fingerprints’ (58,72-74). 

Additionally, diagnostic evaluation of samples from 
16 patients with pyruvate kinase deficiency (compared 
to 32 controls) generated a highly specific and accurate 
metabolomic signature that included glycolytic intermediates, 
polyamines and acylcarnitine species (75). Such comparison 
of patient samples to a library of known metabolomic 
signatures could be beneficial when a more targeted approach 
has not achieved a diagnosis (Figure 1). Similar to the  
100,000 Genomes Pilot Study (76), cohort analysis of large 
numbers of such patients may also help identify and refine 
candidate biomarkers and metabolomic signatures. 

Using ‘metabolomic signatures’ to identify candidate 
biomarkers for treatment response

With increased throughput and understanding of individual 
metabolites in disease pathogenesis, metabolomic signatures 

Figure 1 The integration of untargeted metabolomics into the diagnostic pipeline of IEMs. Patients who have no diagnosis despite targeted 
metabolomic and molecular testing are candidates for an untargeted approach, including metabolomics and WGS. Novel biomarkers 
discovered during this process can then be re-incorporated into targeted metabolomic analysis. Any VUSs unresolved by the combined 
genomic-metabolomic approach can be further investigated through functional characterization studies in the research setting. VUS, variant 
of uncertain significance; IEMs, inborn errors of metabolism; WGS, whole genome sequencing. 
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could be built upon to incorporate response to treatment. 
There are already examples in the literature of untargeted 
metabolomic analysis assisting in treatment monitoring for 
IEMs (77,78). Pillai and colleagues reported a patient with 
riboflavin transporter deficiency with bi-allelic variants 
one pathogenic and one a variant of uncertain significance 
(VUS) in SLC52A2 (77). Untargeted metabolomic analysis 
identified multiple compounds associated with abnormal 
flavin adenine nucleotide function, which normalized after 
riboflavin therapy. This both assisted in confirmation of 
the molecular diagnosis and provided a mechanism for 
identification of candidate biomarkers that can potentially 
be validated to be used for monitoring therapeutic response 
through targeted assays. 

These cases demonstrate that, aside from its diagnostic 
role, untargeted metabolomics may also identify biomarkers 
that assist in therapeutic decision-making. This not only 
applies to patients with IEMs, but also in other diseases 
with larger health economic considerations, including 
cancer, cardiovascular disease and infectious diseases (79). 
Untargeted metabolomics may also facilitate a personalized 
medical approach that is not only patient-specific, but also 
incorporates contemporaneous external factors such as diet, 
treatment, and environment. Although outside the scope of 
this review, the recent advances in single-cell (or organelle) 
metabolomics also have the potential to revolutionize 
the treatment approaches in cancer as well as assist in 
understanding of cell senescence (80). 

Incorporation of untargeted metabolomics into NBS

Given the comprehensive analysis provided by untargeted 
metabolomics, it may play a significant role in the future 
of NBS. Untargeted metabolomics can be successfully 
performed on DBS (81-83). To our knowledge, results 
of a large-scale study involving untargeted metabolomics 
in an asymptomatic population are not available. Liu and 
colleagues reviewed 4,464 clinical samples analyzed via 
targeted metabolomics, compared with 2,000 samples (from 
a separate cohort) analyzed using untargeted techniques (12).  
The former had a 1.3% diagnostic rate [14 conditions 
identified, three of which were not in the Recommended 
Uniform Screening Panel (RUSP) (84)]. The latter had a 
diagnostic rate of 7.1%, but this included 49 conditions 
that were not included in the RUSP (19 of which do not 
have any known treatment). This study demonstrates that 
untargeted metabolomics can identify conditions detected 
by NBS; however, the risks of identifying additional 

disorders not routinely included in the RUSP are also high. 
Typically, the RUSP scoring system considers diagnostic and 
clinical evidence for a disease (and its treatment) prior to 
recommendation: identifying non-RUSP conditions, some 
of which are less defined clinical entities, may create more 
uncertainty.

Over a decade ago, the National Institutes of Health 
(NIH)-funded Newborn Sequencing In Genomic medicine 
and public HealTh (NSIGHT) Consortium commenced 
pilot programs for whole exome sequencing (WES)- and 
WGS-based NBS in the United States of America (85). 
Many lessons have been learned from these initiatives 
including those associated with technical issues (data 
analysis and handling) and those associated with ethical 
and societal challenges (secondary findings of adult-onset 
disorders for which no therapies are currently available) (86).  
The latter pose a significant ethical dilemma with the 
possibility of interfering with the neonate’s right to self-
determination (85). A NBS pilot study of a combined 
genomic-untargeted metabolomic approach, which only 
analyzes genes and pathways associated with treatable 
childhood-onset conditions, may help to reduce this risk of 
secondary findings. 

Untargeted metabolomics as a diagnostic companion to 
genomics

With more rapid analytical techniques (87) now available, 
untargeted metabolomic testing is complementing genomic 
approaches for the diagnosis of patients suspected of having 
an IEM. For example, in a patient with intellectual disability 
and skeletal dysplasia, untargeted metabolomics identified 
the unusual metabolite N-acetylated mannosamine. As a 
result, two missense variants in NANS detected by WGS 
were prioritized for further work-up (88). This case was 
combined with eight other similar patients ascertained 
through WGS, and further functional work confirmed 
impairment in NANS enzyme activity as the basis for these 
patients’ clinical condition. 

In other instances where molecular testing has already 
identified VUSs, untargeted metabolomic analysis can 
contribute significantly to variant interpretation (42,55,89-92).  
In their “cross-omics” study, Kerkhofs and colleagues 
showed that for accurate prioritization of disease-causing 
genes in IEMs, it is essential to take into account the 
primary pathway of the affected protein as well as the 
broader network of metabolites (55). Alaimo and colleagues 
reviewed data on 170 patients who had both WES and 
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untargeted metabolomics (89). The metabolomic data 
contributed to variant interpretation in 74 individuals 
(43.5%) and confirmed a clinical diagnosis in 21 of these 
cases (12.3% diagnostic rate). The American College of 
Medical Genetics and Genomics (ACMG) criteria give 
specific provision for the incorporation of results generated 
by such high-quality functional validation studies into 
variant classification (93,94). Increasingly, the combination 
of “-omic” technologies will provide the best approach for 
re-evaluating previously unsolved cases.

Limitations of untargeted metabolomics 

As with all analytical techniques, there are significant 
limitations and challenges with untargeted metabolomics (95).  
Similar to targeted metabolomics, the instrumentation 
required for untargeted metabolomics is expensive to both 
purchase and maintain (96). The specialized methodology 
requires a high level of expertise across both wet lab sample 
preparation through to dry lab results interpretation (97).  
Additionally,  when compared with other “-omic” 
technologies (such as genomics), metabolomic results are 
heavily influenced by physiological factors such as gender, 
diet, and drug treatment. Age is also a particularly important 
confounder, as metabolomic signatures are influenced by 
both gestational age and chronological age (98,99). However, 
newer regression models are being developed to control 
for these factors (100). Additionally, ambient temperature 
and humidity can affect sample preparation (101) and assay 
implementation steps which in turn can influence the data 
produced and associated interpretation of metabolic profiling. 

The bioinformatic pipelines that are required for 
untargeted metabolomic analysis also have specific challenges. 
For instance, bioinformatic pre-processing methods can 
impact results under different settings (102). Metabolite 
identification (including consideration of the associated 
pathways) is both complex and time consuming (2). Also, the 
specialized expertise required for analysis and interpretation 
needs to be integrated into the laboratory workflow for fast 
and accurate clinical outcomes (103). 

Drawing parallels with genomics, early allele frequency 
databases lacked ethnic diversity, which negatively impacted 
variant curation in minority groups (104,105). Similarly, 
more work is required to compile the “metabolomes” of 
different populations and ethnic groups around the world 
for metabolomics to address ethnic specificity of a given 
disease (106). One key additional challenge will be “filtering 
out” metabolite variation seen in normal populations 

during catabolic stress (107), to avoid misattribution of 
normal physiology to an IEM. As point of difference from 
genomic investigations, reference libraries for metabolite 
identification are not as well established as genomic 
reference sequences. Additionally, fragmentation and 
isotope patterns, m/z ratios, and retention time data are 
available for many yet unidentified metabolites; however, 
this is changing with increased testing. For instance, the 
most recent update to the Human Metabolome Database 
(HMDB) includes a nearly two-fold increase in the number 
of annotated metabolites (from 114,000 to 217,920), as well 
as improved spectral and pathway visualization tools (108).

Many IEMs have organ-specific manifestations, such as 
encephalopathy and seizures, or isolated cardiomyopathy 
(109,110). These conditions are likely to have distinct 
metabolomic profiles in different tissues and sample types, 
which also need to be accounted for in the analysis.

Given the above limitations, the sensitivity of untargeted 
metabolomics for diagnosing established IEMs is lower than 
that of targeted metabolomics. Almontashiri and colleagues 
performed untargeted metabolomic analysis in 87 patients 
with confirmed IEMs, with a sensitivity of 86% (111). This 
is analogous to the challenges with coverage observed in 
WES and WGS, as compared to targeted testing (112). 
Steinbusch and colleagues reported similar sensitivity (87%), 
with seven out of the 10 ‘missed’ cases being patients 
already on therapy (113).

Many of the other difficulties are likely to be overcome 
with increasing use of untargeted metabolomics. Testing 
will become more affordable over time, resulting in 
increased accessibility. Normal population databases 
(including ethnically diverse minority populations) 
and bioinformatic pipelines will become more robust, 
facilitating identification of pathological states. Considering 
the incredible potential of untargeted metabolomics in 
revolutionizing the diagnosis, monitoring and treatment of 
IEMs, the challenges are outweighed by the benefits. 

Conclusions 

Metabolomics originally developed as a targeted testing 
methodology, quantifying a panel of key metabolites to 
diagnose a limited number of clinically relevant IEMs. 
However, with the recent advances in technology, untargeted 
metabolomics is increasingly being applied in screening 
for a broad range of rare diseases, as well as for functional 
validation of genomic variants, identification of drug 
targets, and monitoring response to therapy. Decreasing 
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costs over time will allow for increased use of untargeted 
metabolomics, in the field of IEMs but also in others such 
as oncology, cardiology and infectious diseases. The more 
holistic analytical approach will considerably improve 
understanding of the pathophysiology of many IEMs, as 
well as identifying additional secondary metabolites to create 
disease-specific metabolic signatures. Tissue-specific, single 
cell, and even single organelle, metabolomic investigations 
also offer the opportunity to diagnose disorders with 
selective expression and can help improve treatment options 
for many diseases. The potential applications in screening of 
asymptomatic populations (as in NBS) may have significant 
health economic benefits: however, it would be essential to 
reduce the risk of secondary findings by using appropriate 
bioinformatic curation tools. Integration of untargeted 
metabolomics, along with genomics, into routine clinical 
care is likely to improve diagnostic workflows and patient 
management, resulting in both improved clinical and health 
economic outcomes. 
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Table S1 Detailed search strategy

Database Search term Time frame

PubMed [(metabolomic) AND (diagnosis)] AND (inborn error of metabolism) Jan 1st, 2002 to Jul 25th, 2022

PubMed, Google Scholar (“untargeted metabolomics”) AND (“inborn errors of metabolism”) Jan 1st, 2013 to Jul 25th, 2022
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