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Introduction

Genetic epilepsy with febrile seizures plus (GEFS+), 

previously known as generalized epilepsy with febrile 

seizures (FS) plus, was first reported in a large Australian 

family by Scheffer and Berkovic (1) in 1997. Later, focal 

epilepsy phenotypes, such as temporal lobe and frontal lobe 

epilepsy, were observed in GEFS+ families. Thus, Scheffer 
and Berkovic (2) proposed the current denomination 
of GEFS+. In 2001, this disease was identified as a new 
epileptic syndrome by the International League Against 
Epilepsy and is characterized by phenotypic and genetic 
heterogeneity. GEFS+ is a genetic epilepsy syndrome with 
a broad phenotypic spectrum (3). Different members of the 
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same family may have phenotypes ranging from slight FS to 
serious epileptic encephalopathy, such as Dravet syndrome 
(4-7). The etiopathology of GEFS+ is complex, and there 
is strong evidence that it has a genetic predisposition (8). 
GEFS+ is a complex autosomal dominant disorder (9). 
According to family analysis, most GEFS+ can be attributed 
to autosomal dominant inheritance with incomplete 
dominance, the GEFS+ phenotypic penetrance has been 
reported to range from 62–76%, a study has found double 
inheritance in GEFS+ families, GEFS+ may have complex 
inheritance modes, such as polygenic inheritance (10). 
Mutations in a variety of pathogenic genes are involved in 
the pathogenesis of GEFS+, usually caused by mutations 
in gene encoding voltage-gated sodium channel protein 
subunit SCN1A (9). SCN2A, SCN1B, GABRG2, and 
GABRD are also common pathogenic genes associated with 
GEFS+. Other genes such as SCN9A, STX1B, and Fgf13 
may also be involved in the pathogenesis of GEFS+.

Previously, we identified a new missense mutation 
in the KCNAB3 gene H258R (HR) in a GEFS+ family. 
This mutation was first reported by our team. There are 
18 members in this family, 4 were affected with GEFS+. 
Whole-exome sequencing was performed to assess for 
genetic mutations. KCNAB3HR was shared by three affected 
and one unaffected family member. This mutation was 
thought to affect protein function by the bioinformatics 
tools. For patients with genetic epilepsy, the connection 
between a specific mutation and their behavioral symptoms 
is largely unknown (11). To clarify the relationship between 
the KCNAB3 gene mutation (H258R) and GEFS+, wild 
and mutant plasmids were constructed and transfected into 
human embryonic kidney 293 (HEK293) cells for patch-
clamp detection. The whole cell patch-clamp detection 
results suggested that this mutation caused the inactivation 
of potassium channels, reduced potassium outflow, increased 
cell excitability, and promoted convulsion (12). In the present 
study, to examine the effects of this mutation on potassium 
channels in the mammalian brain, we introduced the H258R 
mutation into the mouse KCNAB3 gene using CRISPR/
Cas9. A patch clamp was then used to detect potassium 
currents in the pyramidal cells of the hippocampal 
CA1 region. Hippocampal sclerosis (HS) is considered 
to be an important pathological change of epilepsy, 
especially temporal lobe epilepsy (TLE). Many TLE 
patients with HS have a history of FS in childhood. The 
clinical manifestations of GEFS+ are mainly heat-related 
convulsions, therefore, hippocampal cells were selected 
as the research objects in this study (13). A protocol was 

prepared before the study without registration. We present 
the following article in accordance with the ARRIVE 
reporting checklist (available at https://tp.amegroups.com/
article/view/10.21037/tp-22-436/rc).

Methods

Generation of KCNAB3HR mice

CRISPR/Cas9 technology was used to knock-in the 
human KCNAB3 exon 10 (H258R) expression frame at 
exon 10 of the mouse KCNAB3 gene through homologous 
recombination. Briefly, Cas9 messenger RNA (mRNA) and 
guide RNA (gRNA) were obtained by in-vitro transcription. 
In-fusion cloning was used to construct a donor vector 
comprising 3.0 kb 5'homologous arms, human KCNAB3 
exon10 (H258R) and 3.0 kb 3'homologous arms. Cas9 
mRNA, gRNA, and the donor vector were microinjected 
into the fertilized eggs of C57BL/6J mice (Bought from 
Shanghai Model Organisms Center, Inc., Shanghai, China) 
to obtain the F0 generation mice. The mice confirmed to be 
positive by polymerase chain reaction (PCR) amplification 
and sequencing were mated with C57BL/6J mice to obtain 
the F1 generation.

Animal experiments were performed under a project 
license (No. KY-D-2021-120-06) granted by the ethics 
committee of Guangdong Provincial People’s Hospital, in 
compliance with Guangdong Provincial People’s Hospital 
guidelines for the care and use of animals.

PCR

To screen for mice with the KCNAB3HR mutation, the DNA 
was amplified using a KCNAB3-specific forward primer 
and a reverse primer. PCR amplification was performed for  
35 cycles at 98 ℃ for 15 s, 61 ℃ for 15 s, and 68 ℃ for  
30 min. The reaction mixture consisted of 13.2 µL of ddH2O, 
2 µL of GXL PCR buffer, 2 µL of 2.5-mM dNTP, 0.8 µL of 
GXL DNA polymerase, 0.5 µL of forward primer, 0.5 µL of 
reverse primer, and 1 µL of genomic DNA.

Cell separation

The hippocampal CA1 region was dissected from brain 
slices from the experimental mice and placed in protease 
[Hanks’ Balanced Salt Solution (HBSS) configuration] for 
digestion at 33.3 ℃ for 30 min. The whole digestion process 
was treated with high purity oxygen. After digestion, 3 mL 
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of oxygen-saturated HBSS Na+ solution was added to each 
tube of enzyme solution to terminate the protease action. 
This was repeated 3 times; then, 2 mL of oxygen-saturated 
low Ca2+ N-2-hydroxyethylpiperazine-N'-2-ethanesulfonic 
acid (HEPES) solution was added. The tissue was 
sequentially agitated with large, medium, and small caliber 
Pasteur pipettes and left to stand for 2 min. After agitation 
with the large and medium caliber pipettes, the supernatant 
was removed and placed in a new 15-mL centrifuge tube. 
Next, the tissue was agitated with a small caliber Pasteur 
pipette and left to stand for 2 min. The supernatant was 
then sucked out and mixed with the 1st supernatant. Mixed 
cell suspensions were inoculated in a 3.5-cm cell culture 
dish treated with polylysine at 2 mL per dish. After standing 
for 10 min, the cells had adhered to the wall and were ready 
for the patch clamp.

Patch clamp

A capillary glass tube (BF150-86-10, Sutter Instruments) was 
drawn into the recording electrode with a microelectrode 
drawing instrument (P97, Sutter Instruments). The 
microelectrode manipulator (MP225, Butter Instrument) 
was operated under an inverted microscope (MF53, micro-
shot). The recording electrode contacted the cell, and 
negative pressure was pumped to form a GΩ seal. After 
achieving the GΩ seal, rapid capacitive compensation 
was performed. Continuous negative pressure served to 
absorb the membrane and achieve the whole cell recording 
mode. Next, the slow capacitance was compensated, and 
the membrane capacitance and series resistance were 
recorded. The experimental data were collected using an 
EPC-10 amplifier (HEKA) and stored with PatchMaster 
(HEKA) software. All the experiments were performed at 
room temperature. The following fluids were used for the 
recording: extracellular fluid: 140 mM of NaCl, 3.5 mM 
of KCl, 2 mM of CaCl2·2H2O, 1 mM of MgCl2·6H2O,  
10 mM of HEPES, 10 mM of D-glucose, and 1.25 mM of 
NaH2PO4, with a NaOH adjusted pH of 7.4. The following 
intracellular fluids were used: 20 mM of KCl, 115 mM of 
K-aspartic, 1 mM of MgCl2·6H2O, 5 mM of EGTA, 10 mM 
of HEPES, and 2 mM of Na2-ATP, with a KOH adjusted 
pH of 7.2.

Statistical analysis

After exporting the current diagram recorded by 
PatchMaster, the original current data were output by Igor 

Pro software and saved in Excel. The current density was 
calculated using the I-V curve, and a collaboration diagram 
was then prepared with GraphPad Prism 8.0 software, and 
the current obtained under the maximum activated voltage 
was subsequently compared. The t-test was used for the 
statistical analysis, and a P value <0.05 was considered 
statistically significant.

Results

Generation of KCNAB3HR mutant mice

The injected fertilized eggs were transplanted into pseudo-
pregnant female mice. The F0-generation mice were born 
at about 20 days and identified by PCR amplification. 
Posit ive  5'  arm homologous recombinat ion with 
5'CTGACCTCATCAACGTGCCT'3 as the forward primer 
and 5'CGCTCCGCTTGTTCACACAC'3 as the reverse 
primer resulted in an amplification that produced a 3.4 kb 
fragment, while positive 3' arm homologous recombination 
with 5'GAGCGCCATCTGTTTCAGA'3 as the forward 
primer and 5'CTGGCCTTTTGCTGGTTTCC'3 as the 
reverse primer resulted in an amplification that produced 
a 3.2 kb fragment (see Figure 1). Due to the rapid cleavage 
rate of the fertilized eggs in the early stages, the obtained 
F0-generation mice were chimeras, which may not have a 
stable inheritance. Thus, the passage was required to obtain 
stable inheriting F1 mouse generations.

The F0-generat ion  pos i t ive  mice  were  mated 
with wild-type (WT) C57BL/6J mice to obtain F1-
generat ion  mice .  The  F1-generat ion  mice  were 
identif ied by PCR and sequencing;  4 sequencing 
reactions were performed (see Figure 2).  The F1-
generation mice genotypes were amplified using the 
primer pairs (P1: 5'GAGCAAGCGGAGAACCACT'3, 
P 2 :  5 ' A A A C A G A G C T G A C A C C C T C G ' 3 )  a n d 
( P 3 :  5 ' G C G G A G C G C C AT C T G T T T C A ' 3 ,  P 4 : 
5'TGGCTTGTTGCTTCTTGCCT'3). The genotypes 
were as follows: WT, only (P1, P2) amplified 673 bp band, 
(P3, P4) no band; heterozygous type: (P1, P2) amplified  
673 bp band and (P3, P4) amplified 413 bp band; 
homozygous type: (P1, P2) no band, (P3, P4) amplified  
413 bp band (see Figure 3).

Potassium current of CA1 pyramidal neurons in 
KCNAB3HR mice

A patch clamp was used to detect the total potassium 
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current of the pyramidal cells (n=10) in the hippocampal 
CA1 region of the KCNAB3 (WT) and KCNAB3 (H258R) 
adult mice; changes in the current were recorded as voltage 
increased. The current stimulus programme was as follows: 
after forming the whole cell seal, the cell membrane voltage 
was clamped at −80 mV and maintained for 50 ms. The cell 
membrane voltage was stimulated from −80 mV to +80 mV 
with 10 mV steps and maintained for 200 ms. Finally, it was 

recovered to −80 mV and maintained for 50 ms. The original 
current diagram showed that the total potassium current of 
the H258R group decreased as voltage increased (see Figure 4).

We plotted an I-V curve and compared the current 
difference at the maximum voltage. The result showed that 
the total potassium current decreased in the H258R group, 
but there were no significant differences in the current at 
the maximum voltage (+80 mV) (P>0.05; see Figure 5).

Figure 1 PCR identification of F0 generation mice. (A) Schematic diagram of identification strategy of F0 generation mice. (B) The 
electrophoretic map of F0 generation mice was identified by PCR. (Number: number of F0 generation mice; M: 1 kb DNA ladder). Red star 
symbol indicates knock-in site. PCR, polymerase chain reaction.
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Figure 2 PCR and sequencing identification of F1 generation mice. (A) The electrophoretic map of F1 generation mice was identified by PCR. 
(Number: number of F1 generation mice; WT: wild-type control; M: 1 kb DNA ladder). (B) Schematic diagram of sequencing identification 
of F1 generation mice (5’homologous arm identification: PCR products were sequenced in 2 reactions, labeled as 1 and 2; 3’homologous arm 
identification: PCR products were sequenced in 2 reactions, labeled as 3 and 4). (C) Comparison of PCR product sequence and target sequence 
in F1 generation mice (“Query” is the target sequence; “Subject” is the sequencing result; the red underlining is the homologous arm sequence; 
the blue underlining is the knock-in sequence). Red star symbol indicates knock-in site. PCR, polymerase chain reaction.
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Figure 3 Identification of F1 generation mice genotypes. (A) Primer location diagram of PCR identification. (B) Electrophoretic map of F1 
generation mice genotypes identified by PCR (wild: amplified 673 bp band; heterozygous: amplified 673 bp band and amplified 413 bp band; 
homozygous: amplified 413 bp band). (HE: heterozygote; WT: wild-type control; M: 1 kb DNA ladder). Red star symbol indicates knock-in 
site. PCR, polymerase chain reaction.

Figure 4 Original current diagram of the patch-clamp experiment. WT, wild-type.
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Discussion

At present, the genetic research of GEFS+ mainly focuses 
on pathogenic genes. The pathogenic genes related to 
GEFS+ are mainly divided into two categories: (I) genes 
encoding voltage-gated sodium channel protein subunits 

(SCN1A, SCN2A, SCN1B, SCN9A); (II) genes encoding 
ligand-gated chloride channel GABAA subunits (GABRG2, 
GABRD). Voltage-gated sodium channels (Nav) exist in the 
membrane of most excitable tissues and play an important 
role in the generation and propagation of action potentials. 
GABA is the most important inhibitory transmitter in 
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the central nervous system. It is mainly located in the 
postsynaptic membrane of neurons in the central nervous 
system. It inhibits the excitability of neurons and is 
the target of neuroexcitatory inhibitory drugs such as 
benzodiazepines, barbiturates, and steroids. Others include 
STX1B, which encodes synapse fusion protein 1B, and 
Fgf13, which encodes fibroblast growth factor protein.

The potassium channel is the most complex ion channel 
and has the most known subtypes. It is widely expressed in 
the body and plays a role in maintaining neuron membrane 
potential, regulating excitability, and participating in 
cardiac myocyte repolarization. Further, it is associated 
with neurological and cardiac diseases. Recently, several 
cases of GEFS+ caused by mutations in potassium 
channel genes have been reported. Notably, Zou et al. (14) 
reported the heterozygous missense mutation P537S of 
KCNQ4 in a GEFS+ family. Yu et al. (15) found a KCNQ3 
mutation (c.2128T > C) related to GEFS+. Tian et al. (16) 
summarized the clinical characteristics of a GEFS+ family 
caused by a KCNT2 gene mutation and theorized that 
GEFS+ induced by this mutation may be insensitive to 
antiepileptic drugs. In a previous study, we identified the 
heterozygous missense mutation p.H258R of the KCNAB3 
gene encoding the voltage-gated potassium channel β3 
subunit (Kvβ3) in a GEFS+ family.

Kvβ3 is primarily expressed in the rat brain (17). Human 
Kvβ3 mRNA is expressed in the brain and predominantly 
detected in the cerebellum (18). Kvβ3 subunits have an 
N-terminal inactivating domain that confers rapid N-type 
inactivation to Kv channels (19). The co-expression of rat 
Kvβ3 in Xenopus oocytes leads to the rapid inactivation 
of Kv1.4 channels but not of other Kv1α channels (17). 
However, the co-expression of Kv1.5 and Kvβ3 in a 

mammalian cell line yields rapidly inactivating A-type 
channels (18). In contrast to findings on the Xenopus oocyte 
expression system, Kvβ3 confers rapid inactivation to all 
Kv1 channels except Kv1.3 channels in Chinese hamster 
ovary cells (20).

In previous studies, HEK293 cells expressing human 
Kv1.1 and Kvβ3 were detected by the patch clamp. The 
present results showed that the current of cells expressing 
only Kv1.1 exhibited no inactivation, while the current of 
cells co-expressing Kvβ3 was inactivated; the inactivation 
characteristics were more obvious in cells co-expressing 
Kvβ3 (H258R). Together, these findings indicate that the 
Kvβ3 subunit promotes potassium channel inactivation 
and that the H258R mutation further accelerates this 
inactivation. In the present study, we induced the expression 
of the human KCNAB3 gene in mice using a knock-in 
technique and then used a patch clamp to detect potassium 
currents in the pyramidal cells in the hippocampal CA1 
region of the mouse brain. Our results showed that the 
total potassium current decreased in the H258R group 
but was not significantly different from the current at the 
maximum voltage (+80 mV). This may be explained by the 
different inactivation activity of Kvβ3 in various expression 
systems. Compared to cell-line expression systems, animal 
expression systems are more complex, and potassium 
currents are affected by other genes in addition to KCNAB3. 
Additionally, the function of human Kvβ3 might not be 
fully expressed in the heterologous expression system.
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