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Background: Long noncoding RNAs (lncRNAs) play important roles in the regulation of immunological 
and apoptotic function. This study aimed to explore the critical immune- and apoptosis-related lncRNAs in 
the occurrence and development of Henoch-Schönlein purpura nephritis (HSPN) in children.
Methods: Differential analysis was employed to identify the differentially expressed lncRNAs, as well 
as the immune- and apoptosis-related mRNAs in children with HSPN. Gene Ontology (GO) and Kyoto 
Encyclopedia of Genes and Genomes (KEGG) enrichment analyses were used to validate the immunological 
and apoptotic roles of the differentially expressed immune- and apoptosis-related lncRNAs and mRNAs. 
Spearman’s correlation analysis was performed to analyze the differentially expressed lncRNAs and immune- 
and apoptosis-related messenger RNAs (mRNAs). Based on the competing endogenous RNA (ceRNA) 
mechanism, the immune- and apoptosis-related lncRNA-microRNA (miRNA)-mRNA regulatory network 
was then constructed in children with HSPN. The expression levels of the lncRNAs in the lncRNA-miRNA-
mRNA regulatory network were further confirmed by quantitative real-time polymerase chain in the 
peripheral blood samples of children with HSPN.
Results: By intersecting the differentially expressed immune-related and apoptosis-related genes through 
GO and KEGG analyses, a total of 43 genes were identified in children with HSPN, and 100 lncRNAs 
highly correlated with the above genes were identified by correlation analysis. The immune- and apoptosis-
related lncRNA-miRNA-mRNA regulatory network was then established based on ceRNA mechanism. 
Dysregulation of a total of 11 lncRNAs were discovered, including upregulated SNHG3, LINC00152, 
TUG1, GAS5, FGD5-AS1, DLEU2, and SCARNA9; and downregulated SNHG1, NEAT1, DISC1-IT1, 
and PVT1. The validation conducted in the clinical samples also suggested that the above lncRNAs in the 
specific regulatory network may act as potential biomarkers with prognosis in children with HSPN.
Conclusions: LncRNAs may play essential regulatory roles in the occurrence and development of HSPN 
in children, and the immune- and apoptosis-related lncRNA-miRNA-mRNA regulatory network might be 
the underlying molecular mechanism that dissects the disease pathogenesis. In addition, the dysregulated 
lncRNAs in the regulatory network may be novel biomarkers for the diagnosis and therapy of HSPN in 
children.
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Introduction

Henoch-Schönlein purpura (HSP) is the most common 
IgA-mediated systemic small vessel vasculitis of childhood, 
characterized by palpable purpuric rash, arthritis, abdominal 
pain, and renal involvement (1,2). The prognosis of HSP is 
mostly dependent upon the severity of renal involvement, 
and chronic kidney disease is detected in up to 20% of 
children with HSP nephritis (HSPN). Immunosuppressants 
and multiple-agent therapy have been shown to be 
beneficial in ameliorating proteinuria and histological 
severity (3-5). 

To date, the precise mechanisms of HSPN have not been 
elucidated. However, it is worth noting that immune system 
dysfunction is commonly observed and the serum levels of 
galactose-deficient IgA1 is drastically elevated in HSPN 
patients (6,7). A previous study demonstrated that while 
HSP patients had IgA1-containing circulating immune 
complexes of small molecular mass, IgA1-IgG-containing 
circulating immune complexes of large-molecular 
mass were distinctly present in HSPN patients (6).  
Besides to IgA1, immune cells also participate in the 
occurrence and development of HSPN. Infiltrating 
immune cells are observed in various areas of renal tissue, 
including the glomerular mesangial and capillary areas, the 
proximal and distal tubular epithelial cells, and interstitial 
areas. Involvement of activated cytotoxic T lymphocytes, 
natural killer cells, interleukin-producing regulatory B cells, 
macrophage, etc., were discovered in HSPN patients (8-10). 
Furthermore, existing studies have confirmed that apoptosis 
also involved in regulating the occurrence and development 
of HSPN (10-12). Therefore, it is of great importance to 
explore the underlying immune- and apoptosis-related 
regulators and molecular mechanisms of HSPN in children.

Long non-coding RNAs (lncRNAs) are non-coding 
RNAs with a length greater than 200 nucleotides (13,14). 
Recently, next generation sequencing has identified 
a great number of lncRNA transcripts and revealed 
their essential roles in cell differentiation, cell lineage 
selection, organogenesis, and tissue homeostasis (15-17).  
The functions of lncRNAs are complex and diverse. 
Mechanistically, lncRNAs can act as scaffolds, guides, 
decoys, or enhancers to regulate gene expression and 

thereby exert their functions (18,19). Recently, there has 
been much focus on the important roles of lncRNAs in 
kidney diseases, including acute renal rejection, diabetic 
nephropathy, membranous nephropathy, chronic kidney 
disease, and lupus nephritis. For examples, circulating 
LNC-ephrin type-A receptor 6 (EPHA6) was shown to be a 
promising marker for vascular injury under acute rejection 
after kidney transplantation (20). Another study reported 
that lncRNA NEAT1 serves as a sponge for microRNA 
(miRNA)-146b to regulate tumor necrosis factor receptor-
associated factor 6 (TRAF6) expression and nuclear factor 
(NF)-κB signaling, thus accelerating renal mesangial cell 
injury in lupus nephritis (21). 

However, the precise lncRNAs involved in the occurrence 
and development of HSPN and the corresponding 
molecular mechanisms remain to be elucidated. Few studies 
have revealed that lncRNAs might play essential roles in the 
development of HSPN through promoting serum proteins 
generation and regulating the apoptosis pathway. Pang  
et al. determined the expression of lncRNAs and messenger 
RNAs (mRNAs) in the peripheral blood of 6 children with 
HSPN, and several lncRNAs were associated with the 
p53 signaling pathway and apoptosis-associated genes, but 
the study did not explore in depth about the associations 
between lncRNAs, coding RNAs and proteins (12). Thus, 
the competing endogenous RNAs (ceRNAs) theory, a novel 
post-transcriptional regulation mechanism, was applied in 
our study. It states that lncRNAs and mRNAs can interact 
with each other via miRNAs by forming a regulatory 
network, in which LncRNAs can serve as sponges for 
miRNAs to release the interaction of miRNAs and their 
target genes, thereby regulating the expression of target 
genes (22). And the exploring of expression pattern and 
function of lncRNAs and ceRNAs in children with HSPN is 
of significant value, providing potential novel strategies for 
the diagnosis, prognosis, and therapy.

In this study, the lncRNAs and the mRNA expression 
profiles of high-throughput sequencing dataset GSE102114 
were downloaded to screen out the differentially expressed 
lncRNAs, as well as immune-related genes and apoptosis-
related genes in the peripheral blood of children with 
HSPN. The critical immune- and apoptosis-related genes 
in children with HSPN were explored through Gene 
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Ontology (GO) and the Kyoto Encyclopedia of Genes and 
Genomes (KEGG) enrichment analysis, and a protein-
protein network (PPI) was constructed. Using Spearman 
correlation analysis, the lncRNAs that may be involved in 
the regulation of critical immune- and apoptosis-related 
genes in children with HSPN were identified. According 
to the ceRNAs theory, we established a lncRNA-miRNA-
mRNA regulatory network, and this may contribute to 
understand the mechanisms involved in the occurrence 
and development of HSPN in children. We present the 
following article in accordance with the STREGA reporting 
checklist (available at https://tp.amegroups.com/article/
view/10.21037/tp-22-437/rc).

Methods

Data collection and processing

The gene expression profiles of dataset GSE102114 
were downloaded from the NCBI Gene Expression 
Omnibus (GEO, https://www.ncbi.nlm.nih.gov/geo/), 
including the lncRNA and mRNA expression profiles 
of the peripheral blood of 6 children with HSPN and 4 
healthy children (21). A list of 1,811 immune-related genes 
were downloaded from ImmPort (https://www.immport.
org/), of which, 962 immune-related genes were found 
in the mRNA expression profile of GSE102114 (23). 
In addition, a total of 306 apoptosis-related genes were 
identified through merging several classical apoptosis-
related gene sets downloaded from the molecular signature 
database (MSigDB, https://www.gsea-msigdb.org/gsea/
msigdb/index.jsp), including KEGG_APOPTOSIS, WP_
APOPTOSIS_MODULATION_AND_SIGNALING, 
WP_APOPTOSIS, REACTOME_SUPPRESSION_
OF_APOPTOSIS, REACTOME_ REGULATION_OF_
APOPTOSIS,REACTOME_INTRINSIC_PATHWAY_
FOR_ APOPTOSIS, REACTOME_APOPTOSIS_
I N D U C E D _ D N A _  F R A G M E N TAT I O N ,  a n d 
REACTOME_APOPTOSIS (24,25). The expression 
profile of 279 apoptosis-related genes was extracted from 
the mRNA expression profile of GSE102114. The list 
of immune-related genes and apoptosis-related genes is 
provided in available at https://cdn.amegroups.cn/static/
public/tp-22-437-1.xlsx.

Differential expression analysis

Using the “limma” R package, differential expression 

analysis was conducted to screen out differentially expressed 
lncRNAs and mRNAs. The differentially expressed immune-
related genes and apoptosis-related genes were further 
identified from the differentially expressed genes. The R 
packages “pheatmap” and “ggplot2” were used to display 
the differentially expressed lncRNAs, mRNAs, as well as the 
immune-related genes and apoptosis-related genes.

GO and KEGG enrichment analysis

GO annotation consists of biological process (BP), cellular 
component (CC), and molecular function (MF) of genes 
in different databases using standard expression terms. 
KEGG (http://www.kegg.jp/) is a bioinformatics resource 
of genomes and genes by assigning functional and pathway 
meanings to genomes and genes, which uncover cellular 
and organism-level functions from genome sequences and 
other molecular datasets (26-28). Herein, GO and KEGG 
enrichment analyses were performed using “clusterProfiler” 
R package for differentially expressed immune-related genes 
and apoptosis-related genes, with an adjusted P value <0.05 
as the threshold. Thereafter, “ggplot2” and “GOplot” R 
packages were used to show the results of the top 10 terms 
of BP, CC, and MF in GO and KEGG analyses. 

PPI network construction

Venn plots were constructed using the “ggplot2” R package 
to overlap the differentially expressed genes to identify 
the critical immune- and apoptosis-related genes in 
children with HSPN. To explore the interactions among 
the critical immune- and apoptosis-related genes, these 
genes were uploaded to STRING (https://string-db.org), 
a database of functional protein association networks, to 
obtain their interaction information (29,30). Thereafter, 
the PPI network was visualized and analyzed by Cytoscape 
3.8.2. In addition, the top 2 clusters of the Molecular 
Complex Detection (MCODE) plugins in Cytoscape were 
constructed in the complex protein networks. 

Correlation analysis

To identify the important immune- and apoptosis-related 
lncRNAs in children with HSPN, Spearman correlation 
analyses were conducted to analyze the correlations between 
differentially expressed lncRNAs and critical immune- and 
apoptosis-related genes. The absolute value of correlation 
coefficient |r| >0.9 and P value <0.001 was set as the 
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threshold to filter the lncRNAs that were correlated with 
immune- and apoptosis-related genes.

LncRNA-miRNA and miRNA-mRNA prediction, 
lncRNA-miRNA-mRNA regulatory network construction

MiRcode (http://mircode.org/) is a database that predicts 
miRNA targets based on the comprehensive GENCODE 
gene annotation consisting of more than 10,000 lncRNAs. 
The potential lncRNA-miRNA pairs were predicted by 
miRcode. In addition, the file containing the mRNA-miRNA 
pairs, released on September 2021, was retrieved from 
TargetScanHuman 8.0 (https://www.targetscan.org/vert_80/
docs/help.html/) (31). Based on the ceRNA mechanism, 
lncRNAs and mRNAs that were predicted to bind to the same 
miRNAs and exhibit positive correlations were considered 
as ceRNAs. Consequently, the immune- and apoptosis-
related lncRNA-miRNA-mRNA for HSPN in children was 
constructed and visualized using Cytoscape 3.8.2.

Validation by quantitative real-time polymerase chain 
reaction (qRT-PCR)

The peripheral blood samples of 11 HSP/HSPN children 
and 3 age-matched healthy children were enrolled from 
the Children’s Hospital, Zhejiang University School of 
Medicine (Hangzhou, China) between August 2021 and 
November 2021. HSP was diagnosed according to the 
criteria outlined by the Society of Pediatrics, Chinese 
Medical Association in 2013 (32). HSPN was diagnosed 
as the presence of either hematuria and/or proteinuria 
during the first 6 months of HSP (33). None of the patients 
had complications or had taken any immunosuppressants 
prior to this study. The clinical characteristics of the 
children are presented in Table S1. The research was 
approved by the Ethics Committee of the Children’s 
Hospital, Zhejiang University School of Medicine (No. 
2022-IRB-015). Informed consent was taken from all the 
participants’ guardians, and the study was conducted in 
accordance with the Declaration of Helsinki (as revised in 
2013). The total RNA of these samples was extracted using 
the RNA Extraction Kit (Omega, Guangzhou, China). 
Reverse transcription was conducted using PrimeScript RT 
Master Mix Kit (Takara, Dalian, China). The expression 
of lncRNAs was assessed using the TB Green Premix Ex 
Taq Kit (Takara, Dalian, China) in accordance with the 
manufacturer’s instructions. Primers used in this study are 
listed in Table S2. The relative expression of lncRNAs was 

calculated using the 2−ΔΔCt method, with glyceraldehyde-
3-phosphate dehydrogenase (GAPDH) as the reference. 
Two-sided unpaired Student’s t-test was applied to compare 
the difference in lncRNA expression levels between the 
peripheral blood samples of 11 HSP/HSPN children and 3 
age-matched healthy children. The corresponding results 
were visualized using R package “ggplot2”.

Statistical analysis

Data were analyzed using SPSS (Version 23.0; SPSS, 
Inc., Chicago, IL, USA) and GraphPad Prism (Version 
8.0; GraphPad Software, CA, USA). For the differential 
expression analysis, |log2 fold change(log2FC) |>1 and 
adjusted P value <0.05 were set as the screening criteria. 
For qRT-PCR analysis, all data collected from three 
independent replicates were presented as mean ± standard 
deviation. Differences between groups were analyzed by 
Student’s t-test. P<0.05 were considered to be statistically 
significant.

Results

Identification of the differentially expressed lncRNAs and 
mRNAs in children with HSPN

The differentially expressed lncRNAs and mRNAs were 
identified from the GSE102114 dataset, and the results 
are presented in Figure 1. A total of 396 differentially 
expressed lncRNAs was identified, among which, 184 
were upregulated and 212 were downregulated (available 
at https://cdn.amegroups.cn/static/public/tp-22-437-2.
xlsx). The significant expression patterns and distribution 
of the differentially expressed lncRNAs between healthy 
controls and the HSPN group are shown in Figure 1A,1C, 
respectively. A total of 5,417 differentially expressed 
genes were identified, including 2,737 upregulated genes 
and 2,680 downregulated genes (available at https://
cdn.amegroups.cn/static/public/tp-22-437-3.xlsx). The 
significant expression patterns and distribution of the 
differentially expressed mRNAs between healthy controls 
and the HSPN group are illustrated in Figure 1B,1D, 
respectively.

Abnormally expressed immune-related mRNAs in children 
with HSPN

Since HSPN is characterized as an autoimmune disorder, 
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Figure 1 Identification of differentially expressed lncRNAs and mRNAs in children with Henoch-Schönlein purpura nephritis. Heatmaps 
showing the expression patterns of differentially expressed lncRNAs (A) and mRNAs (B) in the peripheral blood of children with HSPN 
and in healthy control subjects. Red indicates relatively high expression; blue represents relatively low expression. Volcano plots showing the 
distribution of differentially expressed lncRNAs (C) and mRNAs (D) in the peripheral blood of children with HSPN and in healthy control 
subjects. Red dots indicate upregulated lncRNAs or mRNAs; blue dots represent downregulated lncRNAs or mRNAs. HSPN, Henoch-
Schönlein purpura nephritis; lncRNA, long non-coding RNA; mRNA, messenger RNA; FPKM, fragment per kilobase of exon per million 
fragments mapped; FC, fold change.

314 differentially expressed immune-related genes 
(including 185 upregulated genes and 129 downregulated 
genes) were filtered from 5,417 differentially expressed 
genes. The significant expression patterns and distribution 
of the differentially expressed immune-related genes 
between healthy controls and HSPN children are shown in 
Figure 2A,2B, respectively. GO analysis demonstrated that 
the 314 genes were significantly enriched in BP including 

regulation of innate immune response, T cell activation, and 
positive regulation of cytokine production; CC including 
external side of plasma membrane, membrane raft, and 
membrane microdomain; and MF including receptor ligand 
activity, cytokine binding, and cytokine receptor activity 
(Figure 2C). Overall, these terms were all closely associated 
with immune function. Similarly, KEGG analysis revealed 
that these 314 genes were significantly enriched in multiple 
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Figure 2 Abnormally expressed immune-related mRNAs in children with Henoch-Schönlein purpura nephritis. (A) A heatmap showing 
the expression patterns of the differentially expressed immune-related mRNAs in the peripheral blood of children with HSPN and in 
healthy control subjects. Red indicates relatively high expression; blue represents relatively low expression. (B) A volcano plot showing the 
distribution of the differentially expressed immune-related mRNAs in the peripheral blood of children with HSPN and in healthy control 
subjects. Red dots indicate upregulated mRNAs; blue dots represent downregulated mRNAs. (C) The top 10 enriched terms in BP, CC, 
and MF according to GO analysis of the differentially expressed immune-related mRNAs. (D) The top 10 enriched pathways according 
to KEGG analysis of the differentially expressed immune-related mRNAs. mRNA, messenger RNA; HSPN, Henoch-Schönlein purpura 
nephritis; BP, biological processes; CC, cellular components; MF, molecular functions; GO, Gene Ontology; KEGG, Kyoto Encyclopedia of 
Genes and Genomes; FPKM, fragment per kilobase of exon per million fragments mapped; FC, fold change.

immune-related pathways, including T cell receptor 
signaling pathway, natural killer cell mediated cytotoxicity, 
and B cell receptor signaling pathway (Figure 2D).

Abnormally expressed apoptosis-related mRNAs in 
children with HSPN

A total of 124 differentially expressed apoptosis-related 

genes were identified in children with HSPN, including 71 
upregulated and 53 downregulated genes. The significant 
expression patterns and distribution of the differentially 
expressed apoptosis-related genes between healthy 
controls and the HSPN group are shown in Figure 3A,3B, 
respectively. Moreover, GO analysis demonstrated that 
these 124 genes were significantly enriched in BP including 
the inactivation of innate immune response, response to 
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Figure 3 Abnormally expressed apoptosis-related mRNAs in children with Henoch-Schönlein purpura nephritis. (A) A heatmap showing 
the expression patterns of the differentially expressed apoptosis-related mRNAs in the peripheral blood of children with HSPN and in 
healthy control subjects. Red indicates relatively high expression; blue represents relatively low expression. (B) A volcano plot showing the 
distribution of the differentially expressed apoptosis-related mRNAs in the peripheral blood of children with HSPN and in healthy control 
subjects. Red dots indicate upregulated mRNAs; blue dots represent downregulated mRNAs. (C) The top 10 enriched terms in BP, CC, 
and MF according to GO analysis of the differentially expressed apoptosis-related mRNAs. (D) The top 10 enriched pathways according 
to KEGG analysis of the differentially expressed apoptosis-related mRNAs. mRNA, messenger RNA; HSPN, Henoch-Schönlein purpura 
nephritis; BP, biological processes; CC, cellular components; MF, molecular functions; GO, Gene Ontology; KEGG, Kyoto Encyclopedia of 
Genes and Genomes; FPKM, fragment per kilobase of exon per million fragments mapped; FC, fold change.
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Figure 4 Identification of the important immune- and apoptosis-related mRNAs and lncRNAs in children with Henoch-Schönlein purpura 
nephritis. (A) A Venn plot of the differentially expressed immune-related mRNAs and apoptosis-related mRNAs. (B) The PPI network of 
the 43 immune- and apoptosis-related genes. The interconnected subclusters of the PPI network that scored 9.75 (C) and 9.0 (D). LncRNA, 
long non-coding RNA; mRNA, messenger RNA; PPI, protein-protein interaction.

tumor necrosis factor (TNF), and interleukin-1-mediated 
signaling pathway; CC including proteasome complex, 
endopeptidase complex, and peptidase complex; and MF 
including endopeptidase activity and ubiquitin protein 
ligase binding (Figure 3C). Interestingly, these terms were 
also correlated with immune functions. In addition, KEGG 
analysis revealed that these 124 genes were significantly 
enriched in apoptosis, proteasome, spinocerebellar ataxia, 
and lipid and atherosclerosis (Figure 3D). 

Identification of important immune- and apoptosis-related 
mRNAs and lncRNAs in children with HSPN

By intersecting the differentially expressed immune-related 

and apoptosis-related genes, a total of 43 genes which 
may simultaneously regulate immune function and cell 
apoptosis in children with HSPN was identified (Figure 4A).  
The interactions among these immune- and apoptosis-
related genes and the PPI network of these genes are 
displayed in Figure 4B. The top two highly interconnected 
subclusters were analyzed using the MCODE algorithm 
of Cytoscape 3.8.2, and scored 9.75 and 9.0, respectively 
(Figure 4C,4D). We then defined 100 lncRNAs that were 
significantly correlated with the above 43 genes as immune- 
and apoptosis-related lncRNAs in children with HSPN. 
The specific correlations of immune- and apoptosis-related 
lncRNAs and mRNAs in children with HSPN are displayed 
in available at https://cdn.amegroups.cn/static/public/tp-

https://cdn.amegroups.cn/static/public/tp-22-437-4.xlsx
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22-437-4.xlsx. 

Construction of the immune- and apoptosis-related 
lncRNA–miRNA–mRNA ceRNA network for children 
with HSPN

Immune- and apoptosis-related lncRNAs and mRNAs 
that have positive correlations are considered ceRNAs and 
used to construct the ceRNA regulatory network. The 
miRNAs which might bridge the lncRNAs and mRNAs 
were identified by matching lncRNA-miRNA pairs and 
miRNA-mRNA pairs (Figure 5A,5B). Correspondingly, the 
immune- and apoptosis-related lncRNA-miRNA-mRNA 
regulatory network for children with HSPN was established  
(Figure 5C). The specific regulatory relationship in the 
ceRNA network is displayed in Figure 6 and available at 

https://cdn.amegroups.cn/static/public/tp-22-437-5.xlsx. 

Validation of the expression levels of the lncRNAs in 
children with HSPN

To further confirm the expression levels of the lncRNAs 
in the immune- and apoptosis-related lncRNA-miRNA-
mRNA regulatory network, qRT-PCR was conducted 
using clinical samples. Consistent with the results of the 
GSE102114 dataset, the expression levels of small nucleolar 
RNA host gene-3 (SNHG3), LINC00152, taurine up-
regulated 1 (TUG1), growth-arrest-specific transcript 
5 (GAS5), PH domain containing 5 antisense RNA 1 
(FGD5-AS1), deleted in lymphocytic leukemia 2 (DLEU2), 
and small Cajal body-specific RNA 9 (SCARNA9) were 
significantly upregulated (Figure 7A), while the expression 

miRNAs in IncRNA-miRNA pairs

miRNAs in miRNA-mRNA pairs

IncRNA                   miRNA                    mRNA

70 12 5,791

A

B

C

Figure 5 Construction of the immune- and apoptosis-related lncRNA-miRNA-mRNA ceRNA network for children with Henoch-
Schönlein purpura nephritis. (A) A Venn plot showing the miRNAs targeting the immune- and apoptosis-related lncRNAs, and the miRNAs 
targeting the immune- and apoptosis-related mRNAs. (B) The Sankey diagram showing the association between immune- and apoptosis-
related lncRNA and miRNAs, and immune- and apoptosis-related mRNAs. (C) The immune- and apoptosis-related lncRNA-miRNA-
mRNA regulatory network. The hexagons represent the lncRNAs (orange, upregulated; dark blue, downregulated). The diamonds represent 
the miRNAs. The ovals represent the mRNAs (red, upregulated; green, downregulated). The gray lines indicate interactions between the 
RNAs. LncRNA, long non-coding RNA; miRNA, microRNA; mRNA, messenger RNA; ceRNA, competing endogenous RNA.

https://cdn.amegroups.cn/static/public/tp-22-437-4.xlsx
https://cdn.amegroups.cn/static/public/tp-22-437-5.xlsx
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Figure 6 A subnetwork of the immune- and apoptosis-related lncRNAs and their potential targeted miRNAs-mRNAs. (A) SNHG3; (B) 
LINC00152; (C) TUG1; (D) GAS5; (E) FGD5-AS1; (F) DLEU2; (G) SCARNA9; (H) NEAT1; (I) PVT1; (J) SNHG1; and (K) DISC1-
IT1. The hexagons depict the lncRNAs (orange, upregulated; dark blue, downregulated). The diamonds represent the miRNAs. The ovals 
represent the mRNAs (red, upregulated; green, downregulated). The gray lines indicate interactions between the RNAs. LncRNA, long 
non-coding RNA; miRNA, microRNA; mRNA, messenger RNA; SNHG, small nucleolar RNA host gene; TUG, taurine up-regulated; 
GAS, growth-arrest-specific transcript; FGD5-AS, PH domain containing 5 antisense RNA; DLEU, deleted in lymphocytic leukemia; 
SCARNA, small Cajal body-specific RNA; NEAT, nuclear-enriched abundant transcript; PVT, plasmacytoma variant translocation; DISC, 
disrupted-in-schizophrenia.

of nuclear-enriched abundant transcript 1 (NEAT1), 
plasmacytoma variant translocation 1 (PVT1), SNHG1, and 
disrupted-in-schizophrenia 1-intronic transcript 1 (DISC1-
IT1) were dramatically downregulated in the blood samples 
of HSPN patients compared to normal blood samples 
(Figure 7B). Therefore, the upregulation of SNHG3, 
LINC00152, TUG1, GAS5, FGD5-AS1, DLEU2, and 
SCARNA9 may be potential biomarkers for HSPN. 
Similarly, the downregulation of NEAT1, PVT1, SNHG1, 

and DISC1-IT1 may be potential indicators for HSPN.

Discussion

HSPN accounts for approximately 80% of children with 
secondary glomerulopathy, and renal involvement is the 
most important prognostic factor in determining morbidity 
and mortality of HSP patients. Extensive clinical and 
experimental data have shown that disorders of cellular 
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and humoral immune responses are closely related to the 
pathogenesis of HSPN in children (6,34). However, the 
key genes responsible for the dysregulation of humoral 
and cellular immunity during the progression of HSPN in 
children remain unknown. 

The present study identified 314 differentially expressed 
immune-related mRNAs in the peripheral blood of children 
with HSPN. GO and KEGG enrichment analysis revealed 
that these mRNAs were involved in multiple immune-related 
biological processes, including regulation of innate immune 
response, cytokine production, lymphocyte activation, T cell 
and B cell receptor signaling pathway, which indicating that 
activation of T cells and B cells, as well as elevated cytokine 
and chemokine production, are closely associated with the 
dysregulation of immune-related mRNAs in children with 
HSPN. These results also corroborated previous studies 
that multiple immune cells participate in the increased 
secretion of inflammatory mediators and the deposition of 
IgA-containing immune complexes, thereby inducing the 
development of HSPN (6-10). Thus, we speculated that 
the dysregulation of these differentially expressed immune-
related mRNAs may contribute to the immune dysfunction 
in children with HSPN.

Apoptosis is another critical factor in children with 
HSPN (11). Herein, we identified 124 differentially 
expressed apoptosis-related mRNAs in the peripheral blood 
of children with HSPN. Interestingly, GO enrichment 
analysis revealed that these apoptosis-related mRNAs also 
participate in the regulation of immune-related processes, 
and KEGG enrichment analysis demonstrated that these 
mRNAs are significantly enriched in apoptosis, proteasome, 

lipid and atherosclerosis, TNF signaling pathways, and 
toll-like receptor signaling pathways. Previous studies have 
confirmed that the deposition of IgA-containing immune 
complexes is responsible for the renal damage observed 
in HSPN patients. During the progression of HSPN, IgA 
deposition may induce apoptosis of human umbilical vein 
endothelial cells, thereby causing HSP vascular endothelial 
damage (35). On the other hand, apoptosis may promote 
the removal of inflammatory cells, contributing to the 
control of early inflammatory response and repair self-
limiting vasculitis (36). Hence, there is a complex regulatory 
link between immune and apoptosis-associated signaling 
pathways in children with HSPN. By overlapping the 
differentially expressed immune- and apoptosis-related 
mRNAs, a total of 43 mRNAs were identified as critical 
genes, and these may play essential regulatory roles in the 
pathogenesis of HSPN in children.

Recently, accumulating studies have demonstrated 
that lncRNAs play important roles in the regulation of 
immune and apoptosis-related pathways (37-39). However, 
the critical lncRNAs responsible for the dysregulation 
of immune response and apoptosis in children with 
HSPN remain largely unknown. In this study, a total of  
100 lncRNAs that correlated with the above 43 mRNAs 
were identified as immune- and apoptosis-related lncRNA, 
and the immune- and apoptosis-related lncRNAs-miRNA-
mRNAs regulatory network was first constructed based 
on ceRNAs mechanism in children with HSPN. In this 
regulatory network, elevated expression of SNHG3, 
LINC00152, TUG1, GAS5, FGD5-AS1, DLEU2, and 
SCARNA9 might promote the expression of TLR4, 
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Figure 7 Validation of the expression levels of the lncRNAs in the immune- and apoptosis-related lncRNA-miRNA-mRNA regulatory 
network of Henoch-Schönlein purpura nephritis in children. (A) The relative expression levels of 7 upregulated lncRNAs in the peripheral 
blood of children with HSPN and in healthy controls. (B) The relative expression levels of 4 downregulated lncRNAs in the peripheral 
blood of children with HSPN and in healthy controls. ***, P<0.001; **, 0.001<P<0.01; HSPN, Henoch-Schönlein purpura nephritis; 
lncRNA, long non-coding RNA; miRNA, microRNA; mRNA, messenger RNA. 



Translational Pediatrics, Vol 11, No 10 October 2022 1693

© Translational Pediatrics. All rights reserved.   Transl Pediatr 2022;11(10):1682-1696 | https://dx.doi.org/10.21037/tp-22-437

IL1RAP, CDH1, PSMC2, PSMD1, PSMD6, PSMD10, 
PSMD14, PIK3CA, PIK3CB, CASP3, PPP3R1, TRIM27, 
HMGB1, MAPK1, and MAPK8; while decreased expression 
of SNHG1, NEAT1, DISC1-IT1, and PVT1 might induce 
the downregulation of AKT2, TNFRSF10B, PIK3R5, and 
PIK3CD.

The dysregulation of these 11 lncRNAs were validated 
using the peripheral blood of children with HSPN, and the 
results suggested that these lncRNAs may act as potential 
biomarkers for the diagnosis of HSPN in children. Studies 
thus far have mainly focused on the roles of these lncRNAs 
in regulating the occurrence and development of various 
cancers (40,41). SNHG3, TUG1, GAS5, and SCARNA9 
have been identified as immune-related lncRNAs in 
different cancers (42-45), and the anti-apoptotic effects 
of SNHG3, LINC00152, TUG1, and FGD5-AS1 have 
been validated in different cancer cell models (41,46-48).  
Nevertheless, to date, their immunological and apoptotic 
roles in the progression of HSPN in children have 
not been explored. Based on the results of the present 
study, the dysregulation of TUG1, DLEU2, PVT1 was 
significant in HSPN group compared to healthy controls, 
and interestingly, the reliably correlation between these 
lncRNAs and progression of several kidney diseases (such 
as diabetic nephropathy, membranous nephropathy, and 
renal clear cell carcinoma) had been verified in previous 
studies (49-51). Thus, the above three lncRNAs could be 
selected as candidate key lncRNAs in further explorative 
studies to identify a novel ceRNA axis and to explore 
potential therapeutic drugs in HSPN. In addition to 
traditional treatment strategies such as steroidal steroid 
and immunosuppressants, innovative tissue-specific RNA 
delivery by selective organ targeting nanoparticles should 
be expected (52).

There were several limitations in this study. First, the 
sample size used for analysis and validation were relatively 
small, and the results presented herein should be further 
validated using larger cohorts. Second, miRNAs in the 
immune- and apoptosis-related lncRNA-miRNA-mRNA 
regulatory network were determined by miRNA-target 
prediction, and updating computer technology is needed 
to explore the complexities of this network and provide 
more possibilities for further clinical translation. Third, 
the specific functions of the key lncRNAs in HSPN 
need further experimental verification by in vivo and 
in vitro studies, through lentiviral interference vector, 
transcriptional repression/inhibition, RNA overexpression/
interference, etc. Meanwhile, we sampled peripheral whole 

blood lncRNAs but did not collect the samples from the 
clinical renal tissues and peripheral lymphocytes, and the 
relevant studies is under way. Finally, several drawbacks 
in the clinical application of lncRNAs should be noticed. 
Determining the subcellular localization is important for 
understanding mechanism and designing strategies for 
manipulating lncRNA expression and function. Engineering 
animal models to express the lncRNAs may be necessary, 
to overcome the lack of conservation between lncRNA 
sequences in humans and animal models (53). In addition, 
for the relatively poor predictive ability of single-lncRNA, 
multivariable prediction models with a combination of 
multi-lncRNAs and disease characteristics, are warranted.

In conclusion, the present study constructed an immune- 
and apoptosis-related lncRNA-miRNA-mRNA regulatory 
network of HSPN in children, which provided a basis 
and direction for future studies involving the molecular 
mechanisms of the pathogenesis of HSPN in children. 
These lncRNAs and mRNAs in the immune- and apoptosis-
related lncRNA-miRNA-mRNA regulatory network have 
potential to be novel diagnostic and therapeutic biomarkers 
for children with HSPN. 
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Supplementary

Table S1 The clinical characteristics of the participants.

HSP HSPN
Healthy

(Group A) Group B Group C Group D

ID 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Gender Female Male Male Male Male Female Male Female Male Female Male Male Female Male

Age (years) 11.5 7.1 4.4 4.6 5.2 5.9 5.1 11.3 8.2 5.9 9.8 3.1 6.2 10.1

Purpura + + + + + + + + + + + − − −

Arthralgia − + + + − + − + − − + − − −

Abdominal pain + − + + + − − + − − − − − −

Course of HSPN 
(months)

− − − − 0.8 1.2 5 0.7 3.2 0.4 0.3 − − −

Renal histology − − − − − − II III III III III − − −

Table S2 The list of primers.

qPCR primers Forward Primer Reverse Primer

SNHG3 CCAGCCTGGTGACAGAGTTA TGCTTGTTTCTGCAGAGGTG

LINC00152 ATGCCCAAAGTTACGGAGGA ACGGAGGTTGGAATGTGGAT

TUG1 AAACCATGCCAGCTGTTACC AAGCTCAAGGTTGGGTCAGA

GAS5 GGTGCAGATGCAGTGTGGCT TGCCTGTGTGCCAATGGCTT

FGD5-AS1 TCTGGCATCAGCACTTTCAC GAGCAACGACCTGTCTCTCT

DLEU2 CGTGATCTGCCCGCCTCAGC GCACTCCAGCCTGGCCACAG

SCARNA9 TGTCTGGTGTGTGTGTGTGT CCTCAATCTCATTCATTCCT

NEAT1 TGTGTGGCTCCCTTTCTTCA CCAGGAGTGACGGTGAGAAT

PVT1 CATGACTCCACCTGGACCTT ACAGGTAACAGGTGCTTGCT

SNHG1 TACAGCCACCTTCTGTTCCC ACAACCAACACAGCAACACA

DISC1-IT1 CTCAGGAGCACCCAGATTCA CGCTTAGTCCAGAGCTGAGT

GAPDH GGGAGCCAAAAGGGTCATCA TGATGGCATGGACTGTGGTC


