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Background and Objective: Key medical and surgical advances have been made in the longitudinal 
management of patients with “functionally” single ventricle physiology, with the principles of Fontan 
circulation applied to other complex congenital heart defects. The purpose of this article is to review all of 
the innovations, starting from fetal life, that led to a change of strategy for single ventricle.
Methods: Our literature review included all full articles published in English language on the Cochrane, 
MedLine, and Embase with references to “single ventricle” and “univentricular hearts”, including the initial 
history of the treatments for this congenital heart defects as well as the innovations reported within the last 
decades.
Key Content and Findings: All innovations introduced have been analyzed, including: (I) fetal diagnosis 
and interventions, in particular to prevent or reduce brain damages; (II) neonatal care; (III) post-natal 
diagnosis; (IV) interventional cardiology procedures; (V) surgical procedures, including neonatal palliations, 
hybrid procedures, bidirectional Glenn and variations, Fontan completion, biventricular repair; (VI) peri-
operative management; (VII) Fontan failure, with Fontan take-down and conversion, and mechanical 
circulatory support; (VIII) transplantation, including heart, heart and lung, heart and liver; (IX) exercise; 
(X) pregnancy; (XI) adolescents and adults without Fontan completion; (XII) future studies, including 
experimental studies on animals, computational studies, genetics, stem cells and bioengineering.
Conclusions: These last 40 years have certainly changed the course of natural history for children born 
with any form of “functionally” single ventricle, thanks to the improvement in diagnostic and treatment 
techniques, and particularly to the increased knowledge of the morphology and function of these complex 
hearts, from fetal to adult life. There is still much left unexplored and room for improvement, and all efforts 
should be concentrated in collaborations among different institutions and specialties, focused on the same 
matter.
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Introduction

Background

Over the past 40 years, key medical and surgical advances 
have been made in the longitudinal management of patients 
with “functionally” single ventricle physiology, from 
prenatal diagnosis to interventions for failing Fontan in 
adulthood. Since the introduction of the Fontan procedure 
for tricuspid atresia (1), principles of the Fontan circulation 
have been applied to other complex congenital heart 
defects with “functionally” univentricular heart. Previously 
considered as inoperable, scant information was available on 
the natural history of children born with a single ventricle 
40 years ago (2), before the advent of electronic record 
and large databases (3-5). prompting the publication of 
the article “Univentricular heart: can we alter the natural 
history?” (6). 

Rationale and knowledge gap

The purpose of this article is to review all of the innovations 
that led to a change in the longitudinal management of 
patients born with single ventricle from fetal to adulthood 
care. 

Objective

The purpose of our review is to emphasize that there aren’t 
hotspots in this longitudinal management, but the decision-
making process have to be always conducted keeping in 
mind the best treatment for each patient in each specific 
point of their observation.

Methods 

The literature review included all articles found published 
in English language on the Cochrane, MedLine, and 
Embase, with our research strategy summarized in Table 1.  
We present the following article in accordance with the 
Narrative Review reporting checklist (available at https://
tp.amegroups.com/article/view/10.21037/tp-22-573/rc).

Fetal diagnosis

Advancements in prenatal ultrasound technology was 
among the first substantial achievements for congenital 
heart defects,  permitting accurate and early fetal 
echocardiographic detection. Currently, virtually almost 

all heart malformations are recognizable between the 16th 
and 18th week of pregnancy, with sensitivity greater than 
96% and specificity approaching 100% (7,8). In addition 
to providing information on the presence of associated 
non-cardiac malformations (9) such as situs inversus in 
heterotaxy syndrome (10), prenatal echocardiography 
and cardiac MRI better delineates complex congenital 
heart defects, including “functionally” single ventricle 
physiology (11-15). Accurate prenatal imaging and 
diagnosis has been a necessary factor in conducting clinical 
trials for fetal interventional cardiology procedures (16-18), 
and have also resulted in planned, coordinated deliveries 
for babies with complex congenital heart defects at tertiary 
referral centers with the appropriate level of interventional 
and surgical care, resulting in improved survival outcomes 
(11-13,15,19-22).

Fetal brain injury

As survival rates improve for patients with complex congenital 
heart defects, increased rates of neurodevelopmental 
impairment has become better recognized in survivors. 
This has brought about increasing attention and efforts 
to optimize surgical and perioperative care, as well as 
improving detection and timing of neurological injury 
and assessing long-term outcomes (23). Children born 
with single ventricle physiology have the highest rates of 
neurodevelopmental impairment due to multiple patient 
and environmental factors including genetic syndromes and 
socioeconomic factors (24). Several studies have provided 
evidence suggestive of brain injury occurring during fetal 
development, including an alarming rate of brain lesions 
in the presence of cyanotic congenital heart defects before 
cardiac surgery (25-27). The mechanism is attributed to 
reduced oxygen delivery to the brain relative to fetuses with 
normal cardiac anatomy beginning from the completion of 
cardiac structural development at approximately 6 weeks 
of gestational age until the remainder of the gestation 
period (28,29). Clinical manifestations of neurologic 
compromise before surgery in infants with single ventricle 
physiology include smaller head circumference, reduced 
brain volume, and altered neurobehavior (25,27,30,31). 
Severe abnormalities in the implantation and morphology 
of the placenta along with higher rates of maternal pre-
eclampsia and in-utero growth restriction has also been 
observed in the presence of pregnancies affected by 
congenital heart defects (32,33). Placental insufficiency 
suggests another cause of hemodynamic compromise to 
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the developing brain, and potential shared developmental 
pathways between the placenta, heart, and brain are 
currently under investigation (32,33). Some institutions 
have introduced maternal hyperoxygenation as a potential 
therapeutic to improve oxygen delivery to the brain after 
the fetal diagnosis of cyanotic congenital heart defects (34). 
However, studied outcomes have included alterations in 
left-sided cardiac structures, cerebrovascular response, and 
fetal brain development (35-43). Current investigations are 
actively recruiting to further study safety and efficacy of the 
maternal hyperoxygenation.

Neonatal care

The initial neonatal treatment depends on the specific type 
of single ventricle physiology with main variables including 
ductal-dependent pulmonary or systemic circulation, 
reduced or increased pulmonary blood flow, obstructed 
pulmonary venous connections, restrictive interatrial 
communication, and obstructed systemic blood flow. Since 
the 1970s, prostaglandin E1 infusion has been used to 
maintain ductal-dependent circulation in newborns (44,45) 
The availability of prostaglandin E1 at hospitals have been 

associated with decreased neonatal morbidity by permitting 
the stable transfer of newborns with suspected congenital 
heart defects to a cardiac surgical center (46). Continuous 
prostaglandin E1 infusion has also permitted more time 
after delivery for optimal surgical planning and even 
delay surgery for growth in preterm or growth-restricted 
neonates (47).

Post-natal diagnosis

Over the past decade, the field has also seen significant 
advances in the quality of postnatal diagnosis. The 
introduction of technological innovations such as 
three-dimensional  echocardiography (48,49)  and 
global longitudinal strain analysis of single ventricle  
physiology (50) using low radiation-dose computed 
tomography (51-53) can provide accurate anatomic 
delineation of congenital heart defects. Functional 
assessment of myocardial function, in addition to the 
echocardiographic investigations, with magnetic resonance 
imaging (54,55) and the introduction of techniques merging 
different diagnostic imaging modalities (56) facilitate 
operative decision-making, together with 3-D modeling 

Table 1 The search strategy summary

Items Specifications

Date of search January to September 2022

Database and other sources searched Cochrane, Embase, MedLine

Search terms used Single ventricle, Univentricular hearts

Fetal life, Neonatal care

Interventional cardiology, Surgery

Palliations, Cavo-pulmonary connections, Fontan, Fenestration, Ventricular septation

Peri-operative management, Fontan failure

Transplantation, Mechanical circulatory support

Pregnancy, Exercise, Adolescents/Adults

Experimental studies, Computational studies

Genetics, Stem Cells, Bioengineering

Timeframe 1971 to 2022

Inclusion criteria Full articles, English language

Exclusion criteria Abstracts, non-English language

Selection process Independently conducted by AFC and TOF

Consensus Approval of final list of references (AFC, TOF, JDS)
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and printing of the heart structures (57,58), as well as 
computational design of the planned surgical procedure 
with evaluation of the obtainable sizes of ventricular 
inflows/outflows and ventricular volumes (59).

Interventional cardiology procedures

In single ventricle physiology with ductal-dependent 
pulmonary blood flow, ductal stenting is an interventional 
cardiology procedure with beneficial outcomes (60-64). 
The presence of an intact atrial septum or highly restrictive 
interatrial communication in neonates with functionally 
single ventricle, including hypoplastic left heart syndrome, 
is a very high-risk situation requiring emergency catheter-
based intervention and/or surgical procedure (65-68). 
Fortunately, for many neonates, this situation can be 
anticipated in the modern era with fetal echocardiography, 
with the fetal pulmonary venous Doppler detecting a 
severely restrictive interatrial communication (67). In 
the presence of obstructed pulmonary venous drainage, 
the reason for elevated mortality and morbidity has been 
attributed to severe hypertension in the pulmonary veins, 
causing either disorder of the fetal lung maturation with 
fibroelastosis of the alveolar septal parenchyma (68), 
increased medial thickness (arterialization) of the pulmonary 
veins and lymphangiectasis of the lung parenchyma (67-70),  
or underdevelopment of the small pulmonary arteries with 
or without associated alveolar changes (65). To control 
the excessive pulmonary blood flow, an interventional 
cardiology technique using flow restrictors was first studied 
in animal experimental studies (71) and have now been 
successfully introduced in the clinical practice (72).

Surgical procedures

As in interventional cardiology, the surgical approach 
depends upon the specific type of single ventricle, any 
associated cardiovascular malformations, and the subsequent 
pathophysiology. In single ventricle with reduced pulmonary 
blood flow, the most frequently utilized surgical option 
was, and still remains, a modified Blalock-Taussig shunt 
(73,74). In neonates with single ventricle and unrestricted 
pulmonary blood flow, the surgical alternative to catheter-
implantable flow restrictors is still pulmonary artery 
banding and has advantages of reducing distal pulmonary 
artery pressure and maintaining the possibility for future 
cavo-pulmonary connections. Pulmonary artery banding 
can be performed using conventional techniques (75),  

with an adjustable system (76), and clinical successful 
outcome have been reported with the telemetrically 
adjustable FloWatch® (77).

In hypoplastic left heart syndrome, the surgical neonatal 
approach is the Norwood procedure, either with a modified 
Blalock-Taussig shunt (78) or with a Sano right ventricle 
to pulmonary artery conduit (79) with recent improvement 
in results (80,81). The Sano conduit has utilized either 
a ring reinforced tubular prosthesis (82), stent-less 
pulmonary valved conduit (83), or valved femoral venous  
homograft (84). The type of Sano conduit used is still 
primarily based upon institutional and surgeon preferences 
and will require longer follow-up to determine efficacy (85). 

The best timing for a Norwood procedure is still a 
matter of debate and will be discussed later in this review in 
the section on hybrid procedures. 

For newborns with single ventricle physiology, 
ventriculo-arterial discordance and subaortic stenosis, 
hypoplasia of ascending aorta and aortic arch, various 
surgical options were introduced, classically involving early 
pulmonary banding and aortic arch reconstruction, with 
or without the enlargement of restricted bulbo-ventricular 
foramen, or the Damus-Kaye-Stansel procedure, associated 
with a new source of pulmonary blood flow, either with 
modified Blalock-Taussig shunt or with Sano right ventricle 
to pulmonary artery conduit (6,86-92). An alternative 
approach introduced later was a palliative arterial or 
ventricular switch, both procedures requiring a longer aortic 
cross clamp times compared to other options but preserving 
systolic and diastolic ventricular function and providing a 
superior anatomic arrangement for the subsequent surgical 
stages (93-96). Obstructed pulmonary venous connections 
is a quite rare but extremely severe complication in 
neonates with single ventricle physiology (97-101), but with 
proper pre- and post-operative imaging, recurrence can be 
monitored with reasonable outcomes (102).

Hybrid procedures

The “hybrid” approach, consisting of bilateral pulmonary 
artery banding, atrio-septostomy and ductal stent, was 
first introduced by a team in Giessen, Germany. In the 
beginning, the hybrid approach was utilized only for the 
high-risk patients, but eventually offered to others with 
satisfactory outcomes (103-109). Recently, for neonates 
with hypoplastic left heart structures in critical condition 
due to pulmonary over-circulation and insufficient systemic 
perfusion with subsequent multi-organ failure (110), we 
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adopted this policy, deferring the Norwood procedure and 
the required cardiopulmonary bypass in neonates with 
depleted metabolic and functional reserves. All organs, 
including myocardium, brain, kidneys, liver, and lungs are 
allowed to recover, thus mitigating the insult of organ injury 
from diminished oxygen delivery (110). 

Generally, the staged surgeries consist of three steps, 
the first being a palliative procedure in which the systemic 
and pulmonary circulations are usually placed in parallel; 
the second stage consisting of a superior cavo-pulmonary 
anastomosis (or bidirectional Glenn); and the final stage 
being conversion to a total cavo-pulmonary connection 
(Fontan physiology). Following the first stage palliation 
for single ventricle, unstable hemodynamics contributes 
to morbidity and mortality in the inter-stage period prior 
to the second stage, particularly for hypoplastic left heart 
syndrome (111,112). This issue has been best managed 
with either a lengthy hospitalization while awaiting the 
second stage, or discharge home through a strict continuous 
monitoring program (113,114).

Bidirectional Glenn

The classical Glenn procedure consisting of an end-to-
side anastomosis of the divided superior vena cava 
to the right pulmonary artery, separated from the 
pulmonary artery bifurcation (115,116), despite early 
positive outcomes including relief of cyanosis, was later 
abandoned because of the high incidence of pulmonary 
arteriovenous malformations (117-121). The bidirectional 
Glenn, introduced 50 years ago (122) but popularized in 
more recent years (123,124), consists of the division of 
the superior vena cava in correspondence of the cavo-
atrial junction (preserving the sinus node and its artery) 
and its end-to-side anastomosis to the upper aspect of the 
right pulmonary artery, preserving the pulmonary arteries 
continuity and bilateral lung perfusion. Other advantages 
of the bidirectional Glenn include: (I) increased effective 
pulmonary blood flow by deviating the most desaturated 
blood (the superior vena cava return) directly to the lungs; 
(II) preparation for later Fontan completion without any 
period of myocardial ischemia; (III) potential for growing, 
being a direct anastomosis between two native vessels. 
Furthermore the bidirectional Glenn avoids the single stage 
modified Fontan procedure where the single ventricular 
chamber must adapt to an abrupt reduction in ventricular 
filling, with subsequent reduced ventricular compliance and 
poor functioning of the Fontan circulation (125-128).

In patients with a persistent left superior vena cava, a 
bilateral bi-directional Glenn procedure is required (129,130). 

The bi-directional Glenn procedure can generally be 
performed at 3–6 months of life, when the pulmonary 
vascular resistance is usually sufficiently low. 

Hemi-Fontan

A surgical alternative to the bidirectional Glenn is the hemi-
Fontan procedure, consisting of connection of the superior 
vena cava and the superior portion of the right atrium 
to both pulmonary arteries, augmentation of the central 
pulmonary arteries, occlusion of the inflow of the superior 
vena cava to the right atrium and elimination of the other 
sources of pulmonary blood flow. The hemodynamics is 
similar to a bi-directional Glenn procedure except all other 
sources of pulmonary blood flow are eliminated, avoiding 
ventricular volume overload. However, for patients with 
hypoplastic pulmonary arteries this may be a disadvantage 
since only 40% of the systemic venous return perfuses the 
pulmonary circulation until the Fontan completion. This 
potential disadvantage could be compensated by direct 
enlargement of the central pulmonary arteries, requiring 
cardiopulmonary bypass with aortic cross clamp, biological 
or prosthetic materials for central pulmonary arteries 
augmentation, and suturing lines in proximity to the 
sinus node or its artery posing a risk for supraventricular 
arrhythmias. Later conversion is possible to a total cavo-
pulmonary connection with lateral tunnel technique, 
sometimes even without cardiopulmonary bypass (131-133).

Super-Glenn

Insufficient pulmonary blood flow may be increased by 
the addition of a small systemic-to-pulmonary artery 
shunt, procedure called super-Glenn (134-136). With the 
expanding indication for biventricular recruitment, the 
super-Glenn is a potential approach leaving biventricular 
recruitment as a future option (137).

Fontan completion

After the initial technique described for tricuspid atresia (1), 
the Fontan circulation has evolved in technique, beginning 
from the right atrial to pulmonary connection (6,138-140),  
to right atrial to right ventricular connection for patients 
with tricuspid atresia (141-144), to tricuspid valve exclusion 
for patients with single ventricle (6,145), to now the two 
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surgical techniques most frequently used: the lateral 
tunnel (146,147), and the extra-cardiac conduit (148-150). 
Improvements in intra-operative techniques, as well of the 
available materials, has allowed accomplishment of Fontan 
completion while the heart continues to beat, therefore 
avoiding myocardial ischemia (151), or even without 
requiring cardiopulmonary bypass (152).

And after a long period without using any valve in 
the Fontan circulation, the utilization of a biological 
valve has been reintroduced between inferior vena cava 
and the pulmonary circulation (153), and bioengineered 
conduits have also been used for the same purpose (154). 
Computational simulations studying the distribution of the 
cavo-pulmonary blood flow has led to the use of an inverted 
Y-graft to separate the venous return of the inferior vena 
cava between right and left lung (155). For patients with 
interruption of the inferior vena cava and systemic venous 
drainage of the inferior part of the body through the 
superior vena cava, Kawashima proposed the anastomosis 
of the superior vena cava end-to-side to the right 
pulmonary artery, exactly as in the bidirectional Glenn, 
creating a version of Fontan completion in one stage (156).  
Improvement in outcomes have resulted in expansion of 
indication for Fontan completion to patients previously not 
considered suitable candidates (157-159).

Fenestration

An issue still without generalized agreement in approach is 
the Fontan fenestration. An “adjustable atrial septal defect” 
was first introduced by Hillel Laks (160,161) to temporarily 
reduce excessively elevated systemic venous pressure 
after a Fontan procedure and reduce the immediate 
post-operative complications. Since then, it has been 
renamed “fenestration” by Nancy D. Bridges (162,163), 
and universally adopted to define a surgically created 
communication between the diverted systemic venous 
return and the lower pressure pulmonary atrium using both 
surgical techniques utilized for Fontan completion, the 
lateral tunnel and extracardiac conduit. 

Early indications for a Fontan fenestration were limited 
to high-risk candidates to reduce the systemic venous 
pressure resulting in increased lymphatic drainage with 
reduction in pleural effusions, and to provide adequate 
preload to the systemic single ventricle which reduced 
the post-operative low cardiac output state (164,165). 
The only prospective randomized study comparing 
patients undergoing fenestrated versus non-fenestrated 

Fontan completion demonstrated a reduction in intensive 
care duration and hospital stay (166). The indication 
for fenestration was eventually extended to almost all 
patients, regardless the level of pre-operative risk, and 
became commonplace for Fontan completion. However, 
the early benefits of fenestration were at the expense of 
late complications such as lower systemic oxygenation 
with prolonged cyanosis and risk of long-term systemic 
thromboembolism. Additionally, some patients required 
a later intervention to close the fenestration to improve 
resting and exercise oxygenation, lower maximal heart rate 
during exercise, and increase exercise duration (167-171). As 
a result, fenestration became limited again to select patients 
facing increased risks of complications in the immediate 
post-operative period (172).

While two systematic literature reviews and meta-
analyses on the early outcomes of a Fontan fenestration 
demonstrated mixed benefit in the immediate post-
operative period (173,174), our meta-analyses on later 
outcomes showed patients required either late closure or 
creation/reopening of a fenestration made at the time of 
Fontan completion (175). 

Since then, the pendulum has swung back with 
indications for Fontan completion now extending to 
different patient populations including patients with 
complex congenital heart defects. With the increasing 
complexity of patients undergoing a Fontan procedure, 
surgical centers have begun to reconsider the use of 
fenestration, and in some institutions with high-risk cases, it 
is used nearly universally (176). The altered hemodynamics 
in Fontan patients continues to be investigated using 
mathematical and computational fluid dynamic models 
comparing those with and without a fenestration (177,178), 
as well as quantifying the effects of different sizes of 
fenestration (179).

Ventricular septation

The last available option for the surgical treatment of single 
ventricle is the staged ventricular septation. This concept 
of staged surgical approach for bi-ventricular circulation 
is not novel: in 1984, Paul Ebert proposed “staged 
partitioning” for the single ventricle (180); in 1986, Roxane 
McKay reported “staged septation” of a double inlet left  
ventricle (181); and in 2022, Renee E. Margossian and 
colleagues reported their revised approach to surgical 
septation to avoid the Fontan pathway (182). 

In our experience, for all newborns with borderline 
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left heart structures, the pathway towards a bi-ventricular 
circulation is considered, utilizing appropriate staging 
of surgical procedures (183,184). For other patients on a 
uni-ventricular pathway, either a Norwood, bidirectional 
Glenn, or Fontan completion, extensive imaging and 
functional investigations are performed before ruling out 
the possibility for a bi-ventricular conversion (183-193). 
This decision-making process requires careful consideration 
of the size of inflow and outflow of the systemic ventricle, 
morphology and shunt direction through any interatrial 
and/or ventricular communication, right and left ventricular 
function and volumes, and morphology and flow of 
ascending aorta and aortic arch (183,184).

Peri-operative management

In-depth knowledge of the physiology in patients with single 
ventricle physiology is indispensable to achieving optimal 
peri-operative management of anesthesia, cardiopulmonary 
bypass and intensive care. Mortality rates are the highest 
following the first stage surgical palliation (194). In more 
recent years, for patients with pulmonary over-circulation 
and poor systemic perfusion with multi-organ failure, 
conservative management has been introduced, deferring 
the first palliative surgery to avoid cardiopulmonary bypass 
in neonates with already-depleted metabolic and functional 
reserves (110). The goal of the conservative management 
prior to the first palliative surgery is to maintain a QP:QS (= 
pulmonary-to-systemic blood flow ratio) around 1.5–2:1 with 
adequate utilization of mechanical ventilation with positive 
pressure and vasoactive medications. This ratio will become 
0.5:1 after the bidirectional Glenn, and 1:1 after Fontan 
completion. In all these processes, a vital role is played in 
the use of inhaled nitric oxide (195). Better understanding 
of the unique hemodynamics of single ventricle physiology 
facilitated by many researchers over the years has resulted in 
better quality of life for these patients (196-201).

Fontan failure

With the intrinsic properties of the Fontan circulation, 
its eventual failure is not unexpected and occurs more 
frequently with increasing age of the patients (197,199-201),  
despite careful attention to the criteria for indication to 
this type of surgical procedure (202-204).The causes for 
failure of the Fontan circulation can be numerous, either 
anatomical and/or functional, including but not limited 
to obstruction or narrowing at any level from the cavo-

pulmonary connections to the ventricular inlet, atrio-
ventricular valve(s) regurgitation, poor systolic and/or 
diastolic ventricular function, systemic obstructions, elevated 
pulmonary vascular resistance, supra-ventricular and/
or ventricular arrhythmias, etc. (200,201). Recent studies 
focused on the pharmacological treatment of children with 
single ventricle and pulmonary hypertension (205). The 
mechanism for late Fontan failure is multifactorial and 
depends upon the complex interaction between the ventricle 
functioning as the systemic ventricle, the ventriculo-
vascular coupling, the pulmonary vascular bed, and the 
venous compartment (206). One of the lesser known issues 
after a Fontan procedure is the potential exposure of the 
coronary sinus to the sudden increase in systemic venous 
pressure with negative consequences on ventricular function 
(207,208). This, of course, depends entirely upon the 
type of surgery, lateral tunnel or extracardiac conduit, the 
arrangement relative to the drainage of the coronary sinus, 
and the presence and size of fenestration.

Treatment for recurrent protein losing enteropathy and 
chylothorax, well-known complications of Fontan circulation 
due to elevated central venous pressure affecting the thoracic 
duct drainage, has made recent progress by deviating 
the innominate venous drainage into the lower pressure 
common atrium. Methods include the direct innominate 
vein turn-down procedure, interposition of a tubular graft 
(209,210), or with the selective opacification followed by 
occlusion of the involved lymphatic vessels (211,212). 

Once the reason for Fontan failure is determined, the 
first approach is to relief the cause of failure with either 
a catheter interventional or surgical procedure. When 
there are no identifiable causes, available interventional 
treatments, or prior interventions failed, alternative options 
must be considered. The overarching goal to prolong the 
state of Fontan circulation is to make the patients better 
candidate for heart transplantation, not at the expense of 
making them non-transplantable (206). If conservative 
measures fail, the remaining options are Fontan conversion, 
if the original surgery was an older arrangement; Fontan 
take-down, if the hemodynamics of Fontan circulation is not 
well-tolerated; a form of short or long-term of mechanical 
circulatory support; and finally, heart transplantation.

Fontan conversion

The atrio-pulmonary connection for Fontan completion 
has been complicated by failures caused by its non-
ergonomic hemodynamics, elevated rates of energy loss 
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rate and elevated kinetic energy maximum value, as 
demonstrated in computational simulations (146,213,214). 
In these instances of failure, the original atrio-pulmonary 
connection has been converted either to a lateral tunnel 
(215,216) or to an extracardiac conduit (217-219), with 
better outcomes. The most frequent reason for Fontan 
failure is the occurrence and recurrence of supra-
ventricular or ventricular arrhythmias (220-224). The 
treatment has been the conversion of the previous Fontan 
to either a lateral tunnel or an extracardiac conduit 
(225,226). Resynchronization therapy was later introduced 
to tackle the issue of intracardiac conduction delays in 
these patients (227).

Fontan take-down

The decision for a Fontan take-down has to consider all 
of the factors related to the pre-operative diagnosis, the 
decision-making process that led Fontan completion, the 
surgical procedures performed, and the post-operative 
findings causing the Fontan failure. Based on all these 
considerations, the decision for Fontan take-down must 
be balanced against all the available alternatives, including 
the possibility of going back to the situation proceeding 
the Fontan completion, or to create a completely different 
arrangement based on the anatomical and hemodynamic 
characteristics of each specific patient (228).

Mechanical circulatory support

The patients with single ventricle physiology have unique 
anatomical configuration, etiology and mechanisms of 
failure, indications for mechanical circulatory support, and the 
type of support required, unilateral or bilateral. This makes 
the interpretation and the generalizability of the limited 
available data challenging regarding the timing and type of 
optimal mechanism for support (229-233). 

First, the ideal management strategies much be 
determined by analyzing the three different stages of single 
ventricle management (234):
	neonatal palliation, including Norwood Stage I
	superior cavo-pulmonary shunt (bidirectional Glenn)
	completion of Fontan circulation (early and late)
Several reports are available on the indication and the 

type of mechanical circulatory support utilized for each 
stage (235-241).

Second, the pathophysiologic pattern must be determined 
for the specific patient. An interesting algorithm has been 

proposed (242) using patient weight and mechanism of 
failure to choose the best device for mechanical circulatory 
support: (I) systolic dysfunction, with elevated end-diastolic 
ventricular pressure and low cardiac output; (II) diastolic 
dysfunction, with elevated end-diastolic ventricular pressure 
and normal cardiac output; (III) increased pulmonary vascular 
resistance and Fontan failure, with elevated central venous 
pressure and hepatic congestion; (IV) mixed type, with 
elevated central venous pressure and end-diastolic ventricular 
pressure, pulmonary congestion and low cardiac output (242). 
This algorithm was generated based on these principles: 
differentiating between the need to improve the antegrade 
Fontan flow, with a “pushing” device, versus uploading the 
systemic ventricle with a “pulling” device (242,243). 

Third, the availability of three main types of support 
devices must be considered: (I) veno-arterial extra-corporeal 
membrane oxygenation, ideal for short-term support; (II) 
ventricular assist device, for mid and long-term support (244),  
either as bridge to recovery or to transplantation; (III) total 
artificial heart (227-232,236-242). When planning to use a 
ventricular assist device, the differences among pulsatile, axial 
and centrifugal pumps, having different unloading abilities, 
must be taken in consideration (242,245). Fontan take-
down and use of a temporary support device should also be 
considered (206,228).

Last, but not least, there are surgical issues to consider: 
(I) the presence of multiple previous sternotomies, 
complicating the chest re-entry; (II) the positioning of 
inflow cannulation, considering the presence of adhesions, 
masking the coronary arteries, the variable morphology and 
location of the systemic ventricular cavity, the sub-valvular 
apparatus of the atrio-ventricular valve; (III) the positioning 
of outflow cannulation, because of the ascending aorta 
and aortic arch reconstruction (Norwood, Damus-Kaye-
Stansel).

The use of mechanical circulatory support for Fontan 
failure has been supported by experimental studies 
on animals,  in vitro studies, and mathematical and 
computational fluid dynamic studies.

Experimental studies on animals
Investigating the acute support in a porcine model has 
provided interesting basic science observations that are 
translatable to bedside application (246-248).

In vitro studies
Two studies investigated the hemodynamic effects of a 
totally implantable integrated aortic-turbine venous assist 
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device (177) with in vitro results of ventricular assist devices 
in right-side failing Fontan (249).

Mathematical and computational fluid dynamic studies
Investigative collaboration with bioengineers and 
mathematicians has opened a new horizon in the research 
for mechanical circulatory support even in Fontan 
circulation, resulting in a large number of publications on 
the topic (177,238,246-251).

Transplantation

Given the shortage of organ donors, it is clear that cardiac 
transplantation alone is not a sustainable solution to address 
the epidemic of heart failure associated with single ventricle 
pathophysiology. In addition, most patients with Fontan 
failure present with multi-organ failure making them poor 
candidates for heart transplantation. Hence, the need for 
alternative options, particularly mechanical circulatory 
support, has been increasingly recognized as a means to 
prolong the state of Fontan circulation and improve their 
candidacy heart transplantation (206). For transplantation 
after Fontan procedure, heart transplantation, heart and 
lung transplantation, and heart and liver transplantation 
should be discussed.

Heart transplantation

The patients with single ventricle and failing Fontan 
circulation present challenges, including extremely complex 
anatomy, multiple previous interventional procedures, 
unique underlying pathophysiological characteristics, and 
limited ability to directly assess hemodynamics. These 
issues complicate the decision-making process for further 
interventions versus heart transplantation. Consequently, 
patients with failing Fontan patients constitute one of the 
highest risk subsets of heart transplant recipients (252). 
Nevertheless, once only offered after failure of the Fontan 
circulation (252-256), indications for heart transplantation is 
now being offered for protein-losing enteropathy (257) and 
arterio-venous malformations (258). One study described 
the multicenter experience of heart transplantation in 514 
patients with Fontan failure, reporting early mortality 
ranging from 15% to 23% (177). Another more recent 
multicenter study reported 177 children with Fontan 
failure listed for heart transplantation. Among the various 
phenotypes, abnormal lymphatics, reduced systolic function, 
preserved systolic function, and “normal” hearts, the group 

with reduced systolic function had the highest risk of 
waitlist mortality (21%) and post-transplantation mortality 
(36%) (259).

An  exper imenta l  mode l  o f  he te ro top i c  hea r t 
transplantation or failing right heart, with two left ventricles 
arrangement, has been successful on acute tests on animals, 
but it has been neve implemented clinically (260).

Heart and lung transplantation

Heart and lung transplantation has historically been 
used as a definitive treatment for children with end-stage 
cardiopulmonary failure, although the number performed 
has steadily decreased over time. Even in patients with 
failing Fontan, due to the combination of shortage of 
donors and generally poor outcomes, the indication for 
heart and lung transplantation in children with single-
ventricle physiology has virtually been abandoned as 
therapeutic option (261).

Heart and liver transplantation

Fontan-associated liver disease can be one of the long-term 
consequences of the Fontan circulation. By adolescence, 
virtually 100% of these patients develop clinically silent 
fibrosis, demonstrated by surveillance biopsies. In the 
absence of a transplant option, these young patients face a 
poor quality of life and overall survival because of advanced 
liver disease, including bridging fibrosis, cirrhosis, and 
hepatocellular carcinoma (262-265). In the absence of long-
term hepatic outcome data after heart transplant alone, 
there is a progressively increasing incidence of combined 
heart and liver transplantation (262-265). As experience and 
knowledge has improved in pre-transplant screenings and 
peri-operative management, better outcomes have been 
reported for combined heart and liver transplant in this 
complex group of patients (266,267).

Pregnancy

With improving rates of post-Fontan survival to adulthood, 
many now seek advice regarding safe pregnancy. 
However, little data are available and consists of mainly of 
anecdotal experience and small series of cases (268,269). 
A systematic literature review showed that the most 
reported cardiovascular complications during pregnancy 
in women with Fontan circulation were arrhythmias, heart 
failure and thromboembolism. Miscarriages were highly 
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prevalent as were premature deliveries and intrauterine 
growth restriction, and post-partum hemorrhage was 
the most common obstetric complication (269). Fontan 
circulation may be associated with poor placental health 
due to the high systemic venous pressure and low cardiac 
output contributing to stagnation of placental blood 
flow and resulting in subchorionic fibrin deposition 
and variable villous hypoplasia. Analysis of placental 
pathology may help determine both candidacy for future 
pregnancy and long-term effects of pregnancy for women 
with Fontan physiology (270). As infertility and first 
trimester miscarriage are not uncommon in women with 
Fontan circulation, pregnancy may be high risk and even 
contraindicated. In vitro fertilization, with or without 
gestational surrogacy, can be an option with reports of 
success but poses risks during ovarian stimulation, oocyte 
retrieval, and the post-procedural period (271). 

Exercise

In the past, several studies have shown that adult 
patients with Fontan circulation have reduced exercise 
tolerance affecting the quality of life. These patients were 
discouraged from any form of exercise. Initial attempts 
at improving the effort tolerance have been reported 
using intermittent external legs compression (272). More 
recently, several programs of cardiopulmonary training, 
including exercise training, fitness intervention trials, 
home-based long-term physical endurance and inspiratory 
muscle trainings, have been instituted in Fontan patients. 
These programs have been shown to be safe and beneficial, 
improving exercise capacity, cardiorespiratory performance 
and cardiac biomarker values, and self-reported quality of 
life (273-277).

Adolescents and adults without Fontan 
completion

Years ago, there were only case reports of individuals with 
single ventricle physiology surviving to adulthood. In more 
recent years, a number of patients have reached adulthood 
without any type of even palliative surgery (2,278-282), 
or after some form of palliation but without requiring a 
Fontan completion (193,283-286). Attempts should be 
made to identify the morphologic and pathophysiological 
characteristics of these patients, identify the more favorable 
patterns, and compare their survival and quality of life with 
those who underwent all conventional surgical stages.

Future studies

Experimental studies on animals

Traditionally, potential new surgical approaches were 
first experimented on animals, despite the difficulties 
of modeling single ventricle circulation and the various 
surgical stages in animals born with two ventricles and 
separate pulmonary and systemic circulations (287-291). 
As a result, many comparative studies focused on animals 
born with single ventricle physiology, such as amphibians, 
like axolotl salamanders (Ambystoma mexicanum) (292), 
frogs (Xenopus laevis) (293-295), and reptiles, who 
live unrestricted lifestyle for many years. In frogs and 
salamanders, the two circulations fuse at the level of single 
ventricle, splitting at the pulmonary and systemic arterial 
branches, and the amount of blood flow distributed between 
pulmonary and systemic circulations is determined by the 
ratio of the peripheral resistances in the two territories. The 
anatomic and physiologic features of the amphibian heart 
does not seem to be even remotely applicable to human 
cardiac pathophysiology, nor modifiable towards surgical 
options in patients born with single ventricle. However, the 
evolutionary origin of normal and abnormal morphogenesis 
of the human heart (296) has been recently demonstrated 
(297-299). 

Computational studies

In addition animal studies, the current trend is to 
collaborate with bioengineers and mathematicians by 
providing them with three-dimensional reconstruction 
images obtained with computerized tomography or 
magnetic resonance imaging, together with the clinical 
information and the hemodynamic data from cardiac 
catheterization. With the modern computing technology, 
nowadays every interventional and surgical procedure can 
be designed and tailored for the specific patient, based on 
the results of computational simulations. This collaboration 
is now becoming a routine part of decision-making even for 
patients with single ventricle physiology at any stage of the 
surgical plan (177,178,300-302).

Genetics

Genetic studies of animal hearts with single ventricle 
is become increasingly important in understanding 
the relationship between morphology and cardiac  
function (295). Moreover, the underlying molecular 
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signals responsible for the adaptive tissue responses seen 
in other species may be useful in our understanding of 
post-operative complications and the discovery of novel 
strategies to prevent them. Hypoplastic left heart syndrome 
is the type of “functionally” single ventricle most frequently 
requiring surgery in the first weeks of life, prompting 
extensive genetic investigations in these neonates (303-308).

In hypoplastic left heart syndrome of hemodynamic 
origin, the first mouse model showed evidence of intrinsic 
cardiomyocyte proliferation and differentiation defects 
related to left ventricular hypoplasia (306). The profound 
genetic heterogeneity and oligogenic etiology in hypoplastic 
left heart syndrome suggests that the genetic landscape is 
complex and should be investigated in clinical studies built 
on a familial study design (306). Furthermore, hypoplastic 
left heart syndrome can present as either isolated phenotype 
or as a feature of a larger genetic disorder. Specific genes 
have been implicated, including rare, predicted damaging 
MYH6 variants present in 10% of hypoplastic left heart 
syndrome patients, which have also been shown to be 
associated with decreased transplant-free survival (308).

Finally, in the most recent and large genetic study, single-
nucleus RNA sequencing has been performed on 157,273 
nuclei from control hearts and from patients with congenital 
heart disease, including hypoplastic left heart syndrome 
and dilated and hypertrophic cardiomyopathy (309).  
Specific cell states of congenital heart defects have been 
found in cardiomyocytes, characteristic of activated cardiac 
fibroblasts with an immunodeficient state and a profile 
suggesting deficient monocytic immunity (309). All these 
comprehensive phenotyping of congenital heart defects 
provides a roadmap towards future personalized treatments 
for patients with single ventricle physiology.

Stem cells

The single ventricle of right ventricular type, as in the 
hypoplastic left heart syndrome, is especially prone to early 
failure because of its vulnerability to pressure and volume 
overload, with a mode of failure distinct from ischemic 
cardiomyopathy. As these patients enter early adulthood, 
an emerging epidemic of ventricular failure is evident. 
Regenerative medicine strategies may help preserve or boost 
the single ventricle function in these patients by promoting 
angiogenesis and mitigating oxidative stress. Rescuing a 
single ventricle in decompensated failure may also require 
the creation of new, functional myocardium (310). Because 
of these reasons, experimental studies on animals using 

stem cells have been conducted in various institutions, 
including a few clinical trials with progenitor stem cells 
given via direct myocardial injection or administration in 
the coronary arterial blood (311-317). The preservation 
of single ventricular function is the key for long-term 
outcomes, but currently the available methods to preserve 
or improve the myocardial function are still limited (314). 
Stem cell therapy and cardiac tissue engineering present 
revolutionary potential in the treatments of children with 
single ventricle, although considerable obstacles must be 
overcome before their clinical translation (310).

Bioengineering

Tremendous progress have characterized the field of 
bioengineering and related experimental and clinical 
applications. Over the last years, relatively simple tasks 
of building biomaterials to use as patch or conduit during 
surgery for congenital heart defects has now evolved to 
bioengineering products to use in place of prosthetic 
materials and repair of damaged or missing myocardium 
(318-321). Until recently, it was unthinkable to use 
biomaterials to construct the systemic-to-pulmonary 
shunt with tunable properties to control and modulate 
blood flow through the shunt, thus accommodating to 
physiological changes as the patient grows (322). Thanks 
to modern technologies, now these bioengineered shunts 
represent a new methodology to accommodate the need 
for increasing pulmonary blood flow in this vulnerable 
patient population (322).

Nowadays tissues with three-dimensional structures 
can be generated using different approaches such as self-
assembled organoids with tissue-engineering methods, such 
as bioprinting. A promising study compared heart organoids 
with in vivo hearts to understand the anatomical structures 
still lacking in the organoids, and specifically comparing the 
development of heart structures based on marker genes and 
regulatory signaling pathways (323).

Finally, we have already discussed heart transplantation as 
the ultimate solution for failing Fontan circulation and the 
limitations of human donor shortages. The waiting list for 
heart transplantation is higher than for any other solid organ 
transplantation group. Orthotopic pig heart transplantation, 
as a bridge to allotransplantation, could offer the 
prospect of long-term survival to these patients (324).  
In recent years, several advances in techniques of genetic 
engineering pigs mitigated the vigorous antibody-mediated 
rejection of a pig heart transplanted in nonhuman primates 
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with extended pig cardiac graft survival (324). These 
experimental studies could help the progress towards 
clinical trials of bridging cardiac xenotransplantation for 
neonates and infants (178). In summary, the developing 
technologies investigating cell therapy, gene therapy, 
and tissue engineering are potential tools to regenerate 
hypoplastic cardiac structures and improve outcomes of 
neonates with single ventricle physiology.

Conclusions

These last 40 years have certainly changed the course 
of natural history for children born with any form of 
“functionally” single ventricle, thanks to the improvement 
in diagnostic and treatment techniques, and particularly to 
the increased knowledge of the morphology and function 
of these complex hearts, from fetal to adult life. There is 
still much left unexplored and room for improvement, and 
all efforts should be concentrated in collaborations among 
different institutions and specialties, focused on the same 
matter.
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