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Abstract: Neurodevelopmental disability (NDD) is recognised as one of the most common comorbidities 
in children with congenital heart disease (CHD) and is associated with altered brain structure and growth 
throughout the life course. Causes and contributors underpinning the CHD and NDD paradigm are not 
fully understood, and likely include innate patient factors, such as genetic and epigenetic factors, prenatal 
haemodynamic consequences as a result of the heart defect, and factors affecting the fetal-placental-maternal 
environment, such as placental pathology, maternal diet, psychological stress and autoimmune disease. 
Additional postnatal factors, including the type and complexity of disease and other clinical factors such as 
prematurity, peri-operative factors and socioeconomic factors are also expected to play a role in determining 
the final presentation of the NDD. Despite significant advances in knowledge and strategies to optimise 
outcomes, the extent to which adverse neurodevelopment can be modified remains unknown. Understanding 
biological and structural phenotypes associated with NDD in CHD are vital for understanding disease 
mechanisms, which in turn will advance the development of effective intervention strategies for those 
at risk. This review article summarises our current knowledge surrounding biological, structural, and 
genetic contributors to NDD in CHD and describes avenues for future research; highlighting the need for 
translational studies that bridge the gap between basic science and clinical practice.
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Introduction

Congenital heart disease (CHD) is the most common birth 
defect, affecting 0.6–1.3% of babies born each year (1). It is 
associated with significant mortality and morbidity (2) with 
many individuals with CHD requiring lifelong medical care 
and treatment (3). The cause of most CHD is unknown 
and attributed to a combination of genetic, epigenetic and 
environmental factors (4). Following advances in treatment 
and care, >90% of affected children now survive to 
adulthood (5), resulting in greater appreciation and interest 
in longer-term health outcomes, such as neurodevelopment 
and quality of life (6). 

Overview of neurodevelopmental disability in 
CHD and relevance at all ages

Neurodevelopmental delay and/or disability (NDD) is now 
recognised as a lifespan issue for many children born with 
CHD (7). Those with more complex forms of CHD, such 
as those with single ventricles pathologies or transposition 
of the great arteries who typically experience more severe 
disease requiring neonatal bypass operations and on-going 
monitoring and care, are at a greater risk of worse prognosis 
(8,9). However, risk factors contributing to more severe or 
persisting disability are not fully understood and appear 
multifactorial and synergistic (10). A spectrum of outcomes 
is observed, and many individuals with CHD demonstrate 
no impairment and their level of functioning may exceed 
population norms. However, as many as 50% demonstrate 
mild to moderate NDD and later cognitive impairment, 
and a small number demonstrate global cognitive or 
intellectual disability (7,8,11-15). These challenges have 
important implications throughout the life course, including 
on academic achievement, employment opportunities, 
psychological and social functioning, and overall quality 
of life (16-19). Established guidelines document the need 
for routine neurodevelopmental follow-up throughout 
childhood (7), however, this has not yet translated to 
standard clinical care in most paediatric centres. Importantly, 
neuropsychological services for children and adults with 
CHD are under-resourced in comparison to other clinical 
paediatric populations, such as those born very preterm, 
despite similar risk factors and adverse outcomes (11).  
Understanding biological and structural phenotypes 
associated with NDD in CHD are necessary to advance 
clinical care and the development of effective intervention 
strategies for those at risk. Interventions targeting the 

earliest stages of development will be vital for optimising 
developmental outcomes. An overview of the risk factors 
contributing to NDD in CHD is outlined in Figure 1.

Early manifestations of NDD typically include poor 
feeding, speech and language delay, challenges with gross 
and fine motor movement, and early cognitive concerns 
(20-22). Early speech and language delays more commonly 
resolve over time (23), whereas motor impairments are 
a persisting concern throughout childhood (24,25), and 
the extent of cognitive challenges typically worsen over 
time (14,21). In infants with more complex CHD, such as 
those undergoing the single ventricle pathway, the early 
developmental years are impacted by the need for multiple 
cardiac surgeries and prolonged exposure to the restrictive 
and artificial hospital environment. Length of inpatient stay 
is usually a surrogate marker of more complex diagnoses 
and post-operative complications and is a strong predictor 
of long-term neurodevelopmental outcomes (7). 

At school age, intelligence quotients are generally 
within population norms, although typically fall within 
the low average range (26,27). In contrast, early NDD 
typically manifests as specific cognitive challenges that 
have important implications for academic performance 
and achievement, often requiring additional school 
provisions and support (19,28). Key challenges include 
deficits in attention, processing speed, visuospatial skills, 
memory, social cognition, and executive functioning—
that encompasses a range of higher order cognitive skills 
including working memory, mental flexibility, problem-
solving, and inhibitory control (27,29-32). Many children 
show challenges across multiple domains of functioning, 
requiring greater intervention and support (21). Behavioural 
and psychological disorders (e.g., anxiety, depression, 
and poor behavioural or emotional regulation) are also 
an important concern (33,34). The extent to which these 
difficulties are associated with NDD has not yet been 
established but are anticipated to be linked. In addition, 
children with CHD are at an increased risk of developing 
disorders of social functioning, including autism spectrum 
disorder (35).

Higher-order executive skills continue to develop 
throughout childhood in conjunction with the maturation 
of key brain structures, notably the pre-frontal cortex (36), 
and the full extent of these challenges may not be observed 
until adolescence or early adulthood. Indeed, studies have 
shown that executive functioning deficits are among the 
most prevalent and severe impairments observed in older 
children and young adults with CHD (8,28,37), which 
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become an increasingly significant challenge alongside 
greater cognitive demands and the need for increased 
functional independence that occurs with maturation into 
adulthood. Cognitive dysfunction persists throughout 
adulthood (8,38-40), although longer-term outcomes have 
been less extensively studied. Older adults with a Fontan 
circulation (up to 50 years old) have been found to have 
worse neurocognitive dysfunction compared to Fontan 
adolescents after controlling for age (8), that may suggest 
a possible worsening of cognitive challenges throughout 
adulthood in those with highly complex forms of CHD. 
Although the extent to which these outcomes may reflect an 
era effect relating to previous surgical strategies and medical 
care are currently undetermined. Concerningly, adults with 
all forms of CHD are at a significantly increased risk of 
dementia, including early onset dementia (41). As the adult 
CHD population continues to grow, so does the need for a 
better understanding of the accumulating risk factors that 
compound early NDD and contribute to worse long-term 
cognitive outcomes. 

Brain structure and function: insights from 
neuroimaging

In individuals  with CHD, NDD is  paral le led by 
abnormalities in brain structure and function across the 
lifespan (42-44). Neuroimaging studies of the fetal CHD 
brain have demonstrated that abnormal brain development 
begins in utero. Altered cortical development and reduced 
brain size are observed as early as the second trimester of 
gestation in fetuses with complex cardiac lesions (45-47) 

and precede anomalous growth patterns and reduced brain 
volumes, that become progressively more pronounced 
throughout the third trimester (45,48-51). Fetal brain 
volume has been shown to predict neurodevelopmental 
outcomes at 2 years of age in children with CHD (52), 
suggesting prenatal brain parameters may have prognostic 
value in identifying infants at risk of early NDD; however, 
further studies are needed to replicate these findings, 
and associations with longer-term neurodevelopmental 
outcomes are yet to be determined.

Post-natal brain development continues to follow 
an altered growth trajectory, with progressive growth 
of both regional and global brain volumes occurring at 
a slower rate compared to typically developing infants 
(53,54). Consistently, widespread reductions in global 
and regional brain volumes have been demonstrated pre-
operatively in various heterogenous CHD cohorts (54-59). 
In infants with transposition of the great arteries, the rate 
of brain growth has been found to significantly increase 
after surgical correction and normalisation of the cardiac 
circulation and there may be some ‘catch-up’ growth by 
3 years of age (60). In contrast, reduced brain growth and 
smaller brain volumes persist in infants with hypoplastic left 
heart syndrome post-operatively (60,61), suggesting that 
continued haemodynamic instability may have an important 
contributory role in pervasive post-natal brain development.

In infants requiring cardiac surgery, peri-natal brain 
immaturity is associated with a greater risk of pre- and post-
operative brain injury (62-65), that occurs in as many as 
40% and 26–44%, respectively (53,65-68). Predominant 
lesions include patterns of white matter injury and stroke; 
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Figure 1 Contributors to neurodevelopmental delay and disability in CHD. CHD, congenital heart disease.
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the prevalence and severity of which are typically worse 
in infants with univentricular lesions (65,68). Recently, 
Peyvandi and colleagues found that moderate to severe peri-
operative injury is associated with subsequent reduced brain 
growth (68), demonstrating a complex interplay between 
brain development and acquired injury and a possible “two-
hit phenomena” (69). 

Associations between peri-operative brain injury 
and early neurodevelopmental outcomes are variable 
(65,66,68,70,71). The current understanding is that altered 
brain maturation may be more closely linked to NDD 
(52,55,72-74). Consistently, significant associations between 
smaller brain volumes and worse cognitive outcomes are 
observed throughout childhood and adulthood in various 
CHD cohorts (8,56,75-79). Alterations in white matter 
microstructure, that may reflect aberrant white matter 
maturation, have also shown significant associations with 
cognitive dysfunction in older children and adults with 
CHD (80-84), with some variation reported in recent 
findings (85). In contrast, associations with structural 
brain injury continue to be broadly inconsistent, despite 
adolescents and adults demonstrating an alarming rate of 
injury in some studies (8,42).

Current research has advanced into the field of 
“connectomics” in an effort to better understand the 
impact of CHD on structural brain connectivity, which 
may provide clearer insight into direct structure-function 
relationships. Emerging studies have demonstrated reduced 
maturation in the whole brain connectome (i.e., neural 
connections or networks) and specific brain networks in 
infants with CHD that is associated with peri-operative 
white matter injury burden (86-88); however, studies 
investigating associations with NDD are limited. Ramirez 
and colleagues have demonstrated that global and regional 
structural connectivity in infants with CHD predicts early 
motor development and language outcomes (89). Similarly, 
Panigraphy and colleagues have found that network 
topology mediates the differences observed in cognitive 
functioning in adolescents with CHD compared to healthy 
controls (90).

While  major  advances  have been made in  our 
understanding of brain development in CHD, much remains 
unknown and longitudinal brain magnetic resonance imaging 
(MRI) studies evaluating the developmental trajectory and 
timing of injury in the CHD brain from gestation onwards 
are needed to fully elucidate the impact of perinatal 
brain abnormalities on NDD and longer-term cognitive 
dysfunction. 

Weighing causes and contributors including 
placental insufficiency

Distinguishing the causes and consequences of acute brain 
injury, such as stroke, from altered neurodevelopment, 
which appears to be pre-programmed, will have important 
implications for the development of targeted NDD 
interventions. This is made difficult given the considerable 
overlap between these two entities, particularly in neonates 
undergoing cardiac surgery, and notably in those on 
the single ventricle pathway (68). The need for cardio-
pulmonary resuscitation (CPR) or extracorporeal membrane 
oxygenation (ECMO) via the heart-lung machine, more 
common in the neonatal cardiac surgery population, may be 
associated with acute brain injury.

Early assumptions that NDD was due to perinatal 
neurological compromise or perioperative brain injury 
are not correct (10,91). The use of deep hypothermic 
circulatory arrest, a common operative strategy in complex 
heart operations during which the body is cooled to 
temperatures ranging from 20–25 ℃ thereby ceasing blood 
circulation and brain function, was also for a long time, 
implicated as a cause or contributor to NDD. However, it 
is likely that deep hypothermic circulatory arrest is just one 
of many contributors with small effect sizes, including the 
generation of cerebral microemboli or blood clots by the 
heart-lung machine and the consequences of the systemic 
inflammatory response that occurs during surgery. These 
may contribute to acute brain injury, and may worsen 
neurodevelopmental trajectory but are not thought of as 
the primary causes of NDD and best estimates indicate that 
peri-operative factors explain only 5–8% of the variability in 
neurodevelopmental outcomes (91-93). Importantly, NDD 
may occur despite an optimal clinical course of cardiac care, 
where no complications are observed. 

Instead, current thinking implicates impaired fetal brain 
development (94), placental dysfunction (95,96) and genetic 
factors (4,97), both fetal and maternal, as predominant 
causes of NDD. Two important ‘environmental’ stressors 
affect human fetuses in the context of CHD. The first is a 
form of placental insufficiency; the placenta may be smaller 
and structurally abnormal leading to relative substrate 
deficiency, slower than normal fetal growth, smaller brain 
volumes, preterm birth, and lower birthweight (96,98) 
The second is the relative hypoxia encountered by the 
fetal brain in circumstances where the normal highly 
oxygenated blood cannot reach the brain because of aortic 
atresia (99,100), a fundamental component in many single 
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ventricle patients. In this context, blood with a lower-than-
normal oxygenation reaches the brain retrograde via the 
ductus arteriosus and possibly at a lower pressure. These 
factors may explain lactate accumulation within the brain 
of CHD fetuses (101), and the relative brain immaturity 
of neonates with CHD (102). Other environmental factors 
including maternal obesity, stress, autoimmune disease are 
also associated with NDD in offspring (103). As well as 
being implicated in the cause of the CHD (4,97), genetic 
variants are likely implicated in the adaptive responses to 
these environmental stresses.

These environmental factors may contribute to the 
abnormal brain development observed throughout 
gestation and we lack an understanding of which factors 
are important at which specific time-points. We also 
do not know the extent to which amelioration of these 
factors—including maternal oxygen therapy (104)—might 
improve developmental trajectories in the child, or whether 
any of these pathways might be amenable to post-natal 
intervention. 

Genetic contributions and unknowns

NDD in syndromic CHD 

That genetics may underpin both heart and brain 
development is evidenced in the many established 
genetic syndromes incorporating both heart defects and 
neurodevelopmental issues as part of the disease spectrum. 
While the exact cause and/or genetic contribution of 
the neurodevelopmental phenotype in most established 
syndromes remains unknown, several candidate genes 
have been identified in some established syndromes. 
In syndromes associated with chromosomal alterations 
and copy number variations, where multiple genes may 
be implicated, significant headway has been made to 
understand which genes contribute towards specific 
phenotypic components, including neurodevelopment. 
For example, in 22q11.2 deletion syndrome, which 
encompasses 32 genes all of which are candidates for CHD 
and NDD, genes contributing towards both heart and brain 
development [TBX1 (100) and HIRA (105) among others] 
or solely towards the neurodevelopmental/neurological 
phenotype (COMT  and PRODH  (106)),  have been 
identified. Similarly, in Williams syndrome, which typically 
involves 25–27 genes, the ELN gene is thought to primarily 
contribute towards the characteristic cardiovascular 
phenotype, supravalvular aortic stenosis, and the GTF2I 

and GTF2IRD1 genes towards the neurodevelopmental 
phenotype (107). 

In syndromes caused by variations in single genes, 
the mechanism by which these genes likely affect two or 
more organ systems such as the heart and brain among 
others, is due to their ability to regulate or interact with 
multiple genes and/or gene pathways. Indeed, chromatin 
modifying genes KMT2D, CHD7 and CDK13 which cause 
Kabuki and CHARGE syndrome (108) and CDK13-related 
disorder (109) respectively, modulate gene expression by 
altering access to the DNA and thereby disrupting multiple 
developmental processes, including in the heart and brain. 
Similarly, transcriptional regulators, including FOXP1 (110), 
ZEB2 (111) among others, have been implicated in both 
CHD and NDD.

While NDD is the most common co-morbidity 
associated with CHD, other extra-cardiac anomalies, such 
as those affecting the urogenital system (112), are often 
seen in conjunction with CHD and/or NDD, suggesting 
that genetic risk may extend beyond heart and brain 
development to other organ systems. 

NDD in non-syndromic CHD 

With the exact cause and/or genetic contribution of the 
neurodevelopmental phenotype in many established 
syndromes unknown, it is not surprising that understanding 
the genetic contribution of NDD in non-syndromic CHD 
poses a significant challenge, not helped by the fact that 
these represent most presenting cases. Over the last decade; 
however, advances in genomic technologies combined 
with large cohorts and sophisticated statistical analyses, 
have provided important clues to the genetic architecture 
underlying this patient group. Specifically, these studies 
identified a 2-fold enrichment in damaging de novo variants 
in genes highly expressed in the heart in patients with 
CHD and NDD and a 4.7-fold enrichment in patients with 
CHD, NDD and other congenital anomalies, suggestive of 
an additive effect in heart-expressing genes with increasing 
non-cardiac phenotypic complexity (97). Further, 69 genes 
harbouring damaging de novo variants, were shared between 
CHD patients and cohorts comprising patients with 
isolated NDD, providing additional support for shared 
genetic aetiologies to heart and brain development. Not 
surprisingly many of these genes are chromatin modifying 
genes and transcriptional regulators, likely exerting wide-
reaching phenotypic effects. Importantly, CHD patients 
with damaging de novo variants in these 69 genes, were 
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at significantly increased risk of NDD, providing a basis 
for future downstream applications of precision medicine 
approaches. 

More recently, a significant overlap of genetic burden 
has been identified in patients with CHD and patients 
with autism (113). Enrichments in de novo variants in 
genes involved in the connectome, have also recently been 
implicated in patients with CHD (114). 

While these studies have provided important insight 
into disease mechanisms of NDD in CHD, specifically in 
terms of shared genetic aetiologies, the findings are not 
readily applicable to the individual patient. Studies assessing 
the clinical relevance of this information have identified 
important genetic burden associated with ‘neurotransmitters’, 
‘axon guidance’ and ‘RASopathy’ pathways in patients with 
CHD and NDD; however, no clinically actionable cause for 
the NDD could be identified (115). 

The contribution of common variants in both heart 
and brain development is becoming increasingly relevant 
(116,117) and will likely inform the development of polygenic 
risk scores used to identify those CHD patients most at risk 
of NDD. 

So, while significant headway has been made to unravel 
the genetic component of NDD in CHD, specifically 
the contribution of rare and damaging de novo genetic 
variant burden, which is often in chromatin modifying and 
connectome genes; additional factors such as common genetic 
variants, morphology, epigenetics and the environment, are 
increasingly highlighted as important contributors in the 
final phenotypic presentation.

 

Inherited and epigenetic associations in other 
forms of NDD

Increasing evidence suggests that inflammation, cellular stress, 
and epigenetic factors at the gene-environment interface 
play a key role in the pathogenesis of NDDs (118-120).  
Neurodevelopment begins in-utero and continues to 21 years 
of age, through a constant process of synaptic pruning and 
re-wiring (121). Gestation is a particularly sensitive time, as 
key brain networks are being established in the developing 
fetus (122). The maternal immune activation hypothesis 
posits that fetal exposure to inflammation and dysregulated 
immune milieu adversely affects neurodevelopment 
(122,123). Many environmental factors, such as poor diet, 
low exercise, sleep, infection, stress, and pollutants can cause 
maternal immune activation and have all been associated 
with increased risk of NDDs in offspring (103,124). 

Environmental risk factors experienced by the mother 
during pregnancy are hypothesized to be ‘biologically 
embedded’ in the cellular and epigenetic architecture of the 
offspring (125). These inherited vulnerabilities can then 
be modulated by post-natal risk factors, such as neonatal 
infections, childhood trauma, or other early life stress (126).

Environmental insults can influence the transcription 
of susceptibility genes via key inflammatory and cellular 
stress signalling pathways, including the Toll-like receptor 
pathway (103), and the integrated stress response (127). 
These signalling cascades may then modulate the expression 
of NDDs through finely tuned epigenetic, gene regulation, 
and post-transcriptional processes (128-130). Epigenetic 
modifications are chemical or physical changes to chromatin 
which can either increase or repress gene transcription (130). 
The four main epigenetic modifying factors are DNA 
methylation, histone modifications, chromatin modelling, 
and microRNA. Controlled, yet dynamic, epigenetic 
patterns are crucial for brain development and are highly 
sensitive to environmental changes (130). 

Preclinical evidence indicates that maternal inflammation 
during pregnancy can induce long-lasting changes in 
DNA methylation, histone modifications, and microRNA 
expression in the offspring brain (131-133). Importantly, 
animal models have shown that prenatal environmental 
insults can lead to epigenetic alterations and associated 
behavioural abnormalities in second—and third-generation 
offspring, suggesting transferability of epigenetic 
programming (134,135). Human studies have linked 
inflammatory risk factors affecting pregnancy, including 
depression, anxiety, and smoking, to epigenetic changes 
in the placenta, offspring umbilical cord blood, peripheral 
blood, and buccal cells (128,136). Furthermore, maternal 
obesity, gestational diabetes, depression, and asthma, 
have been associated with epigenetic changes in immune, 
metabolic, and oxidative stress pathways in offspring 
umbilical cord blood (137-140). These findings highlight 
the transgenerational effects and widespread, long-term 
consequences of disturbances in prenatal programming.

At the post-transcriptional stage, maternal immune 
activation has been shown to disrupt mRNA translation, 
ribosome biogenesis, and protein synthesis in rodent 
brains (127,141,142). These processes are tightly regulated 
and fundamental to brain development and neural 
function. Activation of the integrated stress response 
has been implicated as one mechanism through which 
these disturbances occur (127); however, this field is very 
much in its infancy. Therefore, by increasing attention 
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to environmental effects and their epigenetic or cellular 
consequences, there may be significant opportunities for 
prevention (e.g., public health measures in pregnancy) or 
individualised treatments for people with neurodevelopmental 
disorders.

Parental psychological stress, anxiety, and 
depression 

Many complex CHD diagnoses, such as those with single 
ventricles or transposition of the great arteries, now occur 
prenatally and coincide with the critical in utero period 
of neurodevelopment. Severe maternal stress and anxiety 
surrounding fetal CHD diagnosis is well-established 
(143-146). Until recently, however, we have had little 
understanding of the consequences of these maternal 
symptoms for brain development in CHD. 

Threats to the health of the fetus have long been 
recognized as an important risk factor for maternal 
psychological disturbance in the perinatal period (147). 
Parents’ experiences of CHD diagnosis are often associated 
with enduring psychological distress (2,148,149). Up to 
80% of parents report severe psychological distress at some 
point in their child’s medical trajectory and as many as 50% 
report anxiety or depressive symptoms indicative of a need 
for clinical intervention (2,143). These rates far exceed 
norms for perinatal anxiety and depression in the general 
population (149); yet the severity and consequences of these 
symptoms are often under-recognized and under-treated 
by healthcare professionals. Without timely intervention, 
parents with higher distress also report poorer physical 
health (150), greater parenting burden (151), higher health 
service use (152), more suicidal ideation (153), and poorer 
quality of life for both themselves and their child with CHD 
(154,155) compared with parents of sick children with lower 
distress. 

Decades of research demonstrate an association between 
parent mental health and child neurodevelopment (156-158).  
Studies of children with CHD and their caregivers suggest 
that parent psychological distress is one of the strongest 
predictors of child emotional, behavioural, and developmental 
outcomes (154,159-161). For example, parent post-traumatic 
stress, referring to specific psychological and physiological 
symptoms (e.g., flashbacks, avoidance, hyperarousal) 
following exposure to a traumatic event (e.g., witnessing 
their child go into cardiac arrest), is associated with lower 
psychosocial functioning (160) and quality of life (155) for 
children and adolescents with CHD. While the mechanisms 

underlying these associations are not fully understood, 
family environment and parent-child interactions likely 
play an important role (148,162). There is also evidence 
that high and persistent maternal psychological stress and 
anxiety during pregnancy can alter fetal brain development 
in both healthy fetuses and fetuses with CHD (147). 

Animal studies have shown that stress-elicited perturbations 
in maternal prenatal biology (e.g., hypothalamic-pituitary-
adrenal axis function) affect offspring development, including 
stress reactivity (163). Studies of psychological stress in 
pregnant women largely mirror these findings, showing links 
to long-term cognitive, behavioral, and emotional dysfunction 
in children across development (164-168). High maternal 
stress during the middle-second and third trimesters - a time 
when the fetal brain is highly susceptible to modification 
by environmental factors and when CHD diagnosis is 
also most common—may be associated with the greatest 
neurodevelopmental impact (169). These effects persist after 
controlling for family socioeconomic status and maternal 
postnatal mental health, indicating a window of opportunity 
during fetal development when we may be able to intervene 
to prevent or minimize adverse child neurodevelopmental 
outcomes (170). 

Maternal prenatal stress is linked to altered fetal brain 
development 

Maternal prenatal stress, anxiety or depression has 
been linked with cortical thinning (171), altered brain 
microstructure (172,173), altered amygdala (174) and 
hippocampal (175) growth, and alterations in functional 
neural networks (i.e., the connectome) (176-178) in 
offspring with (179) and without CHD. Altered placental 
function (180,181), including decreased perfusion (182) 
and placental expression of neurotropic precursors, such as 
11-beta-hydroxysteroid dehydrogenase type 2 (11β-HSD2), 
are potential mechanisms (183). Decreased 11β-HSD2 
expression may increase fetal cortisol exposure (184,185), 
affecting gene expression in fetal brain cells (186), such that 
small changes to early developmental trajectories may have 
life-altering consequences for neurodevelopment (55) and 
mental health outcomes (174,181,187-189). These findings 
underscore the importance of targeted therapies aimed at 
reducing prenatal stress to optimize both maternal and fetal 
wellbeing. 

If maternal distress elicited by prenatal cardiac diagnosis 
negatively impacts fetal brain development, we are obliged 
to understand these ‘off-target’ effects and initiate prenatal 
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neuroprotective therapies to improve long-term outcomes. 
Expectant mothers are especially motivated for self-care (190), 
and studies in other populations show prenatal interventions, 
including interpersonal psychotherapy (191-193), effectively 
prevent or reduce maternal anxiety and depression 
(191,192,194-197). In CHD, one postnatally-delivered 
psychological intervention targeting mothers demonstrated 
efficacy in improving infant mental development at age 
6 months (198), but this benefit was not sustained (159). 
Neurocognitive interventions delivered later in life, for 
children or adolescents with CHD, have had only limited 
success (199-201). 

‘Brain in a dish’ and insights from related and unrelated 
neurological disease

The ability to deconstruct the biological and molecular 
complexities of human neurodevelopmental disease and 
translate findings into the clinic is only made possible 
through the multidisciplinary approach between basic 
science researchers and clinicians. While animal models 
have been instrumental in advancing our understanding of 
the molecular mechanisms of several genetic or extrinsic 
factors, extrapolating these findings to human disease are 
largely ineffective (202-204). This underscores a critical 
need for models that can leverage the disparities between 
the human and non-human brain with specific regard to 
early developmental processes that can broadly impact 
NDD. Human pluripotent stem cells (hPSCs), including 
both embryonic- and patient-derived induced pluripotent 
stem cells, have been a widely utilized model to satisfy the 
necessity for analysing human cells and methods to direct 
hPSCs towards specific cell fates in-vitro has demonstrated 
to be an excellent tool for studying human development 
programs and disease etiology (205-209).

Several strategies for differentiation of hPSCs into 
specific neuronal subtypes include transcriptional 
programming, small molecule and growth factor directed 
differentiation in both monolayer, and three-dimensional 
mini-brain organoids. While all methods will generate the 
neuronal cell types of interest, factors related to the speed 
and efficiency of cell generation, developmental accuracy, 
and reproducibility need to be considered for downstream 
applications. Advantages of transcriptional programming 
include the rapid differentiation (~5–10 days) from hPSCs 
resulting in a near homogenous population of cells that 
represent the final product for analysis such as excitatory 
neurons and astrocytes (209). However, questions regarding 

how development of the neuron or astrocyte differentiate are 
limited as well as the study of specific subtypes of neurons 
or astrocytes may be limited due to a largely generic cell 
identity. The directed differentiation of hPSCs recapitulates 
aspects of brain development such as corticogenesis and 
spinal cord development which can illuminate the process 
of differentiation which provides an additional layer of 
analysis for neurodevelopmental disorders. Recently, 
hPSCs have been differentiated as three-dimensional neural 
spheroids or cerebral organoids to highlight the remarkable 
self-organizing properties of cortical development (210,211). 
Importantly, cerebral organoids are similar to traditional 
monolayer differentiation where one can analyze cortical 
differentiation; however, they can also recreate the cortical 
architecture of the human brain, providing additional 
insight into human development, albeit with increased 
cellular heterogeneity and variability (205). 

Bra in  mode l s  der ived  f rom hPSCs  have  been 
extensively used for various disease modelling, including 
neurodevelopmental disorders including autism and 
schizophrenia (212) assessing early stages of neurogenesis 
(213-216). In the CHD field, this approach has been used 
to define molecular mechanisms of functional alterations 
evident in two-dimensional (2D) cultures and organoids 
derived from patients with 22q11.2 deletion syndrome (217).  
This deletion is associated with cardiac outflow tract 
malformations. Transcriptional profiling over 100 days 
demonstrated predictable differentiation and alterations 
in neuronal excitability genes, emulating cortical brain 
regions. These changes were evident in both 2D and 
organoid cultures and correction of haploinsufficient 
gene dosage was able to correct the disease phenotype. 
It is reassuring that a disease phenotype was evident and 
correctable in patient iPSC cells, highlighting the value 
of this approach in assessing mechanisms of disease. The 
impact of a chromosomal deletion may exceed the impact 
of one or several single nucleotide variants expected in 
NDD, and the cellular phenotype may also be more subtle. 
Nevertheless, expression profiling, functional testing and 
correlation of cell phenotype with patient phenotype is 
likely to discriminate and allow prioritization of individual 
genes and gene pathways that can be related back to the 
genomic sequence of the patients involved to corroborate 
individual variants and burden testing in gene set pathways.

Using a hPSC model to study NDD is advantageous as 
it accounts for the complexity of human brain development 
and eliminates confounding differences between human and 
rodent brain development (218). As a model to study NDD, 
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the use of organoids permits the characterization of fetal 
brain development in-vitro using patient derived hPSC in an 
environment that is similar to what would be encountered 
in-vivo. With advancement of existing technologies, 
patient derived hPSC can be corrected using CRISPR-
Cas9 system, allowing for reversion of disease-causing gene  
mutations (219). However, manipulating the progenitor 
populations may prove to be a more effective strategy to 
obtain clinical relevance. As autologous transplantation 
becomes more widely studied, novel therapies based on 
replacement of genetically corrected cell populations may 
be utilized to treat genetic brain disease (220).

Conclusions

Clinical applications and future directions

While research into improving current diagnostic, prognostic 
and treatment options for NDD in CHD is on-going, there 
are a number of practical ways in which neurodevelopmental 
outcomes can be maximised for the CHD patient (69).

The importance of prenatal diagnosis of CHD in 
reducing the risk of NDD through optimisation of 
perinatal care has been demonstrated (221) and presents 
an important modifiable factor in improving long-term 
neurodevelopmental outcomes for CHD patients (222). 
Individualised inpatient developmental care implemented 
in the intensive care unit have been associated with better 
neurodevelopmental outcomes, family functioning, 
and greater school attendance (223). The inclusion of 
parent-focused psychoeducation in such programs have 
demonstrated a positive impact on psychological, emotional 
and social development in the child with CHD (223) and 
extends to improved maternal psychological functioning 
and coping (198). 

Similarly, genetic testing may identify patients at high 
risk of NDD, and enable early interventions aimed at 
optimising NDD outcomes for patients—which may be 
particularly important in centres where neurodevelopmental 
follow-up for infants with CHD is not part of standardised 
care. The distinction between syndromic and non-syndromic 
forms of CHD can be subtle and may be viewed as a 
continuum or spectrum of disease. The importance of a 
genetic assessment to identify subtle extracardiac features and 
possible genetic contributors to guide clinical management 
should be considered by physicians involved in the care of 
CHD patients. The European Society of Cardiology and 
American Heart Associations have released recommendations 

for genetic testing in patients with CHD (224,225). Notably, 
they recommend that patients with CHD and extracardiac 
anomalies, including significant neurodevelopmental 
abnormalities, should have chromosomal microarray 
testing, followed by trio exome or genome sequencing due 
to the reported high diagnostic yield of 25–40% in this 
patient group (226,227). 

Further, they recommend that a prenatal diagnosis 
of CHD, should be accompanied by fetal chromosomal 
microarray testing and trio fetal exome and genome 
sequencing should be considered in any patients with 
complex CHD and/or extracardiac anomalies (224,225) 
Early diagnosis of a genetic syndrome provides important 
information in terms of managing associated NDD which is 
present in up to 75% of children with a diagnosed genetic 
syndrome (228). 

It is important to note; however, that the absence 
of a genetic diagnosis or an uninformative genetic test 
result does not minimise the risk of NDD or preclude its 
development; and regular neurodevelopmental follow-up 
throughout childhood should be part of best care practice 
for all patients with CHD (7) Not all children will develop 
NDD; however, without regular neurodevelopmental 
assessments, those with issues, particularly those with minor 
issues, will be overlooked and opportunities for intervention 
and/or additional support, missed (229). 

Similarly, there is growing support for increased 
monitoring for brain injury pre- and post-cardiac surgery 
that may serve as a prognostic indicator for new or worsening 
NDD (68). A high proportion of peri-operative brain injury is 
‘silent’, evidenced by the disparity between the rate of brain 
injury identified in clinical practice (230), whereby brain 
imaging typically occurs in response to a clinical event, 
compared to studies that have included neuroimaging in an 
entire cohort of CHD patients (53,65-68). Routine pre- and 
post-operative neuroimaging may be warranted in infants 
with severe CHD (231). However, is generally limited by 
available resources and typically includes head ultrasound—
that may miss up to 80% of lesions detected by MRI, 
particularly white matter injury (232). Better understanding 
of the sensitive interplay between brain injury and NDD 
trajectories in CHD, may inform future clinical practice in 
this regard. 

Additional factors, including peri-operative course and 
socio-economic status may be stronger predictors of long-
term NDD compared to conventional brain MRI (233) and 
these data should also be considered when determining a 
patient’s risk profile. 
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Longer-term neurodevelopmental and cognitive 
follow-up extending beyond the early childhood years 
are recommended (7); however poor accessibility to 
neuropsychological services for older children and adults with 
CHD remains an important issue. Interventions to minimise 
new and accumulating risk factors occurring throughout 
the CHD life course are required to mitigate the persisting 
impact of NDD beyond the early childhood years.

In summary, current understanding and treatment 
options for NDD in CHD are still in their infancy and 
the coming years will likely see significant advances in the 
field. Clinical trials, prospective clinical studies using novel 
and sophisticated imaging technologies, as well as large 
genomic analyses and functional experiments will provide 
important insight into disease mechanisms, development, 
and progression as well as possible interventions and 
treatment. Indeed, examples of how genetic information can 
inform personalised therapies already exist in syndromes 
with neurodevelopmental phenotypes such as Kabuki  
syndrome (234). Simple dietary modifications, inducing 
epigenetic changes, have been shown to significantly 
improve cognitive function through more effective neuronal 
development in these patients (235).

Further, networks such as the Cardiac Neurodevelopmental 
Outcome Collaborative (cardiacneuro.org) are enabling large 
multinational, multicentre collaborations to inform future 
research efforts and provide important longitudinal data. 

Clinically, the rapidly evolving field of fetal cardiac 
interventions, may be an important avenue to optimise 
neurodevelopmental outcomes, especially in fetuses with 
single ventricle pathologies (236). 

Finally, polygenic risk scores, may in time provide 
important information to determine which CHD patients 
are at increased risk of developing NDD. Using prenatal 
genetic testing to determine individual polygenic risk 
scores, would enable early and on-going interventions to 
maximise neurodevelopmental outcomes in at risk patients. 
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