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Machine learning approach to screen new diagnostic features of 
adamantinomatous craniopharyngioma and explore personalised 
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Background: Adamantinoma craniopharyngioma (ACP) is a non-malignant tumour of unknown 
pathogenesis that frequently occurs in children and has malignant potential. The main treatment options are 
currently surgical resection and radiotherapy. These treatments can lead to serious complications that greatly 
affect the overall survival and quality of life of patients. It is therefore important to use bioinformatics to 
explore the mechanisms of ACP development and progression and to identify new molecules.
Methods: Sequencing data of ACP was downloaded from the comprehensive gene expression database 
for differentially expressed gene identification and visualized by Gene Ontology, Kyoto Gene, and gene 
set enrichment analyses (GSEAs). Weighted correlation network analysis was used to identify the genes 
most strongly associated with ACP. GSE94349 was used as the training set and five diagnostic markers 
were screened using machine learning algorithms to assess diagnostic accuracy using receiver operating 
characteristic (ROC) curves, while GSE68015 was used as the validation set for verification.
Results: Type I cytoskeletal 15 (KRT15), Follicular dendritic cell secreted peptide (FDCSP), Rho-related 
GTP-binding protein RhoC (RHOC), Modulates negatively TGFB1 signaling in keratinocytes (CD109), 
and type II cytoskeletal 6A (KRT6A) (area under their receiver operating characteristic curves is 1 for both 
the training and validation sets), Nomograms constructed using these five markers can predict progression 
of ACP patients. Whereas ACP tissues with activated T-cell surface glycoprotein CD4, Gamma delta T 
cells, eosinophils and regulatory T cells were expressed at higher levels than in normal tissues, which may 
contribute to the pathogenesis of ACP. According to the analysis of the CellMiner database (Tumor cell and 
drug related database tools), high CD109 levels showed significant drug sensitivity to Dexrazoxane, which 
has the potential to be a therapeutic agent for ACP.
Conclusions: Our findings extend understandings of the molecular immune mechanisms of ACP and 
suggest possible biomarkers for the targeted and precise treatment of ACP.
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Introduction

Craniopharyngioma (CP) is a low-grade aggressive 
intracranial tumor (1). There are 2 histological subtypes of 
CP (i.e., adamantine tumor and papilloma), both of which 
occur as embryonal brain tumors in the saddle and para-
saddle regions, are usually benign central nervous system 
tumors, and account for 2–3% of intracranial tumors (2). 
adamantinoma craniopharyngioma (ACP) can develop at 
any age and shows a bimodal distribution in age. In terms 
of the histopathology, the adamantine type often presents 
in children aged 5–14 years, and the papillary subtype 
predominantly presents in middle-aged and elderly people 
aged 50–74 years (2).

The ACP may progress from the pterygoid saddle 
upwards to the third ventricle, affecting the hypothalamic-
pituitary and visual nerve pathway area. Patients may also 
develop symptoms due to the mass effect and infiltration 
of the surrounding tissues. Due to the close proximity of 
important neurovascular structures, such as the pituitary, 
hypothalamus, optic nerve, and internal carotid artery, 

endocrine disorders and abnormalities in hypothalamic 
function and visual disturbances are often observed before 
and after ACP, resulting in reduced survival and a poor 
quality of life for ACP patients (1,3-5).

The current tools of choice for the diagnosis of ACP 
are computed tomography (CT) and magnetic resonance 
imaging (MRI). MRI shows the relationship between 
the tumor and the surrounding neurovascular anatomy. 
On the MRI of the ACP, the lesion is heterogeneously 
enhanced, with both solid and cystic portions. Both the 
solid portion and the cystic wall undergo inhomogeneous  
enhancement (1).

The majority of patients choose hospital treatments 
for non-specific manifestations of increased intracranial 
pressure (e.g., nausea and headache), visual impairment 
(loss of vision and the visual field) (62–84%), and endocrine 
defects (52–87%) (6). Additionally, many patients 
experience growth disturbances and significant weight gain 
before diagnosis (3). Thus, this disease can be physically and 
psychologically devastating for patients.

In terms of the typical imaging features of ACP, about 
90% of tumors are predominantly cystic; 90% of tumors 
have more or less visible calcifications; and about 90% of 
tumors are contrast visible in the cyst wall (2). On MRI, the 
solid portion and the cyst wall may show various T1 signals. 
On T2-weighted images, tumors usually show both hypo- 
and hyper-enhancing manifestations (7,8). Calcification in 
tumors is usually not possible with MRI. The ideal sequence 
for identifying calcification is a T2- or susceptibility-
weighted sequence, but both sequences are affected by 
the amount of air in the sinus. Thus, CT presentation of 
peritumoral calcification is currently the gold standard 
for the diagnosis of craniopharyngioma, and there is no 
diagnostic modality that is specific for CPs, which is an area 
that requires further research. Bioinformatics analysis may 
enable the screening of a biomarker to specifically diagnose 
ACP and predict the progression of the disease in patients.

To date, the main treatment option for ACP has 
been surgery. The clinical aim is to remove the tumor 
as completely as possible without leaving sequelae, such 
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Highlight box

Key findings 
•	 CP is prone to local recurrence, and the disease is prone to lead 

to neuroendocrine disorders. At present, the treatment of CP is 
currently based on surgical excision, and the diagnosis of CP relies 
on imaging. We sought to find new diagnostic and therapeutic 
methods for CP.  

What is known and what is new?  
•	 The CP main treatment methods are surgical resection and 

radiotherapy.
•	 Models constructed for KRT15, FDCSP, RHOC, CD109, and 

KRT6A could serve as new diagnostic tools for CP.

What is the implication, and what should change now? 
•	 RHOC high expression showed significant drug sensitivity to 

LDK-378 (Ceritinib), oxaliplatin, Palbociclib, and CUDC-305 
(Hsp90 Inhibitor Debio 0932). This provides new ideas for the 
direction we should take in targeting pc drug therapy.
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as neuroendocrine disorders. However, as the tumor is 
located in the suprasellar or parasellar regions, it is highly 
susceptible to postoperative complications (due to damage 
to the hypothalamic-pituitary and optic nerve pathways). 
These complications reduce the quality of life of patients 
after surgery and increase the morbidity and mortality 
of patients suffering from cardiovascular disease (9). 
Consequently, the clinical treatment options often include 
maximal and safe surgical resection and thus also increase 
the risk of long-term recurrence and morbidity, and patients 
often have to undergo follow-up combination therapy, such 
as radiation and chemotherapy after surgery. However, 
these treatments often result in patients being accompanied 
by a variety of complications (10).

Proton-beam therapy has recently been found to be useful 
in the treatment of ACP, but due to its high costs and the fact 
that the clinical dose is unclear due to tissue heterogeneity, 
it requires further study (11,12). Chemotherapy is now 
extensively used as an active treatment for a large variety of 
cancers. Chemotherapy can be used preoperatively to make 
tumor tissue smaller and facilitate surgical removal, or it can 
be used to treat recurrent tumors to destroy residual tumor 
cells. However, chemotherapy is not the most efficacious 
treatment modality for ACP, and many studies have shown 
that better results can be achieved by direct intracranial 
injection of the chemotherapeutic agents bleomycin and 
interferon-α (13,14).

Immunotherapy is known to have a huge effect in the 
treatment of many tumors, and the role of immunotherapy 
in the development of primary and secondary ACP 
has been closely examined. Many potential targets for 
immunotherapy of ACP are being investigated, but no 
suitable targeted therapeutic agent has yet found its way 
into clinical trials for the treatment of adult ACP (15). 
Thus, a marketed immunotherapeutic target for ACP needs 
to be identified to provide a novel and feasible option for 
the postoperative treatment of ACP.

In this study, the GSE94349 data set was downloaded for 
ACP-EDGS (differentially expressed genes). A weighted 
correlation network analysis (WGCNA) least absolute 
shrinkage and selection operator (LASSO) models, and 
4 machine-learning algorithms were used to screen the 
core diagnostic markers. The final marker genes were 
then validated using the GSE68015 data set. Next, the 
correlations between the immune infiltrating cells and 
biomarkers were analyzed. The CellMiner database (Tumor 
cell and drug related database tools) was then used to predict 
the drug sensitivity of the identified diagnostic biomarkers.

Our systematic analysis identified ACP diagnostic genes 
and their molecular immune mechanisms and therapeutic 
agents. This study also explored these diagnostic marker 
targets and their corresponding potentially therapeutic 
small molecule drugs. Our findings may provide novel 
ideas for the subsequent immunotherapeutic targeting 
of drugs for ACP. This article is presented in accordance 
with the TRIPOD reporting checklist (available at https://
tp.amegroups.com/article/view/10.21037/tp-23-152/rc).

Methods

Data download

The ACP expression profile GSE68015 data set (comprising 
15 ACP sample tissues and 16 control brain sample 
tissues) and the GSE94349 data set (comprising 9 ACP 
sample tissues and 17 control brain sample tissues) were 
downloaded from the Gene Expression Omnibus (GEO) 
database (https://www.ncbi.nlm.nih.gov/geo/) using 
“craniopharyngioma” as the keyword and selecting “Homo 
sapiens” as the species. The platform data were downloaded 
from GPL 570 (HG-U133_Plus_2) Affymetrix Human 
Genome U133+2.0 Array. The raw data from the dataset 
was extracted and gene names were transformed using Perl 
software. The study was conducted in accordance with the 
Declaration of Helsinki (as revised in 2013).

Identification of ACP-EDG

The data from the GSE94349 data set were used in the 
Limma (16) package to screen the 9 ACP sample tissues and 
17 control brain sample tissues for differentially expressed 
genes (DEGs) in ACP. The following screening criteria 
were set: |log fold change (FC)| ≥1, adjusted P value 
<0.05. The results were also presented in volcano plots and 
heatmaps using the ggplot2 package.

Functional and pathway enrichment analyses

The Gene Ontology (GO) and Kyoto Gene and Genome 
Encyclopedia (KEGG) enrichment analyses  were 
performed on the ACP-EDG data using R packages, such 
as clusterProfiler, org.Hs.eg.db, and enrichplot (17-19). 
The GO analyses included the annotation of the molecular 
functions (MFs), biological processes (BPs), and cellular 
components (CCs). A false discovery rate <1 and q value 
<0.05 indicated significant enrichment. The enrichment 

https://tp.amegroups.com/article/view/10.21037/tp-23-152/rc
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results were visualized using the ggplot2 package.

PPI network construction and identification of central 
genes

The interaction information for the proteins with a 
minimum required interaction score of >0.9 was obtained 
by importing the ACPs-EDG data into the search tool of 
the STRING database (20) (https://string-db.org/). The 
CytoNCA plug-in in the Cytoscape software (21) was 
used to visualize the network and identify the key active 
ingredients and key candidate targets.

Weighted co-expression network construction

The co-expression networks for the ACP disease module 
were constructed using the “WGCNA” package in R (22). 
Genes were aligned using Pearson correlation matrices. 
Outliers were detected by clustering the samples, and 
dissimilarity was calculated for the module signature genes, 
and the modules were then merged. The module-trait 
relationships between the modular trait genes and clinical 
traits were also analyzed, and the most important trait 
modules and DEGs were intersected to find the common 
trait genes for the clinical traits and DEGs.

Model building and validation of machine-learning 
methods

The common feature genes of the identified clinical 
traits and DEGs were validated using R software, and the 
most relevant genes were found by a LASSO regression 
crossover. Algorithms, such as the extreme gradient 
boosting (XGBoost) model, random-forest (RF) tree 
model, generalized linear model (GLM), and the support 
vector machine (SVM) model, were then use to construct 
the model, and the reverse cumulative distribution of 
the residuals and pROC package were used to plot the 4 
method receiver operating characteristic (ROC) curve area 
under the curve (AUC). The values of the above results 
were combined to determine the best machine learning 
feature model, and rms packages were used to plot the 
column line plots for the best prediction models (23). Finally, 
the ROC curves were used in the GSE68015 data set to verify 
the diagnostic power of the model (the area under the ROC 
curve is greater than 0.5 and the diagnostic test has some 
diagnostic value. Also, the closer the area under the ROC 

curve is to 1, the better the authenticity of the diagnostic test.).

Immune cell infiltration analysis

We used the single-sample gene set enrichment analysis 
(GSEA) calculated by the GSVA package and the inverse 
convolution algorithm provided by the TIMER (http://
timer.cistrome.org/) database for the analysis (24). The 
immune infiltration of ACP and the correlation between the 
model genes and immune cells were calculated separately. 
The “ggplot2” package was used to draw small maps of the 
distribution of immune cells and their differences.

GSEA

The c2.all.v7.0.symbols.gmt from MSigDB Collections 
was selected as the reference gene set, and a GSEA was 
performed using the clusterProfiler package to determine 
the significant functional and pathway differences between 
the high and low expression groups to explore the effect 
of ACP and its diagnostic genes on disease development 
mechanisms, and Limma package was used to visualize the 
results (19).

Drug sensitivity analysis of diagnostic markers

The CellMiner database (https://discover.nci.nih.gov/
cellminer/home.do) was used to find the relevant drugs for 
the model genes (25). Using Limma package, the Pearson 
correlation coefficients between each gene expression and 
different drugs were calculated separately, and the results 
were visualized using ggplot2.

Statistical analyses

The data were analyzed using the same methodology as 
that described previously, one-way ANOVA was performed 
to compare the differences among multiple groups  
(≥2 groups). The Student’s t-test was used to compare the 
differences between the two groups. Statistical significance 
was set at P<0.05 (*, P<0.05; **, P<0.01; ***, P<0.001) (23).

Results

Study protocol

Figure 1 shows the general research process. First, the 
DEGs was screened using the GSE94349 data set, and the 

http://timer.cistrome.org/
http://timer.cistrome.org/
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https://discover.nci.nih.gov/cellminer/home.do


Translational Pediatrics, Vol 12, No 5 May 2023 951

© Translational Pediatrics. All rights reserved.   Transl Pediatr 2023;12(5):947-966 | https://dx.doi.org/10.21037/tp-23-152

GEO database

Machine learning model ROC curve

Model-DEGs immunocorrelation analysis diagnostic genesDrug sensitivity analysis Nomogram

GSE94349 GSE68015

Identification DEGs

GSEA enrichment analysis in ACP

GSEA enrichment analysis in model DEGs APC-immunocorrelation analysis diagnostic genes

DEGs volcano plot in ACP WGCNA selection

Figure 1 Flow chart of the systematic analysis of the diagnostic genes and pharmacological treatment of ACP. GEO, Gene Expression 
Omnibus; DEGs, differentially expressed genes; GSEA, gene set enrichment analyse; ACP, adamantinomatous craniopharyngioma; 
WGANA, weighted correlation network; APC, adamantinomatous craniopharyngioma; ROC, receiver operating characteristic; SVM, 
support vector machine; GLM, generalized linear model; RF, random forest; XGB, extreme gradient boosting; ns, no statistical difference. 



Wu et al. Diagnosis and treatment of craniopharyngioma952

© Translational Pediatrics. All rights reserved.   Transl Pediatr 2023;12(5):947-966 | https://dx.doi.org/10.21037/tp-23-152

DEGs causing the disease and the possible mechanisms 
were explored by GO and KEGG analyses. A WGCNA was 
then conducted to identify the genes most closely correlated 
with the clinical traits of ACP, and four machine learning 
methods were used to screen model genes using lasso 
regression analysis and validate the diagnostic model using 
GSE68015. Finally, correlations between the individual 
model genes and immune cells were explored and the 
CellMiner database was used to predict the drug sensitivity 
of the final model markers and to screen for possible drugs 
to treat APC.

Identification of ACP-EDG

The 9 ACP samples in the GSE94349 data set were 
compared to the 17 control normal brain tissue samples, 
and 4,899 genes (of which 2,563 were upregulated and 
2,336 were downregulated) were found to be significantly 
differentially expressed in ACP. Among which, KRT14 (type 
I cytoskeletal 14), FDCSP (follicular dendritic cell secreted 
peptide), and ODAM (odontogenic ameloblast-associated 
protein) were the top 3 most upregulated genes based on 
the ploidy changes, and SLC12A5 (solute carrier family 12 
member 5), INA (class-IV neuronal intermediate filament 
that is able to self-assemble), and STMN2 (stathmin-2) 
were the top 3 most downregulated genes. The results 
are shown in a heat map (Figure 2A) and volcano map  
(Figure 2B).

GO KEGG enrichment analyses of ACP-EDG

GO and  KEGG enr ichment  ana ly ses  were  then 
performed on the 1,045 common DEGs using R software  
(Figure 3). The GO analysis revealed that the biological 
process mainly included epidermis development, epidermal 
cell differentiation, cell junction assembly and keratinocyte 
differentiation, the cellular component mainly included 
desmosome, collagen-containing extracellular matrix, cell-
cell junction, cornified envelope, basement membrane, and 
cell-substrate junction, and the molecular function mainly 
included cell-cell adhesion mediator activity, extracellular 
matrix structural constituent, cell adhesion mediator 
activity, cadherin binding and protein binding involved in 
heterotypic cell-cell adhesion, cadherin binding involved in 
cell-cell adhesion, and phospholipase inhibitor activity.

In addition, these 1,045 genes were present in a variety 
of signaling pathways, such as the PI3K-Akt signaling 
pathway, p53 signaling pathway, Hippo signaling pathway, 
Rap1 signaling pathway, TGF-beta signaling pathway, 
estrogen signaling pathway, Wnt signaling pathway and 
proteoglycans in cancer. These signaling pathways are all 
associated with tumor development.

We also conducted a pathway enrichment analysis of 
the ACP and normal brain tissues (Figure 4). We found 
that the following signaling pathways were active in 
the normal tissues: cardiac muscle contraction, calcium 
signaling pathway, long-term potentiation, Parkinson’s 
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Figure 2 DEGs in ACP. (A) Heat maps of the DEGs in ACP; (B) the DEGs volcano plot in ACP. DEGs, differentially expressed genes; 
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Figure 3 Enrichment analysis of clinically relevant DEGs. (A) GO analysis of DEGs; (B) KEGG pathway analysis of DEGs. GO, gene 
ontology; BP, biological process; CC, cellular component; MF, molecular function; PI3K, phosphatidylinositol 3-kinase; ECM, extracellular 
matrix; TGF, transforming growth factor; KEGG, Kyoto Encyclopedia of Genes and Genomes; DEGs, differentially expressed genes.
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ACP in the pathway. GSEA, gene set enrichment analysis; ACP, adamantinomatous craniopharyngioma; KEGG, Kyoto Encyclopedia of 
Genes and Genomes.

disease, and neuroactive ligand receptor interaction. While 
the following signaling pathways were active in the ACP 
tissues: allograft rejection, autoimmune thyroid disease, 
complement and coagulation cascades, cytokine-cytokine 
receptor interaction, and hematopoietic cell lineage. These 
results may direct future research on the pathogenesis  
of APC.

Potential core proteins of the ACP

The interaction information of the proteins with a 
minimum required interaction score of >0.9 was obtained 
by importing the 1,045 common genes from the WGCNA 
analysis of the ACP samples into the STRING database 
(Figure 5A), The protein-protein interactions included 315 
nodes and 607 edges (Figure 5B). A total of 262 nodes and 
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1,204 edges were included in the network diagram based on 
the following selection criteria: betweenness ≥57; closeness 
≥0.189; degree ≥3; eigenvector ≥0.007; LAC (local average 
connectivity) ≥0.5; and network ≥1. The core network, 
which comprised 53 nodes and 132 edges, was screened 
using the following selection criteria: betweenness ≥24.923; 
closeness ≥0.331; degree ≥8; eigenvector ≥0.069; LAC ≥2; 
and network ≥2.667. The core genes of the network were 
laminin subunit beta-1 (LAMB1), histone deacetylase 1 
(HDAC1), G1/S-specific cyclin-D1 (CCND1), integrin 
alpha-2 (ITGA2), and collagen alpha-2(I) chain (COL1A2), 
cellular tumor antigen p53 (TP53), laminin subunit 
gamma-2 (LAMC2) (Figure 5C).

WGCNA analysis

We first performed a sample clustering analysis of the 
GSE94349 data set and then set the correlation soft 
threshold to select the top 25% of genes with the largest 
fluctuations for the WGCNA analysis. We removed the 
outlier samples and included the remaining samples in 
the analysis (Figure 6A). As Figure 6B shows, at a power 
of 8, the scale independence reached 0.9, and the average 
connectivity was high. The co-expression modules were 
constructed using a power of 8, and the preliminary module 
delineation results were obtained with different modules 
identified by different colors (Figure 6C). The expression 

Minimum required interaction score =0.9

Betweenness ≥57

Closeness ≥0.189

Degree ≥3 

Eigenvector ≥0.007

LAC ≥0.5 

Network ≥1

Betweenness ≥24.923

Closeness ≥0.331

Degree ≥8 

Eigenvector ≥0.07

LAC ≥2 

Network ≥2.667

A

B C

Figure 5 Protein-protein interaction networks of the clinically relevant DEGs. (A) The protein-protein interaction network comprised 1,049 
clinically relevant DEGs based on minimum required interaction score of >0.9; (B) initially censored protein-protein interaction network 
(315 nodes, and 607 edges); (C) core DEG protein-protein interaction network (53 nodes, and 132 edges). LAC, local average connectivity; 
DEGs, differentially expressed genes. 
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Figure 6 WGCNA selection of the ACP disease-related modules. (A) Outliers were detected in the sample cluster. (B) The cut-off point was 
set as 0.9, and the soft threshold power was set as β=8. (C) Tree diagram of all the DEGs based on the cluster of difference measurement. 
The colored bands show the results from the automated monolithic analysis. (D) Correlation of blue modules with disease. (E) Importance 
analysis of module signature genes and phenotype correlations. We selected the MEblue module for subsequent analysis (the vertical values 
are the correlation coefficients for the feature modules). (F) Relevance of the MEblue to the disease. The vertical coordinate indicates the 
importance of the module gene in the disease, and the horizontal coordinate indicates the relevance of the module gene to the disease; the 
higher the score, the more important and more relevant the module in the disease. ME, module eigengene; WGCNA, weighted gene co-
expression network analysis; ACP, adamantinomatous craniopharyngioma; DEGs, differentially expressed genes.
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correlation with the ACP region in the blue module was 
0.95 (P=7.0E-27) (Figure 6D), and there were 1,046 genes 
co-expressed in this module of the hub genes. The blue 
module was identified as the most important module. 
The horizontal coordinate represents the module gene 
classification type, and the vertical coordinate represents 
the module gene importance score. The blue module had a 
score of >0.6 (Figure 6E). A correlation plot of the modules 
and diseases is shown in Figure 6F, and the correlation 
between the blue module and diseases was 0.96 (P<1e-200).

Identification and validation of the diagnostic markers for 
ACP

A total of 1045 trait genes were identified by cross-
tabulating the appealed clinical trait gene modules with the 
DEGs (Figure 7A). A LASSO regression cross-validation 
analysis was conducted to identify the most relevant genes 
(Figure 7B,7C), and a total of 9 trait genes were identified. 
Next, 4 machine-learning algorithms were used to construct 
a diagnostic model of the traits (Figure 7D). The box plots 
of the residuals of the 4 algorithms (Figure 7E), in which 
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the magnitude of the residuals of the samples were ranked 
as GLM < RF < XGB < SVM (the red dots indicate the 
root mean square of the residuals), were validated against 
the ROC curves of the 4 models (Figure 7F,7G), with AUC 
values of 1 for each of the 4 models. Based on the above 
combined results, the GLM model was chosen, and the final 
model was validated using the GSE68015 gene set with 
an AUC value of 1. Finally, the genes in the model were 
plotted in a Nomo plot (Figure 8), which showed that the 
genes in the model were KRT15, FDCSP, RHOC, CD109, 
and KRT6A.

Correlation and tissue expression analysis of ACP 
diagnostic markers

We visualized the KRT15, FDCSP, RHOC, CD109, and 
KRT6A genes using the Limma package, and all 5 genes 
were highly expressed in ACP (Figure 9A), the correlation 
between each gene was positive, and the correlation 
coefficients were as high as 0.85. For example, KRT15 was 
positively correlated with FDCSP and had a correlation 
coefficient of 0.96, CD109 was positively correlated with 

KRT15 and had a correlation coefficient of 0.88, and KRT15 
was positively correlated with RHOC and had a correlation 
coefficient of 0.85 (Figure 9B).

Analysis of immune cell infiltration and its correlation 
with the central genetic diagnostic markers

We explored the specific mechanism of actions of the 
diagnostic genes in ACP. We performed an enrichment 
analysis of the GSE94349 data set in the ACP tissue, 
mainly enriched in the GSE42021 data set TREG PLN VS 
CD24INT TREG THYMUS DN, GSE13485 CTRL VS 
DAY7 YF17D VACCINE PBMC DN, GSE42021 TREG 
VS TCONV PLN UP, GSE24634 TEFF VS TCONV 
DAY3 IN CULTURE DN, GSE42021 TREG PLN VS 
TREG PRECURSORS THYMUS DN. The immune gene 
set of normal brain tissue mainly enriched in the GSE22611 
data set NOD2 TRANSD VS CTRL TRANSD HEK293 
MDP STIM 2H DN, GSE19825 NAIVE VS DAY3 EFF 
CD8 TCELL UP, GSE45365 NK CELL VS CD8A DC 
DN, GSE9960 HEALTHY VS GRAM NEG AND POS 
SEPSIS PBMC UP, GSE46606 UNSTIM VS CD40L 
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Figure 8 Nomograms were constructed to predict the progression of ACP patients. The values for each variable (KRT15, FDCSP, RHOC, 
CD109, and KRT6A) were summed to obtain a total score. By drawing a vertical line from the total score axis to the probability scale, the 
probability can be calculated. ACP, adamantinomatous craniopharyngioma.
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Figure 9 Expression and correlation of model genes. (A) Expression levels of the model genes in the ACP and normal brain tissues; (B) 
correlation analysis of the model genes, such as KRT15, FDCSP, RHOC, CD109, and KRT6A. ACP, adamantinomatous craniopharyngioma; 
***, P<0.001.

IL2 IL5 3DAY STIMULATED IRF4 KO BCELL UP  
(Figure 10A,10B). We analyzed the GSE94349 data set, 
and found that the immune cells were correlated with 
activated CD4 T cells, activated B cells, activated CD8 T 
cells, CD56 bright natural-killer cells, activated dendritic 
cells, CD56dim natural-killer cells, gamma delta T cells, 
eosinophils, immature B cells, myeloid-derived suppressor 
cells (MDSCs), immature dendritic cells, macrophages, 
natural-killer T cells, mast cells, natural-killer cells, 
plasmacytoid dendritic cells, neutrophils, regulatory T 
cells, type 1 T helper cells, T follicular helper cells, type 
1 T helper cells, T helper cells, memory B cells, effector 
memory CD4 T cells, and effector memory CD8 T cells 
in the ACP tissue (Figure 10C,10D). We also performed 
an immune cell correlation analysis of our diagnostic genes 
KRT15, FDCSP, RHOC, CD109, and KRT6A (Figure 11), 
and found that both CD109 and FDCSP were positively 
correlated with natural-killer T cells, natural-killer cells, 
neutrophils, plasmacytoid dendritic cells, T follicular 
helper cells, regulatory T cells, type 1 T helper cells, 
MDSCs, immature dendritic cells, activated dendritic cells, 
macrophages, activated CD4 T cells, central memory CD4 T 
cells, activated B cell, and other immune cells were. Further, 
KRT6A expression was positively correlated with activated 
dendritic cells, gamma delta T cells, and type 17 T helper 
cells. While KRT15 was negatively correlated with regulatory 
T cells, natural-killer T cells, T follicular helper cells, and 
RHOC was negatively correlated with type 2 T helper cells.

Model gene pathway correlation analysis

The results of the single-sample GSEA of pairs of genes, 

such as KRT15, FDCSP, RHOC, CD109, and KRT6A  
(Figure 12), suggested that these genes expression were 
negatively correlated with oxidative phosphorylation. 
Conversely, positive correlations were found between these 
genes and notch signaling, Wnt-beta catenin signaling, 
xenobiotic metabolism, TGF-beta signaling, p53 pathway, 
pi3k AKT mTOR signaling, DNA repair, and other 
signaling pathways.

Drug sensitivity analysis

Our drug sensitivity analysis revealed Greater sensitivity to 
these drugs to LDK-378, Oxaliplatin, Palbociclib, CUDC-
305 when RHOC was highly expressed and to Dexrazoxane 
when CD109 was highly expressed (Figure 13). The results 
are marked as “***” for P values <0.001, “**” for P values 
<0.01, “*” for P values <0.05, and “ns” for P values >0.05.

Discussion

CPs are rare benign epithelial tumors located in the 
hypothalamus/pituitary gland, account for 2–5% of all 
primary intracranial tumors, and have an overall incidence 
of 1.6–2.14 million/year (11). Approximately 30–50% of 
CPs occur in children (4). Children with CP develop a 
range of neuroendocrine disorders, including hypothalamic 
obesity, pituitary hormone deficiency, visual impairment, and 
cognitive deficits due to tumor hypothalamus, pituitary visual 
pathway, and limbic system invasion (4). Because of this site 
specificity, surgical resection is also highly likely to result 
in adverse postoperative outcomes, including permanent 
diabetes, obesity, and cranial nerve damage (26). Additionally, 
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because the corresponding anatomy is narrower in 
children than in adults, pediatric patients are more prone 
to developmental abnormalities and neurological and 
endocrine disorders, particularly in cases involving CPs in 
the third ventricular wall, which can affect the cognitive 
and neuroendocrine processes of patients (27) and lead to 
developmental disorders in children. Thus, conventional 
surgery and radiotherapy for ACP may result in complex 
complications and a poor patient prognosis. This study 
sought to explore the biological mechanisms of ACP and 
to identify novel and meaningful molecular markers that 
could provide new ideas for diagnostic methods and safe 
therapeutic approaches for ACP.

In this study, ACP sequencing data, including 2 data sets 
(i.e., GSE94349 and GSE68015), were comprehensively 

analyzed, and the genes most relevant to ACP were found 
by a WGCNA analysis. Clinically relevant modular 
genes and differentially expressed gene intersections, the 
GO enrichment analysis revealed that these DEGs were 
associated with epidermal development, epidermal cell 
differentiation, and the cell junction. The DEGs were also 
associated with CCs, such as cell junctions and, stromal 
junctions, and MFs, such as cell-cell adhesion mediator 
activity, extracellular matrix structural components, and 
cell adhesion mediator activity. It has been suggested that 
epithelial cell adhesion molecule expression in CP may be 
a predictive marker for recurrence (28) and that CP tissue 
originates from the remnants of the Rathke’s cleft, which 
is the neuroepithelium, similar to the results of our GO 
enrichment analysis.
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Figure 10 Analysis of the immune infiltration patterns in ACP. (A) Immunogenomic analysis of the ACP samples. (B) Immunogenomic 
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Figure 11 Correlation analysis of the immune cells in the model genes. Heat map of the KRT15, FDCSP, RHOC, CD109, and KRT6A 
correlations with the immune cells. MDSC, bone marrow-derived suppressor cells.

The KEGG enrichment analysis results suggested that 
the DEGs were associated with the PI3K-Akt signaling 
pathway, p53 signaling pathway, Hippo signaling pathway, 
TGF-beta signaling pathway, estrogen signaling pathway, 
Wnt signaling pathway, and other signaling pathways. In 
the genome-wide mapping WGS analysis of CP, a novel 
mutation was identified in exon 3 of CTNNB1. This novel 
mutation promotes ACP progenitor cell proliferation by 
increasing the stability of β-catenin to activate the Wnt 
signaling pathway (29). Conversely, the overexpression 
of CXCL12/CXCR4 significantly promoted PI3K/AKT 
signaling pathway activation, thereby promoting the 
proliferation, migration, and invasion of primary ACP  
cells (30).

The core proteins of our protein-protein interaction 
network were LAMB1, HDAC1, CCND1, ITGA2, 
COL1A2, TP53, and LAMC2. A previous study examined 
the immunohistochemistry of 15 CP patients to determine 
the cytoarchitectonic features expressed by members of the 
p53 family that may be required for CP histogenesis (31). 
Radmanesh et al. found that LAMB1 is thought to mediate 

cell attachment, migration, and organization into tissues 
by interacting with other extracellular matrix components 
during embryonic development (32). LAMB1 acts as an 
anchor point for the radial glial cell end-foot and as a 
physical barrier for migrating neurons. Radial glial cells 
play a central role in the development of the cerebral  
cortex (32). CCND1 is a regulatory component of the 
cell cycle protein D1-CDK4 (DC) complex, which 
phosphorylates and inhibits members of the retinoblastoma 
(RB) protein family, including RB1, and regulates the 
cell cycle during the G1/S transition (33,34). These core 
proteins may affect the development of ACP; thus, further 
experimental studies need to be conducted.

Next, a WGCNA was conducted to identify the genes 
most associated with clinical traits in ACP, and a LASSO 
cross-validation analysis was performed to screen the 
signature marker genes. Finally, diagnostic models with 
signatures were constructed using algorithms, such as RF 
trees, SVM, XGB, and GLM. The following GLMs were 
selected as marker genes for ACP: KRT15, FDCSP, RHOC, 
CD109, and KRT6A. We explored the correlation among 
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Figure 12 Pathway enrichment correlation analysis of the model genes. Pathway enrichment correlation analysis heat map of the KRT15, 
FDCSP, RHOC, CD109, and KRT6A genes.
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Figure 13 The drug sensitivity of model genes was detected based on the CellMiner database. (A) Correlation diagram of RHOC, CD109, 
KRT6A, and other genes in terms of drug sensitivity. (B) Differences in the expression of RHOC, CD109, KRT6A, and drug sensitivity. IC50, 
half maximal inhibitory concentration; *, P<0.05; **, P<0.01; ***, P<0.001; ns, no statistical difference. 

these genes and immune cells and possible targeting drugs. 
Our drug sensitivity analysis showed that RHOC was more 
sensitive to LDK-378, oxaliplatin, Palbociclib and CUDC-
305 when highly expressed.

A previous study showed that both AQB (HOTAIR-
EZH2 inhibitor AC1Q3QWB) and palbociclib inhibited 
Wnt/β-linked protein signaling, and that the combination 
of both inhibitors had a stronger inhibitory effect on glioma 
metastasis (35). Another study showed that the use of low 

doses of poly-L-glutamate-paboxinib couples in pediatric 
gliomas improved the ability of paboxinib alone to killing 
diffuse pontine glioma cells (36). LDK-378, also known 
as Ceritinib, is a small molecule inhibitor of mesenchymal 
lymphoma kinase, insulin-like growth factor 1 receptor, 
and focal adhesion kinase, and is highly expressed in 
glioblastomas and many brain metastases, and has anti-
tumor activity in central nervous system malignancies (37).

Oxaliplatin is a third-generation platinum anti-cancer 
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agent, and a platinum analogue of diamino cyclohexane. A 
previous study found that Oxaliplatin reduced STAT3 (signal 
transducer and activator of transcription 3) activity, decreased 
MGMT (O-6-methylguanine-DNA methyltransferase) 
levels, and increased glioma temozolomide (38). CUDC-
305 is a novel synthetic HSP90 (heat shock protein 90) 
inhibitor with unique cancer therapeutic pharmacological 
properties that crosses the blood-brain barrier to reach 
therapeutic levels in brain tissue. CUDC-305 demonstrated 
dose-dependent anti-tumor activity in a subcutaneous 
xenograft model of U87MG glioblastoma and significantly 
prolonged animal survival in an in-situ model of U87MG (39). 
A previous study found that CD109 physically interacts 
with glycoprotein 130 to promote the activation of the 
interlukin-6/STAT3 pathway in GSC (glioma stem cell) 
and sensitizes GSC to chemotherapy, which suggests that 
targeting the CD109/STAT3 axis may overcome treatment 
resistance in glioblastoma (40).

We also explored the downstream signaling pathways 
of the identified 5 genes, which had positively associated 
downstream pathways, such as Wnt-beta catenin signaling, 
TGF-beta signaling, pi3k AKT mTOR signaling, p53 
pathway, notch signaling, and DNA repair. The Wnt-beta 
catenin signaling pathway, p53 pathway, and other pathways 
regulate the occurrence and development of ACP (29,31). 
These model molecules and related drugs have not been 
reported in CP; however, they play an important role in 
glioma and may become targets for subsequent treatments 
of CP in the future.

The immune microenvironment in ACP is currently 
poorly understood, which limits the further application 
of immune-targeted therapy in clinical practice. Thus, we 
comprehensively analyzed the immune infiltration in ACP, 
and found that many immune cells, such as activated CD4 
T cells and CD8 T cells, are elevated in ACP tissues, while 
our marker genes. The expression of our marker genes, 
CDCD109 and FDCSP, correlated positively with immune 
cells such as Natural killer cell, Natural killer T cell, 
Activated B cell and Activated CD4 T cell. A comparative 
study found that M2 macrophages, CD8+ T cells and 
PD-L1 were more distributed in papillary CPs than in 
enzymatic CPs (ACPs), while M2 macrophages, CD8+ T 
cells and PD-L1 were more highly expressed in an adult 
ACP group than in a pediatric ACP group, and the high 
expression of M2 macrophages in primary CPs suggested 
a shorter time to tumor recurrence (41). These results 
suggest that immune cells may play an important role in 
ACP, which we will explore further in subsequent studies.

This study had some shortcomings. We undertook a 
comprehensive computer-based analysis of ACP, but due to 
the low incidence of clinical CP, the sample size of the study 
was small. It was difficult for us to obtain a large number of 
tissue samples for validation in a short period. There was 
also a lack of stable ACP cell lines, so experimental studies 
could not be conducted with the cells. We will expand the 
sample size in the future to further validate our results.

Conclusions 

In this study, we found that the PI3K-Akt signaling pathway, 
p53 signaling pathway, TGF-beta signaling pathway, and 
Wnt signaling pathway are important signaling pathways in 
the development of ACP. KRT15, FDCSP, RHOC, CD109, 
and KRT6A may regulate the formation of ACP through 
these pathways. Moreover, we explored the targeting drugs 
of these model genes through the CellMiner database, 
and found that RHOC high expression showed significant 
drug sensitivity to LDK-378, Oxaliplatin, Palbociclib, and 
CUDC-305, while Sensitive to Dexrazoxane when CD109 
is highly expressed. We will examine these in the future in 
our next in-depth study.
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