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Background: The interferon-induced protein with tetratricopeptide repeats 1 (IFIT1) gene is strongly 
associated with disease activity index of childhood systemic lupus erythematosus (SLE). However, whether 
IFIT1-regulated gene expression is the molecular basis of the pathogenesis of SLE has not been fully 
investigated.
Methods: Dataset GSE11909 was used to analyze the expression profiles of IFIT1 gene in 103 SLE cases 
and 12 healthy individuals. Differentially expressed genes (DEGs)-affected by IFIT1 gene were screened 
between the case group and control group, followed by gene function analysis. The clinical diagnostic 
potential of the least absolute shrinkage and selection operator (LASSO) model, established based on the 
expression profiles of IFIT1 and IFIFT1-affected DEGs, was evaluated. Analysis of association between 
IFIFT1-affected DEGs and immune infiltration was performed.
Results: IFIT1 was highly expressed in childhood SLE patients. IFIT1 and IFIT1-affected DEGs showed 
the potential to serve as a diagnostic marker for childhood SLE with area under the curve (AUC) value of 
0.947. Childhood SLE patients showed 826 upregulated DEGs and 4,111 downregulated DEGs compared to 
the control group. Among them, 208 upregulated DEGs and 214 downregulated DEGs were identified in the 
IFIT1-high group compared to the IFIT1-low group. The LASSO model for the diagnosis of childhood SLE 
involved 7 marker genes that were related to immune checkpoint and tertiary lymphoid structure in SLE.
Conclusions: Our results confirmed the clinical diagnostic potential of IFIT1 and IFIT1-affected genes 
in childhood SLE. Moreover, this study elucidated that IFIT1-induced changes in the transcriptome are 
involved in immune checkpoint and tertiary lymphoid structure in childhood.
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Introduction

Systemic lupus erythematosus (SLE) is defined as a chronic 
multisystem autoimmune/inflammatory disease presenting 
heterogeneous clinical features ranging from mild cutaneous 
symptoms to multiple organ failure (1,2). Childhood SLE 
shows great disease activity, a high incidence of irreversible 
organ lesions, and a more aggressive clinical course, 
which may be profoundly due to infection and disease 
recurrence (3-6). This autoimmune disease is characterized 
by abnormal inflammatory responses due to genetic, 
epigenetic, immunoregulatory, ethnic, hormonal, and 
environmental factors (7-11). Immunological abnormalities 
are increasingly implicated in the pathogenesis of SLE 
(12,13). Researchers have identified that a subset of immune 
cells is associated with the development of SLE, including 
T helper (Th)17 memory cells, naïve CD4+ T cells, B cells, 
macrophages, and neutrophils (14-18).

The pathophysiology of SLE includes environmental 
factors that trigger the activation of the innate and adaptive 
immune systems (19). It has been reported that SLE may 
be related to type I interferon-induced hypomethylation in 
naïve CD4+ T cells, suggesting a genetic mechanism for 
type I interferon hyperresponsiveness in lupus T cells (20).  
In SLE, type I interferon is a primary pathogenic cause, 
and high systemic type I interferon activity results in 
a propensity for severe manifestations such as lupus 
nephritis (21). Recent evidence has well established the 
association between high type I interferon activity and 
clinical manifestations of lupus nephritis and specific 
autoantibodies, including anti-ribonucleoprotein, anti-Ro, 

anti-Sm, and anti-double-stranded antibodies (22,23). To 
diminish chronic inflammation and end-organ injuries, type 
I interferon has been described as a potential target (24).

Interferon-induced protein with tetratricopeptide 
repeats 1 (IFIT1) is an antiviral protein that recognizes 
5’-triphosphate RNA of microbial structures during the 
process of antiviral innate immunity (25). Viral infection 
enhances the specific abundance of the IFIT1 protein, 
which is antagonized by the IFIT complex through 
sequestering specific viral nucleic acids (25). Interferon-
induced IFIT1 is strongly expressed in cutaneous lupus 
erythematosus skin (26). Furthermore, the interferon-
related immune pathway involving IFIT1 has been related 
to the pathogenesis of SLE (27). The IFIT1 gene may play 
roles in SLE by inducing the activation of Rho protein by 
interacting with Rho/Rac guanine nucleotide exchange 
factor (28). The IFIT1 gene is described as a potential 
candidate target of SLE for therapeutic intervention (28). 
However, the expression profile of IFIT1 gene has not been 
investigated in childhood SLE. 

Compared to adult SLE, there is a great challenge to 
manage childhood SLE. It is needed to delineate IFIT1-
mediated immunopathogenesis, which may provide 
new insights to the diagnostic therapy. Here, this study 
aimed to investigate the diagnostic potential of IFIT1 and 
differentially expressed genes (DEGs) affected by IFIT1 in 
childhood SLE. Particularly, it is unclear whether IFIT1 
mediates immune cell infiltration. The current study then 
assessed immune cell infiltration, immune checkpoints and 
tertiary lymphoid structures in childhood SLE. We present 
this article in accordance with the TRIPOD reporting 
checklist (available at https://tp.amegroups.com/article/
view/10.21037/tp-23-365/rc).

Methods

Data collection and normalization

Dataset GSE11909 (Platform: GPL96) was downloaded 
from the Gene Expression Omnibus (GEO) (https://
www.ncbi.nlm.nih.gov/gds). The dataset provides the 
transcriptional profiles of peripheral blood mononuclear 
cells (PBMCs) from 103 cases and 12 healthy individuals. 
The clinical and demographic information has been listed in 
the study of Chaussabel et al. (29). Data normalization was 
performed using the R package “Limma”. The study was 
conducted in accordance with the Declaration of Helsinki (as 

Highlight box

Key findings
•	 IFIT1-affected transcriptome is involved in immune cell infiltration 

and tertiary lymphoid structure formation in childhood SLE.

What is known and what is new? 
•	 The interferon-related immune pathway involving IFIT1 gene is 

associated with the pathogenesis of SLE.
•	 IFIT1 gene changes the transcriptional features, which affects 

immune cell infiltration and tertiary lymphoid structure formation 
in child SLE.

What is the implication, and what should change now? 
•	 This study provides a comprehensive overview of IFIT1-regulated 

genes in childhood SLE, and functional annotation requires 
experimental validation.

https://tp.amegroups.com/article/view/10.21037/tp-23-365/rc
https://tp.amegroups.com/article/view/10.21037/tp-23-365/rc
https://www.ncbi.nlm.nih.gov/gds
https://www.ncbi.nlm.nih.gov/gds


Translational Pediatrics, Vol 12, No 8 August 2023 1519

© Translational Pediatrics. All rights reserved.   Transl Pediatr 2023;12(8):1517-1526 | https://dx.doi.org/10.21037/tp-23-365

revised in 2013).

Principal component analysis and IFIT1 expression 
analysis

Principal component analysis (PCA) was implemented 
using the R packages “FactoMineR” and “FactoExtra”. 
PCA plots were computed, and the IFIT1 expression level 
was presented. The transcription level of the IFIT1 gene is 
shown in the violin plot using the function ViolinPlot from 
the R package.

Receiver operating characteristics (ROC) analysis of the 
diagnostic potential of the IFIT1 gene

The ROC curve is commonly used in clinical settings to 
assess the performance of classifiers. In the case of an area 
under the curve (AUC) >0.5, the closer the AUC is to 1, the 
better the diagnosis. The ROC assessment has low accuracy 
when the AUC is between 0.5 and 0.7, some accuracy when 
the AUC is between 0.7 and 0.9, and high accuracy when 
the AUC is above 0.9. Here, ROC analysis was performed 
to differentiate between IFIT1-high and -low subjects. The 
diagnostic performance of IFIT1 gene expression for SLE 
was analyzed by calculating AUC. The ROCs were plotted 
using the R package “pROC”.

Analysis of differentially expressed genes (DEGs) between 
the case and control groups

To screen the DEGs between the case and control groups, 
the R packages “Limma” and “DESeq2” were used to 
analyze gene expression data. The cutoff criteria were 
log2(fold change) more than 1 and corrected P values less 
than 0.05. Childhood SLE patients were grouped into two 
groups: higher-than-median (high group) and low-than-
median (low group) IFIT1 gene expression groups. DEGs 
between the high group and low group were identified with 
log2(fold change) more than 1 and corrected P values less 
than 0.01. A Venn diagram was plotted using the R package 
“VennDiagram”. The distribution of IFIT1-affected 
dysregulated DEGs was presented using a 4-quadrant plot, 
and the expression profile was illustrated using a heatmap. 
Functional analysis of IFIT1-affected dysregulated DEGs, 
including biological process (BP) and Kyoto Encyclopedia 
of genes and genomes (KEGG) pathway analyses, was 

performed using the R package “clusterprofiler”.

IFIT1-based least absolute shrinkage and selection 
operator (LASSO) model

The R package “LASSO” was used to select the effective 
marker genes (AUC >0.85) for diagnosis from the gene 
set of IFIT1-affected dysregulated DEGs. Regression 
coefficients were narrowed toward zero. The optimal 
lambda was selected according to the minimum cross-
validation error in 10-fold cross-validation. The expression 
profile of the selected marker genes was presented in the 
box plot using the R package “ggplot2”. The semantic 
similarity among gene ontology terms and marker genes 
was measured using the R package “GOSemSim”.

Immune infiltration analysis

Analysis of immune infiltration was performed using the 
R package “CIBERSORT”. Immune cell infiltration was 
analyzed by machine learning and deconvolution algorithms 
to assess the relationship between gene expression and 
immune cell infiltration. The infiltration abundance of 
immune cells was plotted using the R package heatmap. 
The R package PlotCor was used to plot correlation scatter 
plots, which aimed to indicate the correlation between 
the abundance of infiltrating immune cells and IFIT1 
expression.

Results

mRNA expression of IFIT1 gene in children with SLE

PCA was performed to reduce dimensionality, compress 
data, extract feature data, and visualize the distribution of 
the subjects. Figure 1A shows that the transcriptome data 
were able to stratify childhood patients with SLE. The 
childhood patients with SLE showed high mRNA levels 
of the IFIT1 gene compared to the controls. The violin 
plot also showed higher mRNA levels of the IFIT1 gene 
in the case group than in the control group (Figure 1B).  
Considering the high expression of the IFIT1 gene in 
childhood patients with SLE, we estimated the predictive 
performance of the IFIT1 gene. Figure 1C indicates 
that IFIT1 showed the potential to serve as a marker for 
childhood SLE, which was evidenced by the results from 
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the ROC curve with an AUC value of 0.947.

DEGs in childhood SLE patients compared to healthy 
individuals

In this study, we obtained 826 upregulated DEGs and 4,111 

downregulated DEGs in the case group compared to the 
control group (Figure 2A up). A total of 208 upregulated 
DEGs and 214 downregulated DEGs were identified in 
the high group compared to the low group (Figure 2A 
down). The Venn diagram shows the intersections of DEGs 
(Figure 2B). A total of 249 genes were recognized as DEGs 
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among the 4 groups. Here, we defined the 249 DEGs as 
the dysregulated genes affected by IFIT1. Next, IFIT1-
affected dysregulated DEGs were classified based on the 
expression level of the IFIT1 gene. Figure 2C shows that 
the intersections of upregulated DEGs between the case 
and high groups were defined as the positive-functional 
genes, as well as the intersections of downregulated DEGs 
in the case group and upregulated DEGs in the high group. 
The negative-functional genes were the intersections of 
downregulated DEGs between the case and high groups, 
as well as the intersections of upregulated DEGs in the 
case group and downregulated genes in the high group. 
Figure 2D indicates the mRNA expression signature of 
IFIT1-affected dysregulated DEGs. These IFIT1-affected 
dysregulated DEGs were involved in regulating the defense 
response to virus, type I interferon signaling pathway, 
and cellular response to type I interferon (Figure 3A) 
and mediating signaling pathways related to hepatitis C, 
proteasome, and RIG-I-like receptor (Figure 3B).

Clinical diagnostic potential of the LASSO model

LASSO regression is a common data mining method in 
machine learning. LASSO performs variable screening 
and complexity adjustment while fitting a generalized 
linear model, which can better solve the problem of 

multicollinearity in regression analysis. Marker genes were 
selected from the IFIT1-affected dysregulated DEGs (AUC 
value >0.85). As a result, 7 marker genes were obtained, 
including IFIT1, LGALS9, RPS10L, RP3-334F4.1, IFI44, 
RP6-11O7.2, and RPL7P52. Lambda plots are shown in 
Figure 4A, demonstrating the predictive performance of 
the model. The LASSO model plot is shown in Figure 4B, 
which indicates the confidence level of the model under 
the corresponding log(lambda). The ROC curves of the 
LASSO model are shown in Figure 4C, suggesting that the 
IFIT1-based model showed good diagnostic efficacy for 
childhood SLE patients (AUC value =0.9950). In addition, 
the diagnostic efficacy was further proven (AUC value 
=0.9474), as shown in Figure 4D. Box plots were drawn to 
demonstrate the transcriptional profile of marker genes. 
Figure 4E indicates that IFI44 mRNA was highly expressed 
in the case group compared to the control group. The 
semantic similarity among gene ontology terms and marker 
genes was analyzed. Figure 4F shows that IFI44, IFIT1, 
and LGALS9 were significantly associated with biological 
processes of SLE.

Immune cell infiltration was affected by IFIT1

A large number of immune cells are present in the 
microenvironment of different diseases, including 
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lymphocytes, dendritic cells, monocytes/macrophages, 
granulocytes, and mastocytes. Immune cells play an 
important role in the development of SLE. Figure 5A 
suggests that the level of immune cell infiltration was low 
in IFIT1 high expression samples. Figure 5B shows that 
IFIT1 expression was significantly and positively correlated 
with the infiltration abundance of cells such as activated 
mast cells. The results in Figure 5C show that the marker 
genes of the IFIT1-based model were significantly related 
to immune cell abundance. Immune checkpoints are a set 
of molecules expressed on immune cells that regulate the 
degree of immune activation. Figure 5D shows that IFIT1-
based model genes were significantly correlated with some 
immune checkpoint-related genes and tertiary lymphoid 
structural marker genes.

Discussion

SLE is a complex and multifactorial disease that manifests as 
significant immunological abnormalities (1,2). Its etiologies 

may be related to hormonal, genetic and environmental 
factors (30). IFIT1 was identified as an interferon-induced 
gene that plays roles in SLE by interacting with Rho/Rac 
guanine nucleotide exchange factor (28). In the current 
study, we revealed that IFIT1 altered the transcriptional 
signatures in childhood SLE. IFIT1-affected genes were 
related to immune cell infiltration, immune checkpoints, 
and tertiary lymphoid structure formation.

As an interferon-induced gene, the expression profile 
of the IFIT1 gene has been related to the diverse immune 
phenotype of SLE, and the IFIT1 gene was overexpressed in 
SLE patients (28). It has been reported that IFIT genes may 
be involved in immune microenvironment of cardiovascular 
disease (31). However, the exact mechanisms have not been 
reported. The expression level of IFIT1 in childhood SLE 
remains uninvestigated. Our results consistently showed 
that IFIT1 mRNA expression was higher in childhood 
SLE patients than in controls. Additionally, Mähönen  
et al. found that IFIT1 and IFIT2 were strongly upregulated 
in keratinocytes in cutaneous lupus erythematosus (26). A 
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study pointed out that the expression level of the IFIT1 gene 
may be positively correlated with the SLE activity index (32). 
IFIT1 overexpression was considered to be related to renal 
affection of SLE patients, which appears to be the molecular 
basis for the diverse immune phenotype of SLE (32).  
Considering the high expression of the IFIT1 gene in SLE, 
we assessed the diagnostic potential of IFIT1 for SLE 
patients. ROC analysis further confirmed the diagnostic 

performance of IFIT1 for childhood SLE patients. These 
results indicated that IFIT1 could be detected for the 
diagnosis of childhood SLE.

RNA sequenc ing  da ta  uncovered  the  d i s t inc t 
transcriptome architectures of SLE and showed specific 
marker genes related to autoimmunity (33,34). Next, we 
studied whether IFIT1 is implicated in the regulation of 
the transcriptome in patients with SLE. Compared to 
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Figure 5 Analysis of immune cell infiltration in childhood SLE. (A) Heatmap suggesting the abundance of immune cell populations; (B) 
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healthy individuals, 249 DEGs were defined as dysregulated 
genes affected by IFIT1. Functional analysis showed the 
enrichment of biological processes for the 249 DEGs, 
including defense response to virus, type I interferon 
signaling pathway, cellular response to type I interferon, 
and mediating signaling pathways related to hepatitis C, 
proteasome, RIG-I-like receptor. Type I interferon is a 
primary pathogenic factor of SLE, and a high level of type I 
interferon may result in the activation of immature myeloid 
dendritic cells, autoreactive T cells, B cells and cytotoxic 
CD8+ T cells (35). Its increase in circulation contributes to 
the presence of lupus nephritis, arthritis, mucocutaneous, 
and autoantibodies (23). Hence, we speculated that IFIT1 
may participate in mediating inflammation in SLE through 
affecting immune gene expression and immune cell 
composition.

Among these 249 DEGs, 7 marker genes showed 
predictive potential  for childhood systemic lupus 
erythematosus, including IFIT1, LGALS9, RPS10L, RP3-
334F4.1, IFI44, RP6-11O7.2, and RPL7P52. The 7 marker 
genes were strongly related to immune cell infiltration, 
which has been consistently reported in previous studies 
(36-39). IFIT1 was correlated with CD8 T cells, activated 
mast cells and neutrophils. LGALS9 was related to naïve 
B cells and monocytes. RPS10L was predicted to be linked 
to naïve B cells, naïve CD4 T cells, and resting mast cells. 
RP3-334F4.1 may be associated with naïve B cells, naïve 
CD T cells, monocytes, and resting mast cells. IFI44 was 
correlated with naïve B cells, CD8 T cells, and activated 
dendritic cells. RP6-11O7.2 may mediate the function of 
naïve B cells, naïve CD4 T cells, and monocytes. RPL7P52 
may be involved in the cellular function of naïve B cells, 
naïve CD4 T cells, and monocytes. In particular, the 7 
marker genes were significantly correlated with a number 
of immune checkpoint-related genes and tertiary lymphoid 
structural marker genes, such as CCL (40), IGSF (41), and 
CXCL (42). For example, IFIT1 was positively related 
to CCL2, CCL20, CCL3, CCL4, CCL8, and IL1R1. RP6-
11O7.2 and CD40 were positively related to PDCD1. These 
findings suggested that IFIT1 could be targeted to relieve 
inflammation in childhood SLE. 

However, our study still showed limitations in some 
aspects, such as participants should be enrolled for the 
validation of the prediction model. Besides, the predictive 
genes or genes-related to childhood SLE should be 
experimentally confirmed, and their biological or clinical 
functions should be further studied. These mentioned 
limitations will be our future study focus.

Conclusions

This comprehensive study provides a detailed comparative 
overview of the DEGs regulated by IFIT1 in childhood 
SLE. Functional annotation revealed the important roles of 
these genes in mediating the defense response to virus, type 
I interferon signaling pathway, cellular response to type 
I interferon, and regulating signaling pathways related to 
hepatitis C, proteasome, RIG-I-like receptor. The identified 
predictive genes (IFIT1, RPS10L, IFI44, RP3-334F4.1, 
IGALS9 and RP6-11O7.2) might be responsible for the 
distribution landscape of immune cell infiltration. There 
were obvious correlations between the 7 marker genes and 
immune checkpoint genes, as well as signature genes related 
to tertiary lymphoid structure formation in childhood SLE.
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