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Background and Objective: Hypoxic-ischemic encephalopathy (HIE) is a leading cause of death and 
disability worldwide. Therapeutic hypothermia (TH) represents a significant achievement in the translation 
of scientific research to clinical application, but it is currently the only neuroprotective treatment for HIE. 
This review aims to revisit the use of TH for HIE and its longitudinal impact on patient outcomes to readers 
new to the field of HIE. We discuss how emerging therapies address the broader pathophysiology of injury 
progression in the neonatal brain days to years after HIE.
Methods: We included full articles and book chapters published in English on PubMed with references 
to “hypoxic ischemic encephalopathy”, “birth asphyxia”, “therapeutic hypothermia”, or “neonatal 
encephalopathy”. We limited our review to outcomes on term infants and to new therapeutics that are in the 
second phase of clinical trials.
Key Content and Findings: Despite the use of TH for HIE, mortality remains high. Analysis of 
longitudinal studies reveals a high incidence of ongoing disability even with the implementation of TH. New 
therapeutics addressing the secondary phase and the less understood tertiary phase of brain injury are in 
clinical trials as adjunctive treatments to TH to support additional neurological repair and regeneration.
Conclusions: TH successfully improves outcomes after HIE, and it continues to be optimized. Larger 
studies are needed to understand its use in mild cases of HIE and if certain factors, such as sex, affect long 
term outcomes. TH primarily acts in the initial phases of injury, while new pharmaceutical therapies target 
additional injury pathways into the tertiary phases of injury. This may allow for more effective approaches to 
treatment and improvement of long-term functional outcomes after HIE.
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Introduction

Hypoxic-ischemic encephalopathy (HIE) is a syndrome of 
brain dysfunction resulting from inadequate oxygenation 
and perfusion around the time of birth (1). In term infants, 
HIE has a prevalence of about 1 in every 1,000 births 
in resource-rich countries (2,3) and 5–40 in every 1,000 
births in resource-limited countries (4-7). Overall, HIE is 
among the leading causes of neonatal death (8,9) and is a 
major contributor to world-wide disability. Up to 60% of 
infants with severe HIE die or develop profound disability 
(2,10-13). In infants born at term or post-term, abnormal 
neurological function typically becomes evident within 
the first few hours after birth. Symptoms can range from a 
reduced level of consciousness, seizures, change in muscle 
tone and reflexes, to difficulties initiating and maintaining 
respiration (1,14,15). While HIE also occurs in preterm 
infants, due to differences in pathophysiology (16-20), this 
narrative review solely focuses on HIE in term infants born 
after 36 weeks.

Sarnat & Sarnat introduced the first systematic approach 
to define distinguishing features of HIE into stages 
of severity over the first hours to weeks to determine  
prognosis (14). This was later adapted to the “Modified 
Sarnat Score” to identify HIE severity within the first 6 
hours of injury (21). The initial assessment of a potential 
HIE case involves a comprehensive examination, combining 
both clinical and biochemical tests. Clinicians evaluate the 
infant’s history, Apgar scores, cord pH or postnatal blood 
gas pH, and whether there was a need for respiratory 
support lasting more than 10 minutes. This information, 
coupled with a neurological exam, assists in classifying 
the severity of HIE into mild, moderate, or severe 
encephalopathy (2,22,23).

Conditions that lead to HIE and can affect HIE 
severity are referred to as “intrapartum hypoxic events”, 
or “intrapartum-related complications”. Events that 
significantly increase the risk of HIE are placental 
abruption, placental insufficiency or infarction, maternal 
anemia, perinatal oligohydramnios, cord prolapse, or 
nuchal cord (2). Similar terminologies used to describe 
HIE include “perinatal asphyxia”, “birth asphyxia” or 
“post-asphyxia encephalopathy”. In cases when there is no 
evidence of a hypoxic and/or ischemic event, the nonspecific 
terminology of “neonatal encephalopathy” is used (24,25). 
In fact, a minority of neonatal encephalopathy cases in term 
infants stem from non-hypoxic/ischemic causes, which can 
include intracranial infections, intracranial hemorrhage, 

hypoglycemia, kernicterus, metabolic disorders, inborn error 
of metabolism and malignant epilepsy syndromes (25,26). 
Given that these conditions require different interventions 
than HIE, accurate diagnosis becomes essential (27-29).

Therapeutic hypothermia (TH) is the only Food 
and Drug Administration approved treatment for HIE. 
Following numerous preclinical studies (30-32), TH 
became widely used after the publication of three landmark 
randomized controlled trials between 2005 and 2009: 
the National Institute of Child Health and Development 
(NICHD) (21), the CoolCap (33) and the TOBY (34) trials. 
TH involves cooling the infant within 6 h of the intrapartum 
hypoxic event to 33–34 ℃ for 72 hours. This is followed by 
a gradual re-warming by 0.5 ℃/h until the core temperature 
is maintained at 36.5–37.0 ℃ (Table 1) (35,36). TH has 
emerged as the standard of care for moderate to severe HIE 
(2,35,37), and though mild cases were not included in these 
landmark trials, some medical centers in America and Europe 
also utilize TH in mild HIE cases (38). However, outcomes 
of TH for mild HIE have been mixed (39-41), and further 
research is needed to ascertain the effectiveness and safety 
of TH in the treatment of mild HIE, which is underway 
with the TIME study (NCT04176471) (42).

A multi-country open-label, randomized controlled 
trial (HELIX) revealed that TH in low resource countries 
was not effective and could even be detrimental (43). This 
disparity may possibly be due to difficulty in diagnosis and 
stratification of HIE, or by an inability to identify variability 
in the mechanism and timing of the hypoxic event (i.e., 
intermittent hypoxia during labor vs. a single, acute 
hypoxic event) (43-46). All in all, TH provides incomplete 
neuroprotection, has a narrow time window for treatment, 
can cause side effects, including cardiac, liver, kidney and 
bone marrow dysfunction (18,29). TH is also not readily 
available in all clinical settings and may have reduced 
efficacy in low-income settings (45,46). Understanding the 
cellular and molecular mechanisms behind acute and long-
term injury after HIE will facilitate the development of 
more effective implementation of TH for HIE, and for new 
therapies. We present this article in accordance with the 
Narrative Review reporting checklist (available at https://
tp.amegroups.com/article/view/10.21037/tp-23-253/rc).

Methods

We comprehensively evaluated clinical studies reporting 
outcomes after HIE prior to TH using PubMed and 
Google Scholar databases and “neonatal hypoxia”, “neonatal 

https://tp.amegroups.com/article/view/10.21037/tp-23-253/rc
https://tp.amegroups.com/article/view/10.21037/tp-23-253/rc
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hypoxic ischemia”, “birth asphyxia”, “hypoxic ischemic 
encephalopathy”, “term”, and “therapeutic hypothermia” 
as key words. Studies that reported long-term outcomes 
after HIE were included in this review. To discuss the 
mechanisms of injury after HIE, we include papers that 
used large and small animal models that represent hypoxia-
ischemia in a term equivalent brain. Next, we highlight 
the landmark studies that led to the adoption of TH as the 
standard of care, and the ongoing work to optimize its use. 
Finally, we explore emerging therapeutics entering phase II 
clinical trials and their mechanisms of action. The methods 
of research used in this narrative review are detailed in  
Table 2.

Discussion

Phases of injury in hypoxic ischemic encephalopathy

The developing brain undergoes dramatic changes during 
the early post-natal stages, characterized by the proliferation 

of astrocytes, synaptogenesis and pruning, arborization, and 
extensive myelination that persists into early adulthood (47). 
Unfortunately, HIE disrupts these carefully orchestrated 
processes resulting in persistent abnormal neurological 
development and function for survivors. The brain regions 
most susceptible to injury are the areas of greatest metabolic 
demand and of highest oxygen and glucose deprivation (48). 
Human studies utilizing 18F-fluorodeoxyglucose positron 
emission tomography have provided insights into brain 
metabolic demand, revealing that term infants have the 
highest metabolic activity in the thalamus, brain stem, and 
cerebellar vermis (49-52). The high metabolic demand of 
these regions also renders them vulnerable to excitotoxicity, 
free radical production, mitochondrial damage (31,48), 
and white matter injury (53). This aligns with findings 
from Magnetic Resonance Imagining (MRI) during acute  
injury (54), which demonstrate a characteristic pattern 
of injury in the subcortical regions of the hippocampus, 
thalamus, and basal ganglia (55). Later, during the 
subacute phase (1–30 days), MRI injury patterns involve 

Table 1 Criteria for therapeutic hypothermia

General criteria Inclusion criteria

Gestational age ≥36 weeks

Birth weight ≥1,800 g

Age at initiation ≤6 hours

Apgar score ≤5 at 10 minutes

Acidosis Cord pH ≤7.0 or base deficit ≥16 mmol/L

Evidence of moderate to severe encephalopathy Yes (modified Sarnat staging) or Seizure

Depth Target core temperature of 33.5 ℃ (range: 32–34 ℃) for whole-body cooling; 34–35 ℃ 
for selective head cooling

Duration 72 hours of cooling, followed by a slow rewarming process (0.5 ℃/hour)

Table 2 The search strategy summary

Items Specification

Date of search September 1st, 2022 to August 2nd, 2023

Databases and other sources searched PubMed, Google Scholar

Search terms used “neonatal hypoxia”, “neonatal hypoxic ischemia”, “birth asphyxia”, “hypoxic ischemic 
encephalopathy”, “term”, and “therapeutic hypothermia”

Timeframe 1948–2023

Inclusion and exclusion criteria English language studies were included

Selection process Independently selected by authors
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the intraarterial watershed regions in the subcortical white 
matter (55) as a result of preferential shunting of blood to 
vital brain structures such as the thalamus, basal ganglia, 
hippocampi, brain stem, and cerebellar vermis (56). 
MRI has important prognostic ability for outcomes at  
6–7 years of age, with a normal MRI reassuring of normal 
development (57). The worst prognosis is predominantly 
seen in infants who have injuries in the basal ganglia, 
thalamus, the anterior and posterior limbs of the internal 
capsule in combination with additional cerebral lesions, or 
in infants with hemispheric devastation (57). Interestingly, 
even mild cases of HIE have been found to have smaller 
volumes of the left and right basal ganglia compared to age 
and sex matched controls (55), which are associated with 
neurodevelopmental deficits at 18 months (58) to 7 years (59). 
While these patterns of injury provide important clinical 

guidance, they are the consequence of targetable molecular 
and cellar responses to HI injury, which follows a sequence 
of acute, latent, secondary, and tertiary phases.

The acute phase (0–6 hours post-injury) is dominated 
by the direct response to oxygen and glucose deprivation 
(Figure 1). Cells initially compensate by undergoing 
adaptive cellular responses, including anaerobic glycolysis, 
measured by accumulation of lactate and pyruvate ions 
and an early formation of free radicals such as super oxide, 
non-protein bound iron (60) and nitric oxide (NO) (54). 
Eventually, the decrease of adenosine triphosphate (ATP) 
disrupts the release and uptake of excitatory amino acids 
(glutamate) leading to excitotoxicity in both neurons and 
glia. Excitotoxicity results from tonic depolarization that 
occurs via N-methyl-D-aspartate (NMDA) and indirectly 
with α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic 

Figure 1 The stages of injury and cellular processes after HIE and the corresponding therapeutic interventions. HIE, hypoxic-ischemic 
encephalopathy; AMPA, α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid; NMDA, N-methyl-D-aspartate; ROS, Reactive Oxygen 
Species; DAMPS, damage-associated molecular patterns; NOS, NO synthase; BBB, blood brain barrier.
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acid (AMPA) receptors, leading to intracellular calcium 
ion accumulation. This results in necrosis of cells and 
inflammatory release of products that trigger “regulated 
cell death” pathways. The cellular mechanisms of death 
after hypoxic ischemic injury in neonates is reviewed by 
Thornton et al. (61). The damage-associated molecular 
patterns (DAMPs) released from the acute phase initiate 
widespread cascades of programmed cell death and 
inflammation. This secondary damage is greater than the 
initial injury, is marked by the emergence of seizure activity, 
and it is delayed hours after the onset of ischemia (62). This 
delay before the second phase of injury is called latent phase 
(see below) and offers an ideal time for neuroprotective 
treatment (Figure 1).

The transition into the “latent phase” occurs when there 
is a restoration of blood flow and oxygenation. Accumulated 
lactate and pyruvate ions increase reactive oxygen species 
(ROS+) leading to damage and permeability changes in the 
blood brain barrier (BBB), resulting in edema and leakage 
(63-65). These effects culminate into the secondary energy 
failure that occurs 6–15 hours after injury, and lasts 24–72 
hours (Figure 1). This phase is characterized by progressive 
neuronal injury, excitotoxicity, and inflammation. As with 
the first wave of energy failure, this second wave is marked 
by an increase in intracellular calcium. NO synthase (NOS) 
releases NO in a calcium dependent manner by glial cells, 
neuronal (nNOS) and endothelial cells (eNOS), and NOS 
acts in a calcium independent manner in its immunologic 
(iNOS) isoforms (66,67). iNOS will persistently produce 
NO after the initial injury (68). NO perpetuates free 
radical generation through cyclooxygenase activity and can 
combine with superoxide to form peroxynitrite, an activator 
of lipid peroxidation which results in membrane leakage. 
Additionally, there is an increase in free radical production 
(superoxide, hydrogen peroxide, iron), which accumulate 
until it overwhelms the endogenous antioxidant systems 
resulting in lipid membrane fragmentation by peroxidation 
(63,69). After the second wave has passed, the extent of 
injury appears to stabilize but does not resolve.

The tertiary phase (72 hours to several weeks post-injury) 
is marked by repair and regeneration of damaged neurons 
and glia (Figure 1). While the ongoing injury during this 
stage is not as marked as the initial injury, there are still 
ongoing inflammatory processes and persistent changes in 
cellular function. There is persistent BBB damage, allowing 
the passage of otherwise tightly regulated substances, 
such as IgG proteins, albumin, and inflammatory cells 
into the brain. These contribute to an upregulation of 

inflammatory cytokines and to epigenetic changes in brain 
gene expression, which further contribute to long term 
neurological dysfunction (70).

Clinical outcomes in the era prior to therapeutic 
hypothermia

Prior to the widespread adoption of TH in tertiary medical 
centers, a few studies, conducted between the mid-1980s 
and 2010s, evaluated the short- and long-term outcomes 
of neonates with HIE, classified into mild, moderate, or 
severe subtypes. During this period, resuscitation was the 
only available intervention. These studies brought to light 
the acute consequences of HIE, including seizures and 
death, and highlighted the long-term neurological sequelae, 
regardless of HIE subtype. Early reports on the outcomes 
of infants with HIE did not have specific inclusion criteria, 
making it difficult to determine the exact extent of disability. 
However, mortality for severe HIE ranged from 15% to 
82%, while for moderate HIE it was reported to be 5% 
(71-73). Reported motor disability rates ranged from 6% 
to 21% (71,74) for infants with moderate HIE and from 
42% to 100% (71,74) for those with severe encephalopathy 
(Table 3). Notably, even children with HIE who did not 
exhibit any obvious neurological deficits and even with mild 
HIE were found to have a range of long-term cognitive 
(10,11,71,72,74,75), and neurodevelopmental impairments 
(10-12,74), such as Attention-Deficit Hyperactivity Disorder 
and Autism Spectrum Disorder (Table 3). These studies 
highlighting the profound physical and cognitive sequelae 
of HIE underscored the urgent need for the development 
and implementation of therapeutic interventions. In the 
1940s–50s, researchers began to investigate the potential of 
hypothermia in treating infants with severe hypoxic injury 
(76,77). Initially, the practical application of cooling resulted 
in complications and poor outcomes for patients (78).  
However, the accumulation of numerous pre-clinical 
studies allowed for the optimization of the cooling 
protocol, resulting in a safe and effective translation of this 
therapeutic approach to human populations (79).

Mechanisms of action in therapeutic hypothermia

To fully investigate different aspects of HIE injury, a 
combination of large (rhesus monkey, pig, fetal sheep) 
and small (rodent) animal models have been employed to 
better understand processes of cell death, inflammation, 
and screening for potential therapies. These have been 
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extensively reviewed (80-83). Paired with clinical data, 
pre-clinical models provide essential insights into the 
biochemical mechanisms behind hypoxic injury in term 
neonates.

Hypothermia can reduce the metabolic demand of cells, 
with species specific ranges (84) TH makes cells more 
tolerant of the low oxygen and glucose levels that occur 
during HIE (85-88). In post-natal rats, hypothermia was 
found to be neuroprotective via reductions in glycolysis, 
amino-acid catabolism, and ketolysis (89). TH also has 
significant anti-inflammatory effects by reducing cytokine 
production (90,91), microglial activation, and neutrophil 
recruitment into the injured brain (92,93). Many of these 
effects are complementary, for example lowering the 
metabolic demand also helps prevent activation of NMDA 
receptors (94,95) and the generation of free radicles and 
ROS, thus protecting lipoprotein membrane integrity  
(96-98).  Furthermore, by reducing inflammation, 
hypothermia also helps maintain BBB integrity (63,64). 
The efficacy of TH is also associated with decreased caspase 
activity and suppressed microglial activation (32,99,100). 
Recent studies have found that microglia drive injury-
induced inflammatory responses in a sex-specific manner, 
with differences in the microglial number, morphology, 
migration, and phagocytic activity (101,102). In mouse and 
rat models of HIE, male mice are more vulnerable to poor 
acute and long-term developmental outcomes (103-106). To 
investigate the specific role of microglia in HIE, a genetic 
microglial depletion model was utilized in early postnatal 
life in mice (Cx3cr1CreER/+Rosa26DTA/+model). Microglial 
depletion worsened neuronal damage after HI injury, an 
effect that was only seen in males (107). Significantly lower 
IL-10 and TGF-β levels were seen in both male and female 
pups after microglial depletion. This work suggests that 
resident microglia play a neuroprotective role early after 
HIE, but the beneficial effects may be limited to males. 
These effects highlight the importance of including sex as a 
biological variable in pre-clinical and clinical studies (108).

Another important variable in neuroprotection after 
brain injury is time (37,109), as TH is most efficacious 
at preventing injury during the secondary energy failure 
(30,32,110,111). A study in fetal sheep found greater 
oligodendrocyte survival and increased myelin density 5 days  
after HIE if TH was initiated 2 hours after injury. 
However, a delay to 5.5 hours resulted in a complete loss 
of significant oligodendrocyte protection (32). Additional 
factors to consider for the application of TH are the depth 
and duration of cooling. Across multiple species, there are 

windows of temperature reduction that are beneficial (112). 
A study with neonatal rodents found that temperature 
up to a 3.5 ℃ reduction yielded neuroprotection after 
moderate injury (113). Similarly, a study with neonatal 
pigs found a therapeutic window between a 3.5 to a 5 ℃ 
reduction, whereas a 8.5 ℃ reduction was detrimental (114). 
While the exact timing and temperature ranges are species 
specific, together these results provided important insight 
into what ranges would be tolerated in humans (115,116). 
In neonates, cooling durations shorter or longer than  
72 hours, or deeper cooling (by >5 ℃), resulted in reduced 
neuroprotection (35,117). The preclinical studies presented 
above, and other rigorous translational work have mapped 
out the boundaries for the effective application of TH in 
clinical trials for neonates with HIE.

Clinical outcomes in the therapeutic hypothermia era

The NICHD (21), TOBY (34), and the CoolCap (33) trials 
were randomized clinical trials that expanded upon earlier 
translational research and clinical studies investigating the 
potential of TH for treating HIE. These trials implemented 
strict inclusion criteria to select patients for TH treatment, 
which was a notable improvement over studies conducted 
prior to the introduction of cooling. The results of these 
trials were instrumental in establishing TH as the standard 
of care for treating HIE in term infants. In a seminal 
paper, Shankaran et al., reported the first randomized trial 
for whole body TH from the Members of the NICHD 
Neonatal Research Network. In this study, 102 infants were 
assigned to the treatment arm while 106 were assigned 
to standard supportive care (control group) (21). Overall 
death or moderate or severe disability occurred in 44% in 
the TH group versus 62% in the control group (P=0.01), 
while mortality rate was 24% for the TH group versus 
37% in the control group (P=0.08). Neurodevelopmental 
outcomes were assessed between 18 to 22 months of age. In 
the hypothermia and control groups, respectively, there was 
no statistical difference in the rates of cerebral palsy (19% 
vs. 30%), rates of blindness (7% vs. 14%), and the rates of 
hearing impairment requiring aids (4% vs. 6%) (21). In a 
follow-up study, Shankaran et al. reported outcomes for the 
NICHD trial at 6–7 years of age. Primary outcome data was 
available for 97 patients in the TH group and for 93 patients 
in the control group. The study found that death occurred 
in 27 (28%) and 41 (44%) of the TH and control groups, 
respectively (P=0.04), while death or severe disability 
occurred in 38 (41%) and 53 (60%) of the TH and control 
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groups, respectively (P=0.03). However, there was no 
difference in moderate or severe disability (when disability 
was assessed without considering mortality), attention-
deficit/hyperactivity disorder, or visuospatial dysfunction 
between the two groups (22). The authors concluded that 
infants undergoing whole-body TH had a lower rate of the 
combined end point of death or an IQ score of less than 70 
at 6 to 7 years of age compared to those receiving usual care, 
although the differences were not statistically significant. 
However, hypothermia was found to significantly reduce 
death rates among the surviving children (22). In contrast, a 
later meta-analysis that included 11 randomized controlled 
trials found that TH not only significantly reduced the risk 
of death but also of disability at 18 to 24 months of age (40). 
The NICHD trial also provided crucial insights into the 
clinical predictors of long-term effects at 6–7 years after 
HIE treatment with TH versus control, based on outcomes 
at 8 and 22 months of age (22,118). The rates of moderate 
or severe disability at 18 months were strongly predictive 
of the same outcomes at 6–7 years of age. Furthermore, the 
neuroprotective effects of hypothermia for HIE observed at 
18 months persisted through childhood, with a significant 
reduction in death rates and no increase in disability among 
survivors.

T h e  To t a l  B o d y  H y p o t h e r m i a  f o r  N e o n a t a l 
Encephalopathy Trial (TOBY) was a large, randomized, 
controlled trial of hypothermia for term infants with 
HIE. At 18 months, children who had been treated with 
hypothermia had reduced risks of cerebral palsy and 
improved scores on the Mental Developmental Index and 
Psychomotor Developmental Index of the Bayley Scales of 
Infant Development II (BSID-II) and on the Gross Motor 
Function Classification System (119). The TOBY trial also 
assessed neurocognitive function at 6–7 years of age with 
the primary outcome of survival with IQ ≥85. Data on 
outcomes were available for 280 of the 325 infants who were 
initially enrolled, with 45 patients being lost to follow-up. 
The primary outcome occurred among 75 of 145 children 
(52%) in the hypothermia group vs. 52 of 132 (39%) in the 
control group. More children in the hypothermia group 
survived without neurological abnormalities and with better 
motor-function scores, and rates of CP and moderate or 
severe disability were lower compared to the control group 
(all P<0.05). This study showed that moderate hypothermia 
after perinatal asphyxia resulted in improved neurocognitive 
outcomes in middle childhood (120).

The CoolCap was another pivotal  mult icenter 
randomized controlled trial that assessed if selective 

head cooling, which differs from the whole-body cooling 
method used in the NICHD and TOBY trials, could 
improve neurodevelopmental outcome after HIE (33,121). 
It also determined if neurodevelopmental outcomes at  
18–22 months predicted functional outcomes at 7–8 years 
of age among surviving children. In this study 234 term 
infants with moderate to severe neonatal encephalopathy 
and abnormal amplitude integrated electroencephalography 
(aEEG) were randomly assigned to either head cooling 
(n=116), or conventional care (n=118). Data analysis at 
18 months revealed that head cooling had no effect in 
infants with the most severe aEEG changes (P=0.51) 
but was beneficial in infants with less severe aEEG 
changes (P=0.009) (33). The authors used the Functional 
Independence Measure for Children (WeeFIM) as an 
assessment tool. This scale measures a child’s functional 
ability in self-care, mobility, and cognition. Qualitative 
assessment of WeeFIM through phone interviews with 
parents showed that disability status at 18 months was 
strongly associated with WeeFIM ratings (P<0.001) 
indicating that functional outcome at 7–8 years is associated 
with 18-month neurodevelopmental assessment (39).

To summarize the evidence behind the neuroprotective 
effect of TH, a meta-analysis of 7 trials, representing 1,214 
newborn infants, found that TH reduced the risk of the 
composite outcome of death or major neurodevelopmental 
disability at age 18 months by 24% (122). In cases of mild 
HIE, it is uncertain if children have worse outcomes than 
those who did not receive TH, highlighting the need for 
additional adjunctive therapies after HIE (41).

Adjunctive neuroprotective treatments for hypoxic ischemic 
encephalopathy

While TH is the standard of treatment and it is clearly 
beneficial, neonates with HIE still experience unacceptably 
high rate of complications (122), as reviewed above. 
Therefore, adjunctive therapies to further improve 
outcomes are urgently needed. A few studies have explored 
the expanding collection of preclinical and clinical research 
on HIE neuroprotective treatments used in combination 
with or without TH (123-130). Some of these therapies, 
though not an exhaustive list, include noble gases (131), 
anticonvulsants (132), magnesium (133), cannabidiol (134), 
progesterone (135), ascorbic acid (136), vitamin E (137), 
thiamine (138-140), ketogenic diet (141), and other 
nutraceuticals (142). Aside from adjunctive therapies, other 
approaches that have shown to improve outcomes in critically 
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ill neonates with HIE are hypocapnia, hypoglycemia, pain 
control, and functional brain monitoring (143) and remote 
post ischemic conditioning (144). Interestingly, Sabir 
et al., recently published the first preclinical multidrug 
randomized controlled screening trial for nHIE. The 
authors investigated 25 potential therapeutic agents and 
reported that caffeine and a sonic hedgehog agonist 
produced the most beneficial effects. These were followed 
by allopurinol, melatonin, clemastine, ß-hydroxybutyrate, 
and omegaven (145). However, results were not reported 
by sex, despite preclinical evidence suggesting differential 
responses to therapies based on sex (146,105,147-150). 
The potential significance of sex differences in response to 
therapy after HIE has also not been thoroughly investigated 
in clinical studies, as the majority of studies do not report 
outcome by sex (151-153). Sex could represent a critical 
biological variable that might influence treatment strategies 
for HIE, as suggested by several studies (150,154,155). 
Here, we will focus on the interventions that have 
progressed to phase 2 clinical trials or beyond within the 
past year.

In this context, erythropoietin (EPO) has been the 
adjunctive neuroprotective treatment most investigated 
and well characterized since the late 1990s. EPO receptors 
are found in neurons, glia, microglia, and endothelial cells  
(156-158) ,  and EPO promotes  prol i ferat ion and 
differentiation of neural progenitor cell during brain 
development (159,160) as well as following hypoxia 
(161,162). After stroke, oxygen depletion induces 
expression of hypoxia inducible factor 1α which triggers 
downstream expression of EPO and its receptors (163,164). 
EPO provides neuroprotection by reducing apoptotic, 
inflammatory, and excitotoxic injury (165) in the secondary 
energy failure and in the tertiary phase of HIE (130), as 
depicted in Figure 1. The beneficial effects of EPO were 
extensively studied in preclinical models of HIE with 
rodents, piglets, and non-human primates, though notably 
the majority of these studies did not include combined 
hypothermia (166,167). Next, the pharmacokinetics of 
EPO in the context of HIE after TH was investigated 
(168,169). These studies led to phase I and II clinical trials, 
which demonstrated promising outcomes and an acceptable 
safety profile (170-172). Two phase 3 randomized placebo-
controlled trials (NCT01732146 – not yet reported (173), 
and NCT02811263) have now been completed. These 
studies evaluated the effect of intravenous EPO on death 
and disability at 24 months in term or near-term infants 
who suffered from moderate or severe HIE (174). The 

HEAL trial (NCT02811263; study completion September 
2022), a multicenter, double-blind, randomized, placebo-
controlled trial, investigated the efficacy of intravenous EPO  
(1,000 U/kg) on postnatal days 1 (<24 h after birth), 2, 3, 
4, and 7 on 500 participants. The trial did not result in a 
lower risk of death or neurodevelopmental impairment 
than placebo at 2 to 3 years of age (175). There was also 
no effect of EPO on seizure burden (176) or any effects 
of EPO treatment on biomarkers of neuroinflammation 
or brain injury (177). In addition, infants who were 
administered EPO had a significantly higher likelihood of 
experiencing thrombosis, and a greater number of serious 
adverse events were seen in the EPO group compared 
to those who received placebo (175,178). The authors 
postulated that since both hypothermia and EPO may 
activate similar neuroprotective pathways during the acute 
phase of hypoxic-ischemic injury (179), the use of TH 
during the trial might have minimized the potential for 
additional benefits from EPO. Other explanations include 
potential toxic or suboptimal dosing of EPO or the timing 
of administration, and the different injury mechanisms in 
human neonates as compared to preclinical models. Of 
note, EPO may still be beneficial in low- or middle-income 
countries where TH is unavailable (180), or in infants with 
milder forms of HIE (181).

Research on the therapeutic use of allopurinol for HIE 
began in the late 1990s and early 2000s. Hypoxia leads to 
an accumulation of hypoxanthine due to ATP depletion. 
During the reperfusion stage, hypoxanthine is subsequently 
catabolized by xanthine oxidase into free radicals and 
superoxide, known to be toxic for the developing brain 
(124,182). Allopurinol is a xanthine-oxidase inhibitor; thus 
it acts in the latent and secondary energy failure phase 
of HIE (129). Several studies in rodents and piglets with 
and without hypothermia have shown the neuroprotective 
effects of allopurinol (154,167,183). The pharmacokinetics 
and pharmacodynamics of allopurinol have been described 
in neonates with HIE (184). Interestingly, a randomized, 
double-blind, placebo-controlled multicenter trial reported 
that maternal allopurinol treatment during suspected fetal 
hypoxia resulted in significantly lower S100β and neuroketal 
values, which serve as surrogate measures of brain damage, 
in the umbilical cord blood exclusively in female neonates. 
The authors concluded that perinatal maternal treatment 
with allopurinol may specifically benefit female neonates 
compared to their male counterparts (185). Interestingly, 
this sex difference was also seen in earlier preclinical studies, 
that suggested sex-specific benefits of allopurinol on chronic 

https://clinicaltrials.gov/ct2/show/NCT02811263


Translational Pediatrics, Vol 12, No 8 August 2023 1561

© Translational Pediatrics. All rights reserved.   Transl Pediatr 2023;12(8):1552-1571 | https://dx.doi.org/10.21037/tp-23-253

outcomes after HIE in females (154). Although a meta-
analysis of randomized controlled studies investigating the 
use of allopurinol in newborns with suspected HIE did not 
find a significant difference in the risk of death or composite 
outcomes of death and severe neurodevelopmental disability, 
these studies were too small to rule out the beneficial effect 
of this intervention (186). An ongoing phase III clinical trial 
(NCT03162653) aims to recruit 846 neonates to evaluate 
the effectiveness of allopurinol as an adjunctive treatment to 
TH (187).

In the early 2000s, studies began investigating the 
potential neuroprotective effects of melatonin for HIE. 
Melatonin is a hormone produced by the pineal gland 
that follows a circadian rhythm. Melatonin acts through 
receptors, such as MT1, MT2, and MT3, which are highly 
expressed in the fetal brain and leptomeninges. Its role in 
brain growth and development has been well established 
(188-190). Melatonin acts both as a potent scavenger 
of superoxide anions and stimulates the synthesis of 
antioxidant enzymes, thereby acting as a direct and indirect 
antioxidant (191,192). It has neuroprotective effects in HIE 
by acting in the latent and secondary energy failure phase of 
HIE (129). It also promotes neuronal and glial development 
(193,194) and has anti-apoptotic and anti-inflammatory 
properties (195). Preclinical studies were performed on 
piglets with and without TH and in lambs without TH 
with promising results (196). Clinically, there is a need for 
large, well-designed, and adequately powered randomized 
clinical trials for the use of melatonin in infants with HIE 
(197,198). To date, five (one study currently ongoing, 
NCT02621944) of the six trials performed in term neonates 
used melatonin’s enteral route of administration but the 
pharmacokinetic profiles have not been reported (198). The 
oral bioavailability is less certain in newborns due to higher 
gastric pH, lower superior mesenteric arterial blood flow 
and delayed gastric emptying (199). A randomized placebo-
controlled trial conducted on infants with moderate-
severe HIE (n=25 in each group) investigated the effects 
of intravenous melatonin (5 mg/kg as 2 h infusion) on 
postnatal days 1 (<6 h after birth), 2, and 3. The study found 
that the treatment improved the cognitive composite score 
but not gross motor function (200).

Studies on the neuroprotective effects of umbilical cord 
blood (UCB) cells for HIE started as early as the late 1990s. 
UCB is rich in hematopoietic and mesenchymal stem cells, 
endothelial progenitor cells, mononuclear cells and growth 
factors (201). UBC has anti-inflammatory, anti-apoptotic 
and neurogenerative properties (201,202) by reducing 

injury during the tertiary phase of neonatal hypoxic  
injury (130). Further, it has several advantages over other 
stem cell sources, including easy accessibility, non-invasive 
banking, lower risk of graft versus host disease, and 
multi-lineage differentiation potential (203). Thus, UCB 
intravenous transplantation is a particularly promising 
approach for the treatment of HIE, with a wide range 
of potential applications. Several preclinical studies have 
evaluated the potential of stem cell therapy for HIE. A 
meta-analysis concluded that about 80% of these studies 
found a significant improvement of cognitive and/or 
sensorimotor function, as well as decreased brain damage. 
That said, only a few have evaluated TH in addition to stem 
cell transplant (204). A phase 1 clinical study by Cotten  
et al. (205) showed the feasibility and safety of intravenous 
infusion of UCB cells for infants with HIE. These findings 
were confirmed by a more recent phase 1 trial by Tsuji  
et al. (206). Here, UBC were collected from six newborns 
with severe HIE, processed, and divided into up to four doses, 
which were infused at 12–24, 36–48, and 60–72 hours after 
birth. At 30 days of age, all six infants survived without 
requiring circulatory or respiratory support, and at  
18 months of age, four of the infants had normal 
neurological  development,  while two infants had 
delayed development with cerebral palsy. A phase 2 
multi-site double-blinded randomized controlled trial 
(NCT02612155) was initiated in 2016. However, the study 
was prematurely stopped after only 35 out of the planned 
160 infants were randomized, due to slow enrollment and 
the logistical complexities of collecting from sick infants, 
and processing and infusing UCB within the first postnatal 
hours. The authors performed a pilot phase 1 trial utilizing 
cryopreserved allogenic mesenchymal stromal cells (MSC) 
from cord tissue. Six neonates with moderate or severe HIE 
were enrolled and received one infusion of MSC during 
TH, 2 infants also received a second dose 2 months later. All 
infants survived and between the age of 12 and 17 months 
underwent developmental evaluation, which ranged from 
average to low-average (207). Although short-term safety 
signals for UCB cells transplantation have been reassuring, 
further work is needed to establish the safety and efficacy of 
cell therapy for brain injury in newborn infants. 

Thus far no agent in combination with TH, as compared 
to TH alone, has demonstrated a statistically significant 
advantage in terms of mortality and morbidity for neonates 
with HIE. That said, a recent meta-analysis found that 
length of hospitalization was significantly reduced when a 
neuroprotective therapy, such as antioxidants, UBC cells, 
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GABA receptor agonists, NMDA receptor antagonists, 
neurogenic and angiogenic agents, and glucocorticoids, 
was used in conjunction with TH, as compared to TH  
alone (208). In addition, although it is generally agreed that 
these therapies should be evaluated in combination with TH 
to determine their potential to improve overall outcomes, 
investigating their effects as standalone interventions 
offer a valuable alternative for situations where TH is not 
feasible or available, such as in low-income settings or 
when neonates are beyond the optimal window for TH  
(Table 1). Further, when interventions fail to demonstrate 
clinical success despite promising preclinical and early clinical 
data, it is important to consider factors such as optimal 
dosage timing and method of administration (209), as well 
as the potential for synergistic effects when combined with 
other interventions, and how neuroprotective efficacy differs 
in males and females.

Sex differences can have a significant impact on outcomes 
after HIE (103,106,150,210,211). Males and females have 
been shown to exhibit different physiological responses 
to injury and inflammation in preclinical models of HIE 
(103,105,212). As such, future studies must consider sex as 
a biological variable to ensure that both sexes are optimally 
treated. By accounting for sex differences in HIE, we can 
potentially identify new targets for therapy and improve 
outcomes for all patients. As a final note, new treatments 
for HIE were often developed based on knowledge gained 
from adult-related conditions (209). However, children are 
not small adults, as factors like weight, body surface area, 
and gene expression patterns may not correspond with  
age (213). Distinctions between newborns and adults have 
been uncovered in terms of brain injury development. 
These differences are attributed to variations in brain 
receptor and enzyme properties, as well as the differing 
development stages of the liver and kidneys (214), which 
play a major role in drug clearance.

Conclusions

HIE is one of the leading causes of pediatric death 
and disability worldwide. TH was a pivotal milestone 
in improving care for these neonates. However, many 
patients, even if treated with TH, will develop chronic 
neurological impairments. Notably, neonates who initially 
appear neurologically intact after experiencing HIE are 
still at risk of experiencing cognitive, behavioral, and 

social impairments later in life. Hence the importance 
of long-term follow-up for all patients, including those 
diagnosed with mild HIE, into childhood and adolescence 
to provide appropriate support, treatment, and academic 
accommodations as needed. A limitation of this narrative 
review is that it uses data printed in English, and most data 
(especially long-term outcomes) are from the USA and 
resource-rich countries. More research needs to be done 
investigating long term outcomes of HIE in low-resource 
settings.

The high personal and social burden caused by HIE, 
despite TH implementation, calls to the need for adjunctive 
neuroprotective treatments to improve the outcomes for 
these neonates. Over the years, several neuroprotective 
therapies have been explored, and a handful, such as EPO, 
UCB cells, allopurinol, and melatonin, have advanced to 
phase 2 clinical trials and beyond. While these treatments 
have shown promising results in preclinical studies, clinical 
trials have yet to demonstrate a significant advantage over 
TH alone. Further research is needed to optimize the 
dosage, timing, and method of administration of these 
therapies, while also investigating potential sex differences 
in their efficacy. While it is crucial to evaluate these 
therapies in combination with TH to determine their 
potential to improve overall outcomes, it is also important 
to investigate the effects of these treatment strategies as 
standalone interventions as they offer a valuable alternative 
for situations where TH is not feasible or available. While 
it would be considered unethical to conduct clinical trials 
testing neuroprotective treatments without TH in patients 
who qualify for the standard of care (at centers where 
TH is available), it is feasible to design clinical trials to 
evaluate these therapies for neonates who present outside 
of the therapeutic window for TH. Additionally, research 
must consider the unique developmental characteristics 
of neonates, as they are not simply small adults or small 
children, and they have distinct biological factors that may 
affect drug response and clearance. Given the remarkable 
maturation of the neonatal brain and the enduring effects of 
early brain injury, translational research on treatments that 
facilitate physiologic conditions for neuroplasticity during 
development could be particularly effective.

In summary, continued research in the field of 
neuroprotection for HIE is crucial to improve outcomes for 
affected neonates. Through the collaboration of scientists, 
clinicians, medical providers, and families, we can strive to 
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find effective neuroprotective treatments for HIE that will 
improve the lives of these vulnerable infants.
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