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Background: Sepsis is the second-leading cause of death in neonates. We established a predictive 
nomogram to identify critically ill neonates early and reduce the time to treatment.
Methods: It is a retrospective case-control study based on the MIMIC-III database. The study population 
comprised 924 neonates diagnosed with sepsis.
Results: Neonates with sepsis included in the MIMIC-III database were enrolled, including 880 surviving 
neonates and 44 neonates who died. In the derivation dataset, stepwise regression and the Lasso algorithm 
were employed to select predictive variables, and the neonatal sequential organ failure assessment score 
(nSOFA) was calculated simultaneously. Bootstrap resampling was utilized to perform internal validation. 
The results indicated that the Lasso algorithm displayed superior discrimination, sensitivity, and specificity 
relative to stepwise regression and nSOFA scores. After 500 bootstrap resampling tests, the area under the 
receiver operating characteristic curve (AUC) of the Lasso algorithm was 0.912 (95% CI: 0.870–0.977). The 
nomogram based on the Lasso algorithm outperformed stepwise regression and nSOFA scores in terms of 
calibration and the clinical net benefit. This nomogram can assist in prognosticating neonatal severe sepsis 
and aid in guiding clinical practice while concurrently improving patient outcomes.
Conclusions: The established nomogram revealed that jaundice, corticosteroid use, weight, serum 
calcium, inotropes and base excess are all important predictors of 28-day mortality in neonates with sepsis. 
This nomogram can facilitate the early identification of neonates with severe sepsis. However, it still requires 
further modification and external validation to make it widely available.

Keywords: Sepsis; neonates; 28-day mortality; MIMIC database; nomogram

Submitted Mar 07, 2023. Accepted for publication Aug 02, 2023. Published online Sep 05, 2023.

doi: 10.21037/tp-23-150

View this article at: https://dx.doi.org/10.21037/tp-23-150

1706

	
^ ORCID: Yongzhou Liang, 0000-0001-6782-6497; Liqing Zhao, 0000-0002-8268-4770; Jihong Huang, 0000-0001-7925-7244; Yurong 
Wu, 0000-0002-3311-2266.

https://crossmark.crossref.org/dialog/?doi=10.21037/tp-23-150


Translational Pediatrics, Vol 12, No 9 September 2023 1691

© Translational Pediatrics. All rights reserved.   Transl Pediatr 2023;12(9):1690-1706 | https://dx.doi.org/10.21037/tp-23-150

Introduction

Neonatal death pertains to the death of live-born infants 
within the initial 28 days of life. Prematurity, neonatal 
sepsis and intrapartum-related complications are the most 
prevalent causes of neonatal death (1). Sepsis should be 
defined as life-threatening organ dysfunction resulting 
from a dysregulated host response to infection (2) and 
is perceived as the second-leading cause of death in  
neonates (3). A recent study on the global occurrence of 
neonatal sepsis indicated the incidence of 2,824 per 100,000 
live births with a mortality rate up to 17.6% (4). Milton et al. 
reported an all-cause mortality of 5.65 per 1,000 neonate-
days for those with clinically suspected and laboratory-
confirmed neonatal sepsis (5). Despite the declining global 
case fatality rates of severe sepsis and septic shock in 
children over the past 30 years, the morbidity of neonatal 
sepsis is still underestimated due to the lack of a diagnostic 
gold standard (6). Sepsis carries a significant economic 
burden in low- and middle-income nations, amounting to 
over $7 billion in annual healthcare costs in the United 
States (7,8). Neonatal sepsis generally presents with diverse 
manifestations and non-specific laboratory results, which 
can rapidly progress to severe illness. Furthermore, the 
World Health Organization (WHO) recently accentuated 
that prevention can decrease sepsis morbidity and  
mortality (9). As such, the early detection and diagnosis of 
severe sepsis are imperative.

Currently, there are several prognostic tools available 
for identifying critical neonatal sepsis (10,11), including the 
Pediatric Logistic Organ Dysfunction score (PELOD), the 
Updated PELOD-2 score, Pediatric Risk of Mortality III 

scales (PRISM-III), Pediatric Multiple Organ Dysfunction 
score (P-MODS) and neonatal sequential organ failure 
assessment score (nSOFA). The PELOD score and 
PELOD-2 score included 12 and 10 factors, respectively, 
comprising five different organ dysfunctions, whereas 
the PRISM-III scales evaluated as many as 17 variables 
(12-14). These tools have limited operability and can 
be cumbersome, leading to time wastage and thus, are 
not applicable to newborns. Additionally, PELOD (or 
PELOD-2) shares commonalities with the P-MODS score 
and neglect to take into account the unique physiological 
traits of neonates and perinatal-related factors. Although 
nSOFA is simple and convenient, it  only includes 
respiration, circulation and blood system score (15). Bestati 
et al. (16) has demonstrated that the individual correlation 
of neurological and hepatic dysfunction with neonatal 
mortality is absent in the evaluation of the nSOFA, resulting 
in a potential shortcoming. More recently, the machine 
learning (ML) algorithms have been utilized to forecast 
neonatal mortality in order to develop more effective  
tools (17), their restricted interpretability may hinder their 
usefulness in evaluating the prognosis of neonatal sepsis (18).

An urgent need exists for a straightforward and effective 
tool to predict neonatal sepsis mortality. Among the 
statistical visual tools available, nomogram has demonstrated 
concise and efficient performance when compared to 
traditional methods. With the evolution of statistical 
theory, nomograms have increasingly gained recognition 
and attention. Nomograms have indicated excellent 
performance in predicting late-onset sepsis in preterm 
infants with thyroid dysfunction (19) and have been widely 
used to determine the prognosis of critically ill patients in 
recent years (20,21). Currently, there is no relevant research 
that utilizes the nomogram as an instrument to foretell the 
mortality rate of neonatal sepsis to our understanding.

This study had dual objectives: firstly, to establish 
a nomogram by extracting neonatal demographic and 
comprehensive clinical data from the Medical Information 
Mart for Intensive Care III (MIMIC-III v1.4) database. 
Secondly, to compare the performance of the established 
nomogram with the nSOFA in predicting the mortality of 
neonates with sepsis within a 28-day period. Ultimately, 
the goal of our study is to establish a robust model to 
enable early identification of newborns at critically 
septic stages, which may help doctors to make informed 
treatment decisions based on a theoretical basis. We present 
this article in accordance with the TRIPOD reporting 
checklist (available at https://tp.amegroups.com/article/

Highlight box

Key findings
•	 Jaundice, weight, serum calcium, base excess, corticosteroids and 

inotropes were correlated with mortality in neonates with sepsis.

What is known and what is new?
•	 Sepsis is the second-leading cause of death in neonates, early 

identification and diagnosis of severe sepsis can improve neonatal 
outcomes.

•	 The nomogram will facilitate rapid identification of severe neonatal 
sepsis and will help clinicians make the right treatment decisions.

What is the implication, and what should change now?
•	 There is no accurate and concise method to identify neonates with 

severe sepsis, and it is necessary to develop and validate a tool for 
early identification of critically ill neonates.

https://tp.amegroups.com/article/view/10.21037/tp-23-150/rc
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view/10.21037/tp-23-150/rc).

Methods

Database and study population

This was a retrospective case-control study based on the 
MIMIC-III database. The MIMIC-III (v1.4) database is 
an open-access research database comprising information 
relating to the Intensive Care Unit (ICU) patients from 
the Beth Israel Deaconess Medical Center (Boston, MA, 
USA) between 2001 and 2012 (22). To extract data from the 
MIMIC-III database, we completed the National Institutes 
of Health’s Protecting Human Research Participants 
(certification No. 44980177) web-based course.

Identity information and comprehensive clinical data 
of patients were integrated into the MIMIC-III database, 
which includes a total of 7,870 neonates. Since neonates 
were not directly involved, this study did not receive 
approval from the Institutional Review Committee board 
of Xinhua Hospital, Shanghai Jiaotong University, School 
of Medicine, Shanghai, China. The study was conducted 
in accordance with the Declaration of Helsinki (as revised 
in 2013). The study was approved by the Massachusetts 
Institute of Technology (Cambridge, MA, USA) and Beth 
Israel Deaconess Medical Center (Boston, MA, USA), and 
individual consent for this retrospective analysis was waived.

Data extraction

Neonates who met the criteria for sepsis in the MIMIC-
III database were included in this study. Sepsis was defined 
according to the Sepsis-3 criteria (2,23). Clinical data for 
the first clinical features of patients after admission were 
extracted from the MIMIC-III database using structured 
query language (SQL), including demographics, vital signs 
and laboratory tests. Comorbidities were identified using 
ICD-9 codes, including respiratory distress syndrome 
(RDS), jaundice, acute kidney injury (AKI) and others. AKI 
was diagnosed based on the Kidney Disease: Improving 
Global Outcomes (KDIGO) guidelines as an increase in 
serum creatinine (Scr) of 0.3 mg/dL or more (24). Data on 
medications, urine output and intravenous fluid volume 
within the first 24 h after ICU admission were extracted.

The primary outcome of this study was neonatal death, 
defined as death occurring within 28 d during hospitalization 
in the Neonatal Intensive Care Unit (NICU). In addition, 
the sequential organ failure assessment (SOFA) score of 
the neonates was extracted as a model. The nSOFA score 

uses categorical scores [total score ranging from 0 (best) to 
15 (worst)] to objectively assess the condition of patients, 
with increasing scores indicating worse organ dysfunction 
(15,25), as follows: (I) receipt of mechanical ventilation and 
oxygen to maintain physiological peripheral saturation, with 
scores ranging from 0 to 8; (II) inotropic or vasoactive drug 
support, including the use of corticosteroids for presumed 
adrenal insufficiency or catecholamine-resistant shock, 
with scores ranging from 0 to 4; and (III) the presence and 
severity of thrombocytopenia based on the most recent 
platelet measure, with scores ranging from 0 to 3.

Missing data handling

Demographic information was complete, but missing data 
on laboratory tests and physiological items are common 
in the MIMIC-III database. However, if patients with 
incomplete data or incomplete variables are eliminated, 
a large bias would be produced. Therefore, in the study, 
patients or variables with more than 50% missing values 
were eliminated. Finally, the missing values in the 
database were replaced with the method “norm.predict” 
in Multivariate Imputation by Chained Equation (MICE), 
in which every variable is imputed conditional on all other 
variables (26).

Sample size and calculation

To precisely estimate the overall outcome risk or mean 
outcome value in our study, the required sample size was 
calculated as follows (27):

( )2
1.96 / 1n δ ϕ ϕ

∧ ∧

= − ⋅ ⋅ 
 

  	 [1]

The anticipated outcome proportion (ϕ
∧

) in our study 
was 0.05, and the absolute margin of error (δ) was generally 
recommended to be less than 0.05. According to Eq. 
[1], the sample size required for the study was at least  
73 participants.

To acquire a small prediction error in the estimated 
outcome probabilities across all individuals, the required 
sample size was calculated as follows (27):

( ) ( ) ( ) ( )ln 0.508 0.544ln 0.259ln 0.504ϕ= − − + +MAPE n P 	 [2]

The mean absolute prediction error (MAPE) was 
no larger than 0.050. Moreover, 30 candidate predictor 
parameters (P) were extracted from the MIMIC-III 
database. According to Eq. [2], the sample size required for 

https://tp.amegroups.com/article/view/10.21037/tp-23-150/rc
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the study was at least 544 participants.
The study included neonates with sepsis who were 

admitted the NICU between 2001 and 2012, with an 
estimated sample size of 924.

Statistical analysis

Based on neonatal in-hospital death or survival as the 
dependent variable, we divided all neonates into two groups. 
Demographics, vital signs, laboratory tests, medications 
and comorbidities were defined as independent variables. 
According to the normality of distribution, continuous 
variables are presented as the mean ± SD for parametric 
variables or as the median and IQR for nonparametric 
variables. Categorical variables are expressed as numbers 
and percentages. For continuous variables, unpaired 
Student’s test and Wilcoxon rank sum tests were used to 
assess significant differences between the two groups. For 
all categorical variables, the significant difference between 
the two groups was compared using the χ2-test or Fisher’s 
exact test.

Figure 1 shows the process of data acquisition, with  
924 neonates included in our study. Based on the groupings 
described previously, we compared significant differences 
among the independent variables. Moreover, according 
to the dependent and independent variables described 
previously, a univariate logit binomial general linear model 
(GLM) was performed. The independent variables with 
P<0.05 in univariate analysis were incorporated into the 
GLM for stepwise regression analysis to further identify 
risk factors and establish a model (Further information 
regarding the model can be found in the Appendix 1 

Supplement methods). The least absolute shrinkage and 
selection operator (LASSO) method was also used to screen 
variables, which can avoid overfitting by imposing a penalty 
on the magnitude of the model coefficients (28), and another 
model was established. To avoid multicollinearity among 
the variables, we employed both Pearson and nonparametric 
Spearman correlation matrices (29), with specific details 
presented in Figure S1. Additionally, the variance inflation 
factor (VIF) value of 5 or higher indicates the presence of 
multicollinearity (30). We examined potential nonlinear 
relationships between candidate continuous variables and 
death using restricted cubic splines and the Box-Tidwell 
test. Discrimination was assessed by the receiver operating 
characteristic (ROC) curve and area under the ROC curve 
(AUC), while calibration curves were plotted to assess model 
accuracy. Decision curve analysis (DCA) was also conducted 
to quantify the clinical net benefit at different threshold 
probabilities (31). Internal validation of the models and 
nSOFA score was performed using 500 bootstrap resamples 
and we compared the performance of the three models 
by calculating sensitivity, specificity, accuracy, integrated 
discrimination improvement (IDI), and net reclassification 
improvement (NRI). A nomogram was used to create a visual 
representation of the optimal model. This visualization tool 
includes graphic scoring which calculates the probability of a 
clinical event (32).

The SOFA (Sequential Organ Failure Assessment) score 
was originally developed to assess the severity of organ 
dysfunction or failure and was not designed to predict the 
risk of death (33). In recent years, the SOFA score has been 
extensively used to evaluate patient mortality (34,35), and 
the modified SOFA score (Table S1) has also been used 

Newborns who met sepsis-3 
criteria (n=1,977)

Excluded cases (n=1,053):
(I) Individuals with more than 50% of 

variables missing (n=863)
(II) More than 50% missing values for 

serum creatinine, calcium, and 
blood urea nitrogen levels (n=190)

Eligible cases (n=924)

Survival 
(n=880)

Death (n=44)

Figure 1 Flow chart for newborns screening process.

https://cdn.amegroups.cn/static/public/TP-23-150-Supplementary.pdf
https://cdn.amegroups.cn/static/public/TP-23-150-Supplementary.pdf
https://cdn.amegroups.cn/static/public/TP-23-150-Supplementary.pdf
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to assess the risk of death in newborns (15). The SOFA 
score was validated in this study and compared with our 
developed model in terms of discrimination, calibration and 
the clinical net benefit.

All statistical tests were two-sided, and P values ≤0.05 
were considered to be statistically significant. We used R 
statistical software (V.4.1.1; https://www.R-project.org) and 
SPSS statistical software (SPSS Statistics 25.0) for statistical 
analyses.

Results

Baseline characteristics of the included neonates

A total of 1,977 neonates from the MIMIC-III database 
who met the Sepsis-3 criteria were included. A total of  
1,053 neonates were excluded, including 863 patients with 
more than 50% missing variables and 190 patients with 
deficient creatinine, calcium and blood urea nitrogen levels. 
Table S2 provides comprehensive details on how the remaining 
missing values were handled. The selection procedure of the 
study population is shown in Figure 1. Ultimately, 924 patients  
were enrolled in our study, of whom 44 patients died and  
880 patients were still alive after 28 days.

The comparisons of demographics and variables for the 
derivation dataset between patients who died and those 
who survived during hospitalization are shown in Table 1.  
The incidence of AKI was higher in the non-surviving 
group. Patients who died had lower serum bicarbonate, 

hematocrit, hemoglobin, RDW, calcium, bilirubin, base 
excess, weight, height, pO2/FiO2_mean and 24-hour urine 
levels. However, the levels of creatinine, chloride and pCO2 
in patients who died within 28 days were significantly 
increased. Additionally, more patients received systemic 
corticosteroids and inotropes in the non-surviving group. 
The nSOFA score of the non-surviving group was higher 
than that of the surviving group, which was consistent with 
previous reports. There was no significant difference in 
other variables between the surviving and non-surviving 
groups.

Selected features

Univariable and stepwise regression analysis was used to 
assess variables associated with death (Table 2). As shown in 
Table 2, stepwise regression analysis screened 5 candidate 
predictors with P values <0.05.

Figure 2 shows the results of 32 variables that were 
incorporated into the Lasso regression algorithm from the 
derivation group. Lasso regression was performed with a λ 
of 0.021 (one standard error of the minimum λ), and only 
12 variables remained in the model. To make the model 
include fewer variables, lasso regression was performed with 
a λ of 0.028, and a total of 6 variables entered the model, 
which may be the most important candidate predictors 
for developing the model, including corticosteroid use, 
inotropes, jaundice, weight, serum calcium and base excess, 
as shown in Table 3.

Table 1 Comparison of the baseline characteristics of septic neonates with different outcomes

Characteristic Overall (N=924)
Outcome

P
Survival (N=880) Death (N=44)

Demography

Gender, male 513 (55.5) 486 (55.2) 27 (61.4) 0.520

Age, hours 13.60 [8.10, 19.30] 13.62 [8.00, 19.31] 12.40 [9.93, 18.60] 0.968

Weight, kg 1.45 [1.04, 2.10] 1.46 [1.07, 2.11] 0.92 [0.69, 1.53] <0.001

Height, cm 40.33±5.78 40.54±5.66 36.08±6.41 <0.001

Vital signs

Heartrate, bmp 143.00±10.21 142.88±10.14 145.50±11.21 0.096

pO2/FiO2mean 200.00 [154.17, 277.52] 210.00 [159.09, 284.15] 131.35 [95.25, 197.60] <0.001

Table 1 (continued)

https://cdn.amegroups.cn/static/public/TP-23-150-Supplementary.pdf
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Table 1 (continued)

Characteristic Overall (N=924)
Outcome

P
Survival (N=880) Death (N=44)

Laboratory tests

Hematocrit, % 46.91±7.39 47.04±7.26 44.32±9.35 0.017

Hemoglobin, g/dL 15.60±2.45 15.64±2.42 14.78±2.92 0.023

Platelet, K/µL 249.33±84.03 250.36±83.97 228.82±83.58 0.097

RDW, % 16.90 [16.20, 17.80] 16.93 [16.22, 17.80] 16.15 [15.50, 17.12] 0.004

WBC, K/µL 9.30 [6.40, 13.40] 9.34 [6.46, 13.33] 10.20 [5.45, 13.57] 0.717

Neutrophils, K/µL 30.69±17.30 30.74±17.32 29.63±16.99 0.677

Lymphocytes, K/µL 56.80±18.54 56.73±18.50 58.14±19.56 0.624

Anion gap, mmol/L 16.33±3.63 16.28±3.50 17.36±5.57 0.053

Bicarbonate, mmol/L 20.94±3.16 20.99±3.10 19.91±4.09 0.027

Chloride, mmol/L 106.67±5.05 106.58±5.04 108.61±4.98 0.009

Calcium, mg/dL 9.68±1.39 9.76±1.33 8.08±1.56 <0.001

Serum potassium, mEq/L 4.89±1.05 4.90±1.05 4.86±0.99 0.859

Serum sodium, mEq/L 139.02±4.66 138.92±4.62 141.07±4.91 0.003

Bilirubin, mg/dL 4.93±1.95 5.03±1.92 3.02±1.35 <0.001

Creatinine, mg/dL 0.69±0.33 0.68±0.32 0.87±0.34 <0.001

BUN, mg/dL 17.00 [12.00, 26.00] 17.70 [12.00, 26.00] 18.00 [14.50, 24.25] 0.414

pCO2, mmHg 47.90±11.90 47.60±11.35 54.00±19.15 <0.001

Base excess, mmol/L −2.00 [−4.00, 0.00] −2.10 [−3.98, −0.97] −4.50 [−10.25, −2.00] <0.001

Comorbidities

Jaundice 798 (86.4) 779 (88.5) 19 (43.2) <0.001

RDS 703 (76.1) 673 (76.5) 30 (68.2) 0.281

AKI (24 h) 57 (6.2) 47 (5.3) 10 (22.7) <0.001

Others 381 (41.2) 364 (41.4) 17 (38.6) 0.840

Score

nSOFA 4.00 [2.00, 6.00] 4.10 [2.10, 5.10] 7.00 [5.00, 9.25] <0.001

Treatment

Liquid intake, mL/d 131.78±54.67 132.39±53.77 119.60±70.09 0.130

Urine out, mL/d 86.93±47.55 89.16±47.13 42.18±31.38 <0.001

Corticosteroid 47 (5.1) 32 (3.6) 15 (34.1) <0.001

Inotropes 123 (13.3) 95 (10.8) 28 (63.6) <0.001

Data are presented as the mean ± SD, median [IQR], or numbers and percentages. RDW, red blood cell distribution width; WBC, white 
blood cell; BUN, blood urea nitrogen; RDS, respiratory distress syndrome; AKI, acute kidney injury; nSOFA, neonatal sequential organ 
failure assessment.
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Table 2 Factors associated with death among septic neonates

Variables
Univariate analysis Multivariate analysis

OR (95% CI) P OR (95% CI) P

Demography

Gender, male 1.30 (0.69, 2.40) 0.430

Age, hours 1.00 (0.97, 1.01) 0.760

Weight, kg 0.38 (0.22, 0.66) 0.001 0.47 (0.28, 0.81) 0.006

Height, cm 0.87 (0.82, 0.92) 0.000

Vital signs

Heartrate, bmp 1.00 (0.99, 1.10) 0.096

pO2/FiO2mean 0.97 (0.96, 0.99) 0.000 0.98 (0.97, 0.99) 0.000

Laboratory tests

Hematocrit, % 0.96 (0.93, 0.99) 0.017

Hemoglobin, g/dL 0.88 (0.79, 0.98) 0.023

Platelet, K/µL 1.00 (0.99, 1.01) 0.096

RDW, % 0.85 (0.72, 1.00) 0.066

WBC, K/µL 0.98 (0.94, 1.00) 0.520

Neutrophils, K/µL 1.00 (0.98, 1.02) 0.680

Lymphocytes, K/µL 1.00 (0.99, 1.01) 0.620

Anion gap, mmol/L 1.10 (1.00, 1.20) 0.053

Bicarbonate, mmol/L 0.90 (0.82, 0.99) 0.025 0.91 (0.81, 0.98) 0.027

Chloride, mmol/L 1.10 (1.00, 1.20) 0.009

Calcium, mg/Dl 0.52 (0.43, 0.62) 0.000

Serum potassium, mEq/L 0.97 (0.73, 1.30) 0.860

Serum sodium, mEq/L 1.10 (1.00, 1.20) 0.003 1.09 (1.01, 1.16) 0.018

Bilirubin, mg/dL 0.43 (0.34, 0.55) 0.000

Creatinine, mg/dL 3.70 (1.80, 7.60) 0.000 4.38 (1.91, 10.05) 0.001

BUN, mg/dL 1.00 (0.98, 1.01) 0.600

pCO2, mmHg 1.00 (0.91, 1.10) 0.001

Base excess, mmol/L 0.86 (0.82, 0.91) 0.000

Comorbidities

Jaundice 0.10 (0.05, 0.19) 0.000

RDS 0.66 (0.34, 1.30) 0.210

AKI (24 h) 5.20 (2.40, 11.00) 0.000

Others 0.89 (0.48, 1.70) 0.720

Treatment

Liquid intake, mL/d 0.99 (0.99, 1.00) 0.130

Urine out, mL/d 0.96 (0.95, 0.97) 0.000

Corticosteroid 14.00 (6.70, 28.00) 0.000

Inotropes 14.00 (7.50, 28.00) 0.000

RDW, red blood cell distribution width; WBC, white blood cell; BUN, blood urea nitrogen; RDS, respiratory distress syndrome; AKI, acute 
kidney injury; nSOFA, neonatal sequential organ failure assessment.
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Model development

For the derivation dataset, candidate variables obtained by 
lasso regression that had a significant effect on inhospital 
death are shown in Table 3. In addition, candidate variables 
with statistically significant differences in stepwise regression 
analysis were included in the binary logistic regression, 
as shown in Table 2. Ultimately, the following 6 candidate 
factors, identified as statistically significant variables using 
the multivariate likelihood ratio (LR), were included in the 
Lasso regression algorithm: jaundice (OR 0.05, P=0.001), 
corticosteroid use (OR 3.81, P=0.011), weight (OR 0.22, 
P=0.001), serum calcium (OR 0.53, P=0.001), inotropes 
(OR 3.58, P=0.004) and base excess (OR 0.94, P=0.048). 
Correspondingly, the binary logistic regression model 

incorporated a total of 5 variables from the derivation 
dataset, which included weight (OR 0.47, P=0.006), pO2/
FiO2_mean (OR 0.98, P=0.000), bicarbonate (OR 0.91, 
P=0.027), serum sodium (OR 1.09, P=0.018) and creatinine 
(OR 4.38, P=0.001). Ultimately, both the lasso and binary 
logistic regression models exhibited no nonlinearity 
relationships in the continuous variables, as depicted 
in Figure 3. A linear correlation was observed between 
nSOFA score and mortality. The candidate variables 
did not exhibit multicollinear relationships (Figure S1),  
and the VIFs are presented in Table 4. We developed two 
regression models, the lasso regression model and binary 
logistic regression model, using the candidate variables 
screened earlier.

Validation and comparison of the models

The discrimination of the two models and the nSOFA 
score in the derivation dataset was assessed using the ROC 
curve. In the derivation dataset, the AUC values of three 
prediction models, namely the stepwise regression model, 
Lasso algorithm model, and nSOFA score, were determined 
as 0.784 (95% CI: 0.703–0.866), 0.924 (95% CI: 0.869–
0.978), and 0.807 (95% CI: 0.728–0.866), respectively 
(Table S3). Following 500-times bootstrap resampling, 
the values changed to 0.763 (95% CI: 0.695–0.874), 0.912 
(95% CI: 0.870–0.977), and 0.807 (95% CI: 0.732–0.883) 
(Figure 4). The discrimination of the LASSO algorithm 
model was better than that of the stepwise regression 

Table 3 LASSO selected predictors

Variables
LASSO selected predictors

OR (95% CI) P

Jaundice 0.05 (0.02, 0.14) 0.001

Corticosteroid 3.81 (1.35, 10.72) 0.011

Weight, kg 0.22 (0.11, 0.43) 0.001

Calcium, mg/dL 0.53 (0.40, 0.69) 0.001

Inotropes 3.58 (1.50, 8.55) 0.004

Base excess, mmol/L 0.94 (0.88, 0.99) 0.048

LASSO, the least absolute shrinkage and selection operator.
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Figure 2 Variables selection by the LASSO regression. (A) The tuning parameter (λ) in the LASSO model was selected by 10-fold cross-
validation via minimum criteria. The partial likelihood deviance (binomial deviance) curve was plotted versus log(λ). The results showed 
that 23 variables were retained when the error was the smallest, which corresponded to the dotted line on the left. To avoid overfitting and 
simplicity of the model, 12 variables were retained, corresponding to the dotted line on the right, which is the one SE of the minimum 
criteria (the 1−SE criteria). To make the model simpler, lasso regression was performed with λ of 0.028, and a total of 6 variables enter the 
model. (B) LASSO coefficient profiles of the 32 variables. A coefficient profile plot was produced against the log(λ) sequence. A vertical line 
was drawn at the selected optimizing value(λ), corresponding to 6 nonzero coefficients. LASSO, the least absolute shrinkage and selection 
operator; SE, standard error.
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model and nSOFA score (P<0.05) (Figure 5). There was 
no statistically significant difference in the discrimination 
performance between the stepwise regression model and 
the nSOFA score (P=0.418) (Figure 5C). In addition, the 
sensitivity, specificity and accuracy of each model are 
presented in Table S3. The stepwise regression model and 
nSOFA score displayed high sensitivity and accuracy, but 
their specificity was lower. In contrast, the Lasso algorithm 
model demonstrated better sensitivity, specificity, and 
accuracy. Moreover, the calibration curve plot of the Lasso 
algorithm model and nSOFA score model roughly showed 
an ideal diagonal in the derivation dataset (Figure 4D,4F). 
Instead, the stepwise regression model exhibited a relatively 
low consistency among the models (Figure 4B). Decision 
curve analysis (DCA) was applied to evaluate the clinical 
net benefit across the entire range of threshold probabilities 
for each of the three models (Figure 5D). Results indicate 
that the Lasso algorithm model had the highest clinical and 
public health value.

The performance of several models predicting mortality 
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Figure 3 Association of predicted variables with mortality. (A) Weight. (B) pO2/FiO2_mean. (C) Bicarbonate. (D) Sodium. (E) Creatinine. (F) 
Calcium. (G) Base excess. (H) nSOFA. Odds ratios are indicated by solid lines and 95% CIs by shaded areas; Box-Tidwell P-nonlinear <0.05 
indicates a nonlinear relationship; nSOFA, neonatal sequential organ failure assessment score.

Table 4 VIFs for stepwise regression and LASSO regression

Variables VIF

Multivariate analysis

Bicarbonate, mmol/L 1.011

Serum sodium, mEq/L 1.066

Weight, kg 1.058

pO2/FiO2mean 1.003

Creatinine, mg/dL 1.009

LASSO selected predictors

Jaundice 1.332

Corticosteroid 1.138

Weight, kg 1.429

Calcium, mmol/L 1.213

Inotropes 1.208

Base excess, mmol/L 1.195

VIFs, variance inflation factors; LASSO, the least absolute 
shrinkage and selection operator.
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Figure 4 ROC curves and calibration curve for predicting mortality of sepsis neonates. (A) ROC curve for Stepwise regression. (B) 
Calibration curve for Stepwise regression. (C) ROC curve for LASSO. (D) Calibration curve for LASSO. (E) ROC curves for nSOFA. 
(F) Calibration curve for nSOFA. Slope, calibration slope; Optimism index derives from internal validation; ROC, receiver operating 
characteristic; AUC, area under the ROC curve; LASSO, the least absolute shrinkage and selection operator; nSOFA, neonatal sequential 
organ failure assessment score.

in neonatal populations with sepsis was compared (Table S4).  
The Lasso algorithm significantly enhances prediction 
performance compared to that of the stepwise regression 
and nSOFA score. The net reclassification improvement 
(NRI) of Lasso algorithm with respect to stepwise regression 
and nSOFA score are 52.95% and 53.64%, respectively. 
Moreover, Lasso algorithm improved model performance 
validated by integrated discrimination improvement (IDI) 
by 30.93% and 26.98% compared to stepwise regression 
and nSOFA score, respectively. Overall, the Lasso algorithm 
model outperforms both the stepwise regression model and 

nSOFA score in terms of performance.

Development of the best-performing prediction nomogram

The 6 factors had nonzero coefficients in the Lasso 
regression model based on the derivation groups (Table 3),  
which were integrated into the nomogram (R2 =0.526, 
C-index =0.912). A candidate predictor corresponds to a 
unique score and then sums these scores to obtain a total 
score, which corresponds to the total score axis and finally 
to the inhospital mortality axis (Figure 6). Physicians can 
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Figure 6 The nomogram for predicting 28-day in-hospital mortality of sepsis neonates.

make the corresponding treatment decisions according to 
the probability of death that is obtained.

Discussion

Sepsis is a major cause of neonatal death; the mortality of 
sepsis can be reduced by identifying critically ill patients 

early (3). Because the clinical signs at the early stages of 
neonatal sepsis are non-specific, there is currently no 
uniform standard for early identification of critically ill 
patients, resulting in delayed management of critically ill 
patients, which may negatively affect their clinical outcomes. 
Therefore, based on data derived from the MIMIC-III 
database, we selected independent risk factors for mortality 
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of neonates with sepsis by using stepwise regression and 
LASSO regression analysis. Meanwhile, two mortality 
prediction models with independent predictors for neonates 
with sepsis were developed. The optimal model was selected 
by comparing the two prediction models with the nSOFA 
score model. Finally, a neonatal sepsis mortality prediction 
nomogram was developed based on the optimal model. The 
nomogram may facilitate the early identification of neonates 
with severe sepsis and may reduce mortality of critically ill 
patients.

In 2015, neonatal deaths accounted for approximately 
45.1% of children who did not live to 5 years of age, with 
one of the leading causes being sepsis or meningitis (1). A 
study showed mortality ranging from 11% in the USA to 
19% in India (3). Another recent study showed that the 
all-cause mortality of neonatal sepsis was 0.83 (0.37–2.00) 
per 1,000 neonate-days in low-income and middle-income 
countries (5). The mortality in our study was 5%, which 
was lower than that previously described. These differences 
in mortality may be attributed to better medical conditions 
in the United States and relatively advanced neonatal care.

Despite advances in neonatal intensive care technology, 
nonspecific clinical symptoms often lead to rapidly progress 
to severe illness. Therefore, we developed a mortality 
prediction model to provide a simpler tool for physicians 
to identify neonates with severe sepsis early that may help 
reduce the mortality of infection-related illnesses. Our 
results indicated that weight, pO2/FiO2, serum calcium, base 
excess and bicarbonate had protective effects on neonatal 
in-hospital death, while systemic corticosteroids, inotropes, 
and high serum creatinine levels were risk factors within 
the first 24 h after NICU admission. Previous studies have 
demonstrated that weight, pO2/FiO2, serum calcium, base 
excess and bicarbonate are protective factors associated 
with neonatal death (15,36-38). Firstly, the pO2/FiO2 is 
an available noninvasive marker for the identification of 
children with acute lung injury or ARDS (39). Secondly, 
serum calcium is crucial for various physiological processes, 
including signal transduction in cells, nerve transmission, 
coagulation cascade and muscle contraction (40). Neonatal 
sepsis frequently causes hypocalcemia due to the presence 
of inflammatory markers, including procalcitonin (PCT), 
tumor-necrosis factor α (TNF-α), interleukin-1β (IL-
1β) (41). Further research demonstrates that Neonatal 
sepsis accompanied by hypocalcemia increases the risk 
for developing cardiovascular and renal dysfunction, 
as well as disseminated intravascular coagulation and 
epilepsy, ultimately resulting in higher mortality rates (42).  

Additionally, animal study supports the involvement of 
calcium ions in lethal coagulation during sepsis (43). Thirdly, 
hemodynamic instability during neonatal sepsis results 
in tissue hypoperfusion, causing metabolic acidosis and 
consequently, reduced levels of serum bicarbonate and BE. 
Bicarbonate effectively improves tissue perfusion, myocardial 
contractility, and cellular dysfunction in severe acidosis 
(44,45). Reduced levels of bicarbonate are known to correlate 
with decreased levels of BE. Our study did not utilize lactate 
to assess tissue hypoperfusion, as excessive lactate deficiency 
can lead to unreliable results. A study reveals that increase of 
negative value of BE values can better reflect hypoperfusion-
induced metabolic acidosis in critically ill patients compared 
to lactate (46). These findings also offset certain limitations 
in our study. Moreover, low serum levels of both bicarbonate 
and BE are indicative of a higher mortality in critically ill 
patients (46-49). These studies support our conclusions 
while further enhancing our understanding of the association 
between these indicators and neonatal mortality.

The literature has presented an elevation of plasma 
bilirubin levels indicates strong liver conversion function, 
while lower concentration of cholestasis-related markers 
implies potential protective effect of bilirubin (50). Previous 
study has indicated that bilirubin accumulation may be 
beneficial for the survival of newborns and septic neonates 
who survived had higher plasma bilirubin levels (51). 
Stocker et al. believed that Bilirubin is a strong antioxidant 
whose ability to suppress the oxidation in vitro is more 
prominent than that of another powerful antioxidant-α-
tocophero (52). Also, bilirubin can protect low-density 
lipoprotein from damage caused by oxidation (53). 
Meanwhile, for newborns suffering from sepsis, inhibiting 
GBS growth is possible by affecting substrate utilization 
when the plasma bilirubin concentration is below the 
diagnostic criteria for neonatal hyperbilirubinemia (54). 
These results demonstrated a protective effect of jaundice 
on neonatal sepsis. However, the mechanism by which 
bilirubin provides such protection against neonatal sepsis 
remains unclear and requires additional research.

Our study found that systematic corticosteroids and 
inotropes were associated with adverse outcomes in 
neonates, supported by the nSOFA score (15). The efficacy 
of corticosteroids can improve mortality in patients with 
sepsis remains controversial, however, the administration 
of corticosteroids was associated with more superinfection, 
hyperglycemia and hypernatremia (55). Additionally, 
corticosteroids are primarily prescribed to children with 
sepsis who suffer from fluid refractory and catecholamine 
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resistant shock (56). Simultaneously, refractory septic shock 
in children was associated with high vaso-inotrope doses, 
indicating that neonates had more critical outcomes (57). 
The inotropes represented circulatory instability and it 
was a major cause of arrhythmia and leaded to some life-
threatening complications such as central nervous bleeding 
and intestinal ischemia (58). Furthermore, high serum 
creatinine levels indicated worsening acute kidney injury 
associated with poor outcomes (59,60), which confirmed 
our conclusion.

Among the available sickness prediction scoring systems 
for assessing the severity of neonates, the Clinical Risk 
Index for Babies (CRIB) and CRIB-II scores primarily 
evaluate several parameters during the perinatal period 
and are applicable to newborns with gestational age  
<33 weeks (61). In addition, The Transport Risk Index of 
Physiologic Stability (TRIPS) and TRIPS-II scores evaluate 
temperature, respiratory status, blood pressure, response 
to noxious stimuli in infants (62,63). TRIPS and TRIPS-
II scores are applied to rapidly assess the infants requiring 
transport to a NICU, and cannot accurately assess the 
severity of neonatal sepsis. The Score for Neonatal Acute 
Physiology (SNAP) consists of 27 items of vital signs, blood 
gas indicators, peripheral blood cells, and biochemistry 
indicators (64). The SNAP Perinatal Extension (SNAPPE), 
derived from SNAP, includes three supplementary 
indicators, that is, birth weight, small for gestational 
age (SGA), and Apgar score at 5 min. However, their 
applicability is limited by the complexity of the calculations 
and the multiple variables involved. The simplified SNAP-
II score includes mean blood pressure, lowest body 
temperature, P(O2)/FiO2, pH, urine output, and multiple 
seizures, but its performance in evaluating the severity of 
neonatal diseases is not ideal (65). The SNAPPE-II score 
adds birth weight, SGA, and Apgar score at 5 min to the 
SNAP-II score. Previous studies compared the CRIB-II and 
SNAPPE-II for predicting mortality, and neither of them 
fully estimated the risk of death (66). Obviously, an accurate 
scoring system with fewer variables is more convenient 
for clinical application than relying on multiple variables. 
In our study, the nomogram incorporates only 6 easily 
ascertainable variables, while considering the impact of 
organ function and treatment measures on the progression 
of sepsis. These are factors that CRIB-II, SNAP-II, and 
SNAPPE-II scores, commonly used to assess the severity of 
neonates, have not considered.

The optimal SOFA cutoff to discriminate mortality 
was a score higher than 8 points, and the performance of 

the maximum SOFA score in discriminating in-hospital 
mortality was similar to the performance of the PRISM and 
PELOD-2 and better than the P-MODS score (10). The 
PRISM, PELOD-2, and P-MODS have been validated in 
the prognosis of sepsis in children (67) but have not been 
applied to neonates. Moreover, a SOFA score of 2 or higher 
has limited sensitivity in predicting in-hospital mortality 
risk (11). However, our findings indicate that nSOFA has 
relatively high sensitivity but low specificity. We noticed 
several relevant parallels of our study with studies on SOFA 
performance (Figure 3). As the SOFA score increased, 
the risk of death increased (10,11,15), and the SOFA 
performance (AUC, 0.81; 95% CI: 0.73–0.88) was similar 
to the conclusion of a previous study (AUC, 0.81; 95% CI: 
0.76–0.85) (15), which proved that the performance of the 
nomogram may be better than that of the SOFA score.

As prognostic devices, nomograms have been widely 
used to predict the probability of clinical events. We 
developed a nomogram for predicting the risk of in-hospital 
mortality in neonates, which can enable physicians to 
quickly identify severe sepsis in neonates and make rapid 
clinical decisions. Moreover, the nomogram showed good 
predictive accuracy in predicting mortality in neonates due 
to severe sepsis, with an AUC of 0.912. However, there 
are some inevitable limitations in our study that need to be 
addressed. First, the study was a single-center retrospective 
study based on the MIMIC-III database, which made it 
impossible for external validation. Second, the model’s 
statistical power was affected by a small sample size, as there 
were fewer neonates in the non-surviving group. Although 
we utilized a recent technique for calculating sample size, 
the conventional method that meets Peduzzi’s criterion of 
an event per variable (EPV) of >10 shows that we cannot 
achieve adequate statistical power. In addition, the etiology 
of individual patient-level information were not available. 
This may limit our more accurate conclusion. Moreover, 
due to the late availability of etiological information, 
its role in accurate medication within 24 h of admission 
was relatively limited. Nonetheless, our findings provide 
novel insights into the prediction of mortality in neonates 
with sepsis, which has potentially important public health 
implications for improving survival of neonates with sepsis. 
Our study’s limitations should be acknowledged, that need 
to be addressed in future studies.

Conclusions

Jaundice, weight, serum calcium and base excess were 



Translational Pediatrics, Vol 12, No 9 September 2023 1703

© Translational Pediatrics. All rights reserved.   Transl Pediatr 2023;12(9):1690-1706 | https://dx.doi.org/10.21037/tp-23-150

associated with a reduced risk of mortality in neonates with 
sepsis, while corticosteroids and inotropes were related to 
an increased risk of mortality in neonates with sepsis. We 
developed a mortality prediction nomogram with a small 
number of routinely collected variables for neonates with 
sepsis, which can be applied to identify critically ill neonates 
early. The nomogram can be easily used in the NICU.
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Appendix 1 Supplementary method

Missing data handling

This study is based on the MIMIC database. Although 
demographic data was mostly complete, laboratory 
indicators had several missing values, which, if eliminated, 
would lead to the loss of crucial information, thus 
invalidating our modeling approach. The missing data is 
classified into missing completely at random (MCAR), 
missing at random (MAR), and not missing at random 
(NMAR) based on the cause of the missing values (68,69). 
To discover the nature of the data missing, the correlation 
matrix was performed to examine the correlation between 
missing values in the continuous variables (Table S4). To 
facilitate presentation, only significant variables such as 
weight, bicarbonate, calcium, serum sodium, creatinine, 
and base excess, were selected and their correlations were 
presented on the correlation matrix. The values ranged 
between −0.08 and 0.35, and a weak correlation could be 
observed between serum sodium and bicarbonate (0.35). 
Based on a comprehensive analysis, the missing data was 
deemed to be MCAR, and thus the missing values in the 
database were replaced with the method “norm. predict” in 
Multivariate Imputation by Chained Equation (MICE).

Details of the five assumptions in logistic regression

Assumption 1: appropriate outcome variable type
The statement appears to be correct in terms of meeting 
the first assumption of logistic regression, which requires 
a dichotomous outcome variable. The outcome variable in 
this study, death within 28 days, is binary, as it only has two 
possible outcomes: death or survival. Therefore, it satisfies 
the first assumption of logistic regression.

Assumption 2: linearity in the logit p (log OR)
The logistic regression model assumes a linear relationship 
between continuous variables and logit, which is an essential 
assumption. Two methods are commonly used to assess 
linearity: graphic visualization and the Box-Tidwell test.

Firstly, we performed restricted cubic spline analysis 
to explore potential nonlinear relationships between 
continuous variables and outcomes, a widely used method 
in this context (70-73). Our analysis did not reveal any 
significant nonlinearity relationship in the continuous 
variables, as shown in Figure 3 for both the lasso regression 
model and the binary logistic regression model.

Additionally, we performed the Box-Tidwell test to 

further validate our findings and ensure their robustness. 
As shown in Figure 3, all P-nonlinear >0.05, confirm that 
no significant nonlinearity relationship existed between the 
continuous variables and the outcome.

Assumption 3: multicollinearity
To diagnose multicollinearity, both the correlation 
coefficient and variance inflation factor (VIF) are 
useful metrics (29). First, Pearson and non-parametric 
Spearman correlation matrices are calculated to explore 
the possibility of multicollinearity in both continuous and 
bivariate analyses. Secondly, VIF values equal or greater 
than 5 indicate the presence of multicollinearity among  
variables (30). Importantly, neither the correlation matrix 
nor the VIF values revealed any significant multicollinearity 
between variables as shown in Table 4 and Figure S1.

Assumption 4: independence of observations.
The assumption of independence in statistical analysis 
refers to the occurrence of positive events that are randomly 
distributed across different spaces, times, and populations 
(excluding the independent variables included in the model). 
In our study, the positive outcome is not influenced by the 
aforementioned factors. Therefore, we can assume that the 
independence hypothesis is approximately met.

Assumption 5: sample size
In this study, we employed one of the most recent 
techniques to calculate the sample size (27), and traditional 
methods that satisfy the criteria proposed by Peduzzi of 
event per variable (EPV) >10 suggest that 1,250 samples 
would be needed to achieve an EPV of 10 from the final 
selection of six variables and an event rate of 0.048. We 
failed to achieve sufficient statistical power. Acknowledging 
the limitations of the sample size, the validation of our 
conclusions will be required in future large-scale population 
studies.
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Table S1 Neonatal Sequential Organ Failure Assessment (nSOFA) Components and Scoring†

Component nSOFA Scores

Respiratory score 0 2 4 6 8

Criteria Not intubated or 
intubated, SpO2/

FiO2≥300

Intubated, SpO2/
FiO2<300

Intubated, SpO2/
FiO2<200

Intubated, SpO2/
FiO2<150

Intubated, SpO2/
FiO2<100

Cardiovascular score 0 1 2 3 4

Criteria§ No inotropes and no 
Systemic corticosteroid 

treatment

No inotropes 
and systemic 
corticosteroid 

treatment

1 inotrope and no 
systemic corticosteroid 

treatment

≥2 inotropes or 1 
inotrope and systemic 

corticosteroid treatment

≥2 inotropes 
and systemic 
corticosteroid 

treatment

Hematologic score 0 1 2 3 NA

Criteria¶ Platelet count‡ ≥150×109 Platelet count  
(100–149)×109

Platelet count <100×109 Platelet count <50×109

†, Score range, 0 (best) to 15 (worst). ‡, SI conversion factor: To convert platelet count to ×109/L, multiply by 1. §, Medications considered 
as inotropic or vasoactive included dopamine, dobutamine, epinephrine, norepinephrine, vasopressin, and phenylephrine. ¶, Most recent 
platelet count available to the clinician. FiO2, fraction of inspiratory oxygen; SpO2, peripheral oximetric saturation; NA, not applicable.

Table S2 The correlation between missing values in all continuous variables

Variables Weight Bicarbonate Calcium Serum sodium Creatinine Base excess

Weight 1 0.3 0.04 0.3 −0.03 0.09

Bicarbonate 0.3 1 0.1 0.35 0.07 0.06

Calcium 0.04 0.1 1 0.1 0.12 −0.08

Serum sodium 0.3 0.35 0.1 1 0.07 0.06

Creatinine −0.03 0.07 0.12 0.07 1 0.06

Base excess 0.09 0.06 −0.08 0.06 0.06 1

Table S3 Performance of the developed models and nSOFA

Models AUC Sensitivity Specificity Accuracy

Stepwise 0.784 0.998 0.037 0.952

Lasso 0.924 0.991 0.439 0.965

nSOFA 0.807 0.998 0.096 0.955

AUC, area under the receiver operating characteristic curve; Lasso, the least absolute shrinkage and selection operator; nSOFA, the 
neonatal sequential organ failure assessment score.

Table S4 The NRI and IDI estimate of the developed models and nSOFA.

Models
NRI IDI

Estimate (95% CI), % P value Estimate (95% CI), % P value

Stepwise regression and nSOFA 8.41 (−10.34, 27.15) 0.379 3.95 (−1.84, 9.74) 0.181

Lasso algorithm and stepwise regression 52.95 (35.70, 70.21) <0.001 30.93 (21.94, 39.92) <0.001

Lasso algorithm and nSOFA 53.64 (38.85, 68.43) <0.001 26.98 (19.06, 34.89) <0.001

nSOFA, the neonatal sequential organ failure assessment score; Lasso, the least absolute shrinkage and selection operator; NRI net 
reclassification improvement; IDI integrated discrimination improvement.


