
© Translational Pediatrics. All rights reserved.   Transl Pediatr 2023;12(10):1835-1841 | https://dx.doi.org/10.21037/tp-23-449

Introduction

Congenital heart disease (CHD) is the most prevalent 
birth abnormality, and affects around eight out of every 
1,000 infants born (1-3). Tetralogy of Fallot (TOF) is the 
most prevalent and complicated cyanotic CHD, and affects 
around one out of every 2,500 newborns (4,5). TOF is a 
condition that affects the heart’s outflow tract and is defined 
by four specific structural abnormalities identified postna-
tally: a ventricular septal defect, an anterocephalad devia-

tion of the outflow septum with aortic override, a variable 
obstruction of the right ventricular outflow tract (RVOT) 
(pulmonary stenosis), and right ventricle hypertrophy (6-9). 
With the help of surgical procedures performed throughout 
childhood, 85–90% of TOF patients now live until the age of 
at least 30 years (10). However, due to the severe morbidity 
associated with the scar tissue following surgery and pulmo-
nary regurgitation in adulthood, only 25% of TOF patients 
have an event-free life beyond the age of 40 years (11,12).

The etiology of TOF is unknown, and no single gene is 
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responsible for the phenotypic characteristics of the disease 
(13,14). Research on syndromic TOF sufferers has provided 
crucial insights into some causal genes (15). Notably, 
20% of the cases have been linked to a known syndrome 
or chromosomal abnormality (16). About 15% of TOF 
patients have 22q11.2 deletion syndrome for which T-box 
transcription factor is the primary cause (17,18). About 
80% of TOF cases are non-syndromic, but the etiology 
of non-syndromic TOF is not known, mostly because 
the inheritance is non-Mendelian (19-21). As a result, a 
polygenic genetic architecture has been theorized and 
genome-wide techniques have been used to gain insights 
into the complicated genetic abnormalities responsible for 
TOF and other CHDs (20-23).

Research has shown that whole-exome sequencing 
(WES) may reveal novel CHD candidate genes (24). The 
aim of this study was to find TOF-related pathogenic 
genes through WES technology performed on the genes 
of 17 TOF patients, providing a basis for studying TOF 
pathogenesis. We present this article in accordance with 
the MDAR reporting checklist (available at https://
tp.amegroups.com/article/view/10.21037/tp-23-449/rc).

Methods

Serum sample collection

A total of 17 patients with TOF who underwent cardiac 
surgery (7 males and 10 females) at Guizhou Provincial 

People’s Hospital between March 2018 and July 2021 
were included in this  study.  TOF was confirmed 
by echocardiography, clinical symptoms, signs, and 
intraoperative findings. Inclusion criteria were confirmed 
diagnosis of TOF (via review of the medical chart and 
echocardiograms). Exclusion criteria were patients with 
TOF with pulmonary atresia, absent of pulmonary valve, or 
placement of right ventricle to pulmonary artery conduit in 
case of large coronary artery branch crossing RVOT. The 
patients’ specific features are detailed in Table 1. The study 
protocol was approved by the Ethics Committee of Guizhou 
Provincial People’s Hospital (No. 2018040) and was 
performed in accordance with the Declaration of Helsinki 
(as revised in 2013). Informed consent was obtained from 
the enrolled participants or their legal guardians.

DNA sample preparation

Genomic DNA was extracted using a QIAamp DNA Blood 
Kit (TransGen Biotech, China) from peripheral blood 
samples taken from the patients.

WES and data analysis

The Agilent SureSelect Human Exon V5 kit (Agilent 
Technologies) was used to extract and collect genomic 
DNA from the blood to generate the library for WES. The 
library preparations were sequenced on the Illumina HiSeq 
2000 platform, supplied by Illumina Inc. (San Diego, CA, 
USA) and 100-bp paired-end reads were yielded.

Validation by Sanger sequencing

The primers for the standard polymerase chain reaction 
assays were designed using Primer 3 software (https://
bioinfo.ut.ee/primer3-0.4.0/). Sanger sequencing was used 
to analyze the amplified DNA fragments directly. The 
DNASTAR program (https://dnastar.com/) was used to 
assess the sequencing data by comparing the findings to 
the reference sequences. The whole sequenced data were 
trimmed for low-quality sequences and aligned to UCSC 
human reference genome (GRCh38/HG38) using Burrows-
Wheeler Alignment (BWA). The Genome Analysis 
Toolkit (GATK) and VarScan were used to detect single 
nucleotide polymorphisms (SNPs) and small insertions/
deletions. ANNOVAR was used to annotate the variants 
with several databases including dbSNP, gnomAD, 
1000 Genomes Project, and ExAC. Finally, four online 
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mutation pathogenicity prediction and analysis softwares 
including PolyPhen, SIFT, MutationTaster, and FATHMM 
were used to predict the influence of polymorphic 
variation on coding proteins and conservation, so as to 
conduct mutation pathogenicity analysis. The primer 
sequences were as follows: forward primer (FKBP10-F), 
5'-GGTCTTTCACGTCCTCCTGA-3', reverse primer 
(FKBP10-R), 5'-GAATCGAAGAGGGTGCCGT-3'; forward 
primer (GNE-F), 5'-TGGAGACAGGTTTGATGCCC-3',  
reverse primer (GNE-R), 5'-TGTCATAGGAAGGGC 
AGCCT-3'.

Statistical analysis

SPSS 20.0 statistical software was used to analyze the data. 
The number of mutations, disease-related mutations and 
sequencing depth of patients were listed and analyzed.

Results

Clinical features of patients with TOF

A total of 17 TOF patients were included in this study and 
the clinical features of the TOF patients are listed in Table 1.

Analysis of the WES findings in patients with TOF

WES was used to examine the genetic etiology of TOF in 
the 17 patients. Only variants with a minor allele frequency 
of <1% in the Single Nucleotide Polymorphism Database 
(dbSNP), 1000G (1000 Genomes Project, http://www.
internationalgenome.org/), ESP6500 (Exome Variant 
Server, http://evs.gs.washington.edu/EVS/), and gnomAD 
databases (Genome Aggregation database, https://gnomad.
broadinstitute.org/) were retained. The retained variations 
were filtered based on the TOF candidate genes that 

Table 1 The clinical characteristics of the patients with TOF

Case ID Age (years) Sex
Echocardiography

Acropachia Cyanosis
RV diastolic diameter (mm) RVAW (thickened) (mm) RVOT (mm)

TOF-1 3 Female 18.4 7.0 6.1 No Yes

TOF-2 5 Female 11.5 8.6 4.0 No No

TOF-3 3 Male 14.5 4.6 5.2 No Yes

TOF-4 2 Female 10.7 5.8 5.0 No Yes

TOF-5 22 Female 24.2 6.4 7.0 Yes Yes

TOF-6 2 Female 13.2 7.0 5.2 No No

TOF-7 29 Female 22.6 12.6 6.0 No Yes

TOF-8 1 Female 8.0 6.5 7.2 No Yes

TOF-9 1 Male 14.4 6.0 6.8 Yes Yes

TOF-10 3 Male 15.9 7.4 – Yes Yes

TOF-11 56 Male 28.1 8.9 12.0 Yes Yes

TOF-12 25 Female 22.9 8.0 4.0 No Yes

TOF-13 2 Male 13.2 5.7 5.5 No Yes

TOF-14 30 Female 22.9 10.0 12.5 Yes Yes

TOF-15 12 Female 20.2 9.2 5.0 Yes Yes

TOF-16 1 Male 13.0 7.1 3.5 No Yes

TOF-17 – Male – – – – –

TOF, tetralogy of Fallot; RV, right ventricle; RVAW, right ventricular anterior wall; RVOT, right ventricular outflow tract.
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had been chosen. In total, 21 variations in 20 genes were 
discovered in 14 individuals, including 21 heterozygous 
variants in GJB2 (Gap Junction Protein Beta 2), TBX15 
(T-Box Transcription Factor 15), CTNS (Cystinosin, 
Lysosomal Cystine Transporter), SPINK1 (Serine Peptidase 
Inhibitor Kazal Type 1), GATA6 (GATA Binding Protein 6),  
PRIMOL (Homo sapiens primase and DNA directed 
polymerase), GDF15 (Growth Differentiation Factor 15), 
SLC17A9 (Solute Carrier Family 17 Member 9), AIFM1 
(Apoptosis Inducing Factor Mitochondria Associated 1), 
FOXC2 (Forkhead Box C2), KLF13 (KLF Transcription 
Factor 13), ABCA4 (ATP Binding Cassette Subfamily A 

Member 4), CPA6 (Carboxypeptidase A6), FKBP10 (FKBP 
Prolyl Isomerase 10), ASPA (aspartoacylase), SBF1 (SET 
Binding Factor 1), HBA2 (Hemoglobin Subunit Alpha 2),  
IGLL1 (Immunoglobulin Lambda Like Polypeptide 1), 
GNE (Glucosamine (UDP-N-Acetyl)-2-Epimerase/
N-Acetylmannosamine Kinase), and KLHL10 (Kelch Like 
Family Member 10) (Table 2). None of the above genes were 
discovered in the WES data of the three participants in the 
control group.

In addition, we analyzed the clinical symptoms of 
the TOF patients with gene variations and found that 
patients with FKBP10 and GEN variants had more serious 

Table 2 In-silico analysis of the variants found by whole-exome sequencing

Case ID Gene Variations (mRNA) Variations (amino acid) Pathogenicity evidence gnomAD

TOF-1 GJB2 NM_004004.6:c.299_300del p.His100fs P f=4.1e-5

TBX15 NM_001330677.2:c.980G>A p.Arg327His VUS f=5e-4

TOF-2 CTNS NM_004937.3:c.611_613ACG p.Asp205del LP f=8.2e-6

TOF-3 SPINK1 NM_001354966.1:c.194+2T>C splicing P f=2.8e-4

TOF-4 GATA6 NM_005257.5:c.151G>A p.E51K P f=1.7e-4

VSD NM_001300767.2:c.-123T>G NA P f=4e-4

GDF15 NM_004864.3:c.651G>C p.Ala218Pro VUS f= NA

TOF-5 SLC17A9 NM_001302643.2:c.-56C>T p.Arg9Cys P f= NA

TOF-8 AIFM1 NM_001130846.3:c.13C>T p.Leu5Phe P f=2.3e-4

FOXC2 NM_005251.2:c.1061T>A p.Leu354Gln LP f= NA

TOF-9 KLF13 NM_001302461.2:c.319T>A p.Ser107Thr VUS f= NA

TOF-11 PRIMOL1 NM_001300767.2:c.-123T>G NA P f=4e-4

ABCA4 NM_000350.3:c.1531C>T p.Arg511Cys LP f=2.1e-4

KLF13 NM_001302461.2:c.319T>A p.Ser107Thr VUS f= NA

TOF-12 CPA6 NM_020361.5:c.544C>T p.Arg182Ter LP f=2.5e-5

TOF-13 FKBP10 NM_021939.3:c.831dupC p.Gly278fs P f=1.9e-4

TOF-14 ASPA NM_000049.3:c.79G>A p.Gly27Arg P f=1.6e-5

SBF1 NM_001365819.1:c.4693A>G p.Thr1565Ala LP f=3.2e-4

TOF-15 HBA2 NM_000517.6:c.427T>C p.Ter143Gln P f=4.9e-5

IGLL1 NM_001369906.1:c.428C>T p.Pro143Leu LP f=2e-4

TOF-16 GNE NM_005476.7:c.527A>T p.Asp176Val LP f=4.1e-5

KLF13 NM_001302461.2:c.310G>C p.Glu104Gln VUS f= NA

TOF-17 KLHL10 NM_001329596.2:c.673G>A p.Ala225Thr P f=4.2e-4

IGLL1 NM_001369906.1:c.428C>T p.Pro143Leu LP f=2e-4

TOF, tetralogy of Fallot; P, pathogenic; VUS, variants of uncertain significance; LP, likely pathogenic; NA, not available.
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clinical symptoms (thickening and obvious stenosis of 
RVOT, pulmonary valve thickening and stenosis). Sanger 
sequencing was used to validate the variants. Heterozygous 
variants c.831dupC in FKBP10 (Figure 1A) and c.527A>T in 
GEN (Figure 1B) were identified in the TOF patients.

Analyses of the variations discovered in the TOF patients

An in-silico analysis was conducted to analyze the 21 different 
variations. First, we examined the frequency with which 
the variations appeared. The gnomAD database (Genome 
Aggregation database, https://gnomad.broadinstitute.org/) 
reported that all of these variants were unusual, and six of 
these variants were not found in the 1000G databases (1000 
Genomes Project, http://www.internationalgenome.org/). 
Thus, the frequency of these mutations in the study was very 
low, which matched the phenomenon of the low incidence 
of TOF in the population (Table 2). We grouped variants 
into the following categories according to guidelines from 
the American College of Medical Genetics and Genomics 
(ACMG) and Association of Molecular Pathology (AMP): 
pathogenic (P), likely pathogenic (LP), variant of uncertain 
significance (VUS), likely benign (LB) and benign (B) (25).

Discussion

The first clinical application of WES indicated that the 
success rate of mutation detection in individuals with a 
genetic illness was roughly 25% (26). A recent WES study 
has identified variants in NOTCH1 and FLT4, the most 
commonly observed genes, in 7% of TOF cases (27). Jin 
et al. found dominant FLT4 mutations accounting for 

2.3% of TOF cases (28). Some of the mutations in our top 
gene candidates were de novo, while others were found in 
patients who appeared to be asymptomatic, which suggested 
that penetrance was only partially achieved. WES was 
conducted to analyze the DNA samples of 17 TOF patients, 
and 21 mutations related to TOF were found in 14 of the 
included patients. Our findings support the idea that genetic 
variations in several genes have a role in TOF etiology 
and that sporadic cases of unknown origin result from a 
common genetic variation in one of these genes.

FK506 binding protein 10 is encoded by the FKBP10 
gene, which is found on chromosome 17q21.2 and 
belongs to the immunophilins family of proteins with 
Peptidylprolyl cis/trans isomerase (PPIase) activity, which 
aids in the appropriate folding of type I collagen before 
the triple helices are assembled (29). Alanay et al. in 
2010 reported that a mutation of the FKBP10 gene was 
involved in osteogenesis imperfecta (OI) type XI (30). 
A total of 191 somatic FKBP10 point mutations that are 
not synonymous have been documented in the COSMIC 
database (http://cancer.sanger.ac.uk/cosmic). In the Yup 
ik Inuit community, Barnes et al. discovered the biallelic 
c.877 879delTAC (p.Tyr293del) mutation in FKBP10, 
which causes Kuskokwim syndrome with subtle skeletal 
symptoms, such as congenital contractures and osteopenia 
without fractures (31). In this study, we identified a novel 
mutation, c.831dupC, in a patient with TOF. Moreover, 
a  mutat ion in GNE  (UDP-N-acetyloglucosamine 
2-epimerase/N-acetylmannosamine kinase) was identified. 
The GNE c.527A>T (p.Asp176Val) variant is a well-
described pathogenic variant (32,33). Previous research has 
shown that 20% of GNE myopathy mice (30 weeks of age) 

Figure 1 Confirmatory analysis of our whole-exome sequencing data by Sanger sequencing. (A) FKBP10 and (B) GNE. FKBP10, FKBP 
Prolyl Isomerase 10; GNE, Glucosamine (UDP-N-Acetyl)-2-Epimerase/N-Acetylmannosamine Kinase.

A

B

FKBP10 NM_021939.3:c.831dupC

GNE NM_005476.7:c.527A>T
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develop endomysial fibrosis, amyloid deposition, and ringed 
vacuoles in cardiomyocytes (34).

Owing to the complexity of TOF, for personalized 
diagnosis and treatment for TOF patients, WES may 
be necessary to help identify the pathological mutations. 
The use of WES may not only reveal the genetic 
pathophysiology of individuals with unexplained TOF, 
but may also have extensive potential on the application 
in the screening and early identification of patients 
with the disorder. The poor treatment results and the 
uncertain etiology of TOF cause patients to suffer both 
psychologically and physically. More effective treatment 
options will be able to be designed and patient compliance 
will probably increase if the genetic causes of the disease can 
be identified early in the course of illness development. In 
addition, future causality studies are warranted to translate 
the observations into preclinical validation. This study has 
some limitations, and the sample size is small. In future, the 
number of samples should be further increased and an in-
depth research will be conducted.

Conclusions

In conclusion, we identified several genetic variants that 
were associated with TOF and confirmed that variants of 
FKBP10 and GNE were associated with TOF severity, which 
help determine the potential of WES in detecting TOF and 
implement early interventions for patients with TOF.
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