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Case Report

Identification of a novel heterozygous variant in the PEX26 gene in 
an infant: a case report
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Background: The protein PEX26 is involved in the biogenesis and maintenance of peroxisomes, which 
are organelles within cells. Dysfunction of PEX26 results in peroxisome biogenesis disorders (PBDs) 
complementation group 8 (CG8), leading to Zellweger spectrum disorders (ZSDs). These disorders present 
as a syndrome with multiple congenital anomalies, varying in clinical severity.
Case Description: We present the case of a 7-month-old boy who exhibited hepatic impairment with 
hepatomegaly, sensorineural hearing loss, developmental delay, abnormal ossification, and mild craniofacial 
dysmorphology. Tandem mass spectrometry analysis of plasma isolated from whole blood revealed a 
significant increase in the levels of very long chain fatty acids (VLCFAs) C26:0, C26:0/C22:0, and C24:0/
C22:0, consistent with peroxisomal fatty acid oxidation disorder. Exome sequencing identified two variants 
in the PEX26 gene (c.347T>C and c.616C>T), with the latter being a suspected pathogenic variation. The 
variant can lead to a defect in the PEX26 gene, resulting in impaired peroxisome biogenesis, β-oxidation 
of VLCFAs, and disruption of other biochemical pathways. Ultimately, this cascade of events manifests as 
ZSDs. Currently, symptomatic supportive treatment is the main approach for managing this condition and 
regular follow-up is being conducted for the patient.
Conclusions: The present study introduces a novel heterozygous variant comprising two previously 
unidentified variants in the PEX26 gene, thereby expanding the range of known genetic alterations and 
highlighting the effectiveness of highly efficient exome sequencing in patients with undetermined multiple 
system dysfunctions.
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Introduction

Peroxisomes are single-membrane organelles that play 
pivotal roles in various metabolic pathways, including 
β-oxidation of very long-chain fatty acids (VLCFA), 
detoxification of hydrogen peroxide and glyoxylate, as 
well as synthesis of ether phospholipids, docosahexaenoic 
acid (DHA), and bile acids (1). Impairment of peroxisome 
biogenesis or maintenance causes peroxisome biogenesis 
disorders (PBDs), which represent a heterogeneous group 
of mostly autosomal recessive disorders. Approximately 
80% of PBD patients fall under the Zellweger syndrome 
spectrum (ZSS) (2), which arises from defects in peroxin 
(PEX) genes and is categorized into 14 complementation 
groups (CGs) (3). Clinical manifestations encompass 
Zellweger spectrum disorders (ZSDs) and rhizomelic 
chondrodysplasia punctata (RCDP). 

The PEX26 gene is identified as the causative gene 
for PBD CG8 (4,5), which accounts for 3.4% of cases 
with PBD and 4.2% of cases with ZSDs (6). The gene 
is composed of six exons and is located on chromosome 
22q11.21.  The PEX26 protein,  a  34-kDa type-II 
peroxisomal membrane protein (PMP), plays a critical role 
in the import of matrix proteins. This protein consists of 
305 amino acids and comprises an extensive N-terminal 
domain, followed by a single transmembrane domain 
(TMD) and a concise C-terminal domain that extends 

into the peroxisome matrix (4). PEX26 recruits Pex1-Pex6 
complex through its N-terminal Pex6-binding domain 
(aa29–174) to form peroxisome exportomer complex (7).  
This complex functions as a unit for relocating the 
ubiquitinated import receptor Pex5 (Ub-Pex5) from the 
peroxisomal membrane to the cytosol, facilitating repeated 
rounds of import of peroxisomal matrix proteins (4,6-9). 
The C-terminal region contains two Pex19-binding sites 
referred to as Pex19-binding domain 1 and Pex19-binding 
domain 2. These domains play a role in targeting PEX26 to 
peroxisomes (10,11). 

The phenotypes caused by biallelic pathogenic variants 
in the PEX26 gene encompass a spectrum of clinical 
manifestations that are consistent with ZSDs, ranging from 
severe PBD 7A (PBD7A) to milder PBD 7B (PBD7B). 
Infants with PBD7A typically present symptoms such as 
poor feeding, seizures, hepatic dysfunction, and severe 
hypotonia, often resulting in early mortality. Older children 
exhibit significant developmental delay, retinal dystrophy, 
and sensorineural hearing loss. Most patients also display 
typical craniofacial features including a high forehead, 
hypoplastic supraorbital ridges, midface hypoplasia, 
epicanthal folds, and a large anterior fontanel. Patients 
with PBD7B exhibit abnormalities resembling PBD7A, 
albeit with less severity, and typically survive until early 
childhood, occasionally reaching their third decade or 
beyond (12,13). In the present case study, we have identified 
a novel heterozygous variant comprising two previously 
unidentified variants in the PEX26 gene in a male infant 
presenting with PBD7B. We present this article in 
accordance with the CARE reporting checklist (available 
at https://tp.amegroups.com/article/view/10.21037/tp-23-
454/rc).

Case presentation

The patient, a 7-month-old male infant, was admitted to 
our hospital due to hepatic function damage persisting for  
2 months. He was delivered at full term, weighing 2.7 kg  
and measuring 51 cm in length. By the time he was 
admitted, his weight (7.5 kg) fell within the 10th percentile 
on standardized growth curves provided by Capital 
Institute of Pediatrics (14), while his length was at the 25th 
percentile. Physical examination revealed a high forehead 
and an unclosed flat anterior fontanelle measuring 4 cm × 
4 cm. He exhibited involuntary babbling and laughter but 
showed no response to his name, with intermittent gaze-
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Table 1 Mutation information of the PEX26 gene in the patient

Gene Nucleotide and amino acid change gnomAD MAF ACMG rating of variation The mode of inheritance Parent of origin

PEX26 NM_001127649.3: exon2:  
c.347T>C (p.Leu116Pro)

– Clinical significance is 
unclear

Autosomal recessive 
inheritance

Parent 1

NM_001127649.3: exon3:  
c.616C>T (p.Gln206*)

– Suspected pathogenicity Autosomal recessive 
inheritance

Parent 2

*, termination. gnomAD, The Genome Aggregation Database; MAF, minor allele frequency; ACMG, American College of Medical Genetics 
and Genomics.

following ability. Motor milestones included head control 
achieved at 3 months of age and rolling over accomplished 
at 5 months old. However, he had not yet attained 
independent sitting ability at 7 months old. Pulmonary 
rales or cardiac murmurs were absent upon auscultation. A 
blunted liver edge could be palpated approximately 2 cm 
below the costal margin. The vertebral column displayed 
physiological curvature, and muscular tension appeared 
normal in this child born from a non-consanguineous 
marriage. All procedures performed in this study were in 
accordance with the ethical standards of the institutional 
and/or national research committee(s) and with the Helsinki 
Declaration (as revised in 2013). Written informed consent 
was obtained from the guardian of the patient for the 
publication of this case report and accompanying images. 
A copy of the written consent is available for review by the 
editorial office of this journal.

The auditory brainstem response exhibited aberrant 
findings, and abdominal ultrasound revealed hepatic 
protrusion of 2 cm below the right costal margin with 
unremarkable morphology. The inner diameters of 
gallbladder cross section (5.2 cm × 0.9 cm) and the spleen 
thickness (2.6 cm) were normal. Bilateral hip X-ray revealed 
small femoral head epiphyses with fragmented changes 
indicative of developmental dysplasia of the hip. No 
abnormalities were found in electrocardiography, the chest 
X-ray, or cerebral magnetic resonance imaging (MRI).

Blood alanine aminotransferase measured at 540 U/L  
(normal 0–40 U/L) and aspartate aminotransferase at  
1,408 U/L (normal 0–40 U/L) exhibited significant 
elevation, while total bile acid (21.2 μmol/L, normal 0– 
12 μmol/L) slightly exceeded the anticipated range. The 
serum albumin (47.7 g/L), gamma-glutamyl transpeptidase 
(27 U/L), total bilirubin (5.2 μmol/L), alkaline phosphatase 
(291 U/L), creatine kinase (180 U/L), lactic dehydrogenase 
(372 U/L), plasma ammonia concentration (25.4 μmol/L),  
and  b lood lac ta te  concentra t ion  (1 .09  mmol/L) 
demonstrated normal findings. Blood coagulation 

function was within the normal range. Levels of vitamin D  
(62 ng/mL) and serum calcium (2.2 mmol/L) were within 
the reference values. Blood levels of immunoglobulins 
and complement C3 and C4 were within normal limits. 
Ceruloplasmin measured at 0.3 g/L was in the normal 
range. Alpha fetoprotein (AFP) measured at 1,621 ng/mL  
indicated rapid hepatocyte proliferation following injury. 
The results of the tests for Epstein-Barr virus, human 
cytomegalovirus, and hepatitis virus were negative. 
The gas chromatography-mass spectrometry (GC-MS) 
analysis of the urine specimen revealed elevated levels of 
octanoic acid, octanedioic acid, and sebacic acid. Tandem 
mass spectrometry showed elevated levels of plasma very 
long chain fatty acid (VLCFA) C26:0 (5.057 μmol/L,  
normal 0.51±0.132 μmol/L), C26:0/C22:0 (0.420, 
normal 0.017±0.006), and C24:0/C22:0 (1.993, normal 
0.883±0.277), consistent with peroxisomal fatty acid 
oxidation disorder. The level of C22:0 was decreased while 
that of C24:0 was normal. 

Subsequent exome sequencing identified compound 
heterozygous variants in exon2 [c.347T>C (p.Leu116Pro)] 
and exon3 [c.616C>T (p.Gln206*)] of the PEX26 gene 
(Table 1). The former missense variant is predicted to be 
deleterious by SIFT (http://sift.jcvi.org/), Polyphen2_
HDIV&HVAR (http://genetics.bwh.harvard.edu/pph2/), 
Mutation Taster (https://www.mutationtaster.org/), and 
Mutation Assessor (http://mutationassessor.org/), while the 
latter is a nonsense variant and suspected to be pathogenic 
variant as it may mediate mRNA degradation leading 
to downregulation of gene expression. Both variants are 
absent in the Genome Aggregation Databases (gnomAD), 
indicating their rarity in populations. The parents have 
a non-consanguineous marriage and each of them is 
heterozygous to one of the two variants as determined by 
Sanger sequencing (Figure 1). The involvement of any other 
phenotypically related variant in this case was not identified 
(Table S1).

Based on physical examination, conventional laboratory 
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Canonical 
sequence

PEX26 Chr22: 18079990–18079990 
NM_001127649.3: exon2: c.347T>C (p.Leu116Pro)

PEX26 Chr22:18083681–18083681 
NM_001127649.3: exon3: c.616C>T (p.Gln206*)

Patient 

Parent 1 

Parent 2

Figure 1 The exome sequencing followed by Sanger validation. The PEX26 gene harbored two novel variants, namely c.347T>C 
(Leu116Pro) and c.616C>T (Gln206*), each parent is heterozygous to one of the two variants. *, termination.

assessment, imaging procedures, and exome sequencing, we 
concluded that the patient may have suffered from PBD7B. 
Currently there are no curative therapies available for 
ZSDs. 

Discussion

To date, a total of 24 genotypes and 29 variants have been 
documented in the PEX26 gene. The “lovd” database 
(https://www.lovd.nl/) has reported an additional 21 
unique variants without any documented cases (Table S2).  
In this study, we have identified two novel mutants: 
c.347T>C (p.Leu116Pro) and c.616C>T (p.Gln206*)  
(Table 2) (Figure 2). Among these genotypes, more than 
half are homozygotes and present as PBD7A. Among these 
variants, the majority are missense mutations, while some 
are frameshift mutations leading to premature termination 
and null mutations. It has been observed that the instability 
of PEX26 and its insufficient binding to Pex1-Pex6 are most 
likely responsible for the development of PBD CG8 (23). 
While the physiological splice variant PEX26Δex5 lacking 
a TMD remains functional (15). These findings suggest 
that null mutations and mutations affecting the formation 
of peroxisome exportomer complex will result in PBD 
CG8, while variants involving other domains, such as TMD 
and heptad repeats, may only cause minor or negligible 
phenotypic abnormalities. Peroxisome exportomer 
complex plays a crucial role in maintaining peroxisomal 
homeostasis by preventing pexophagy (8). As an important 
pexophagic signal, Ub-PEX5 recruits NBR1, a Ub-binding 

pexophagy receptor, to the peroxisomal membrane and 
triggers pexophagy. Diminished or impaired function of 
the peroxisome exportomer complex leads to a delayed 
clearance of Ub-PEX5 from the peroxisomal membrane, 
resulting in an upregulation of pexophagy. Inhibiting 
excessive pexophagy using autophagic inhibitors restores 
normal levels of peroxisomes count, PTS1-protein import 
efficiency, and VLCFA β-oxidation in cells with mutations 
in PEX1 gene (27). However, Klouwer et al. observed that 
despite the use of autophagy inhibitors resulting in an 
increased abundance of PMPs, there was no corresponding 
enhancement in peroxisomal functionality (28). Further 
research is still required for the clinical application of 
autophagy inhibitors. The identified missense mutation 
[c.347 T>C (p.Leu116Pro)] reported here is located within 
the crucial Pex6-binding domain and has potential to 
disrupt the peroxisome exportomer complex formation. 
Multiple mutation prediction software indicates that this 
mutation is deleterious.

The biochemical abnormalities of ZSDs involves the 
accumulation of VLCFA, phytanic acid, pristanic acid, 
pipecolic acid, and C27-bile acid intermediates in plasma 
and reduced levels of plasmalogens in erythrocytes (6,13). 
The potential clinical relevance of these biochemical 
abnormalities has been summarized in a review conducted 
by Klouwer et al. (29): tissue accumulation of VLCFA may 
lead to damage in the brain, nerves, and adrenal glands. 
DHA deficiency affects brain function and vision. The 
excessive presence of pristanic acid can impair cerebral 
function. The presence of bile acid intermediates, namely 

https://www.lovd.nl/
https://cdn.amegroups.cn/static/public/TP-23-454-Supplementary.pdf
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C
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Ala143_Val182dup + Gly183Val
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Figure 2 Recorded variants in the PEX26 gene and corresponding sequence annotations within the PEX26 protein (refer to Table 2). Red 
font: variants documented in this case. TMD, transmembrane domain; HR, heptad repeat.

Table 2 Recorded mutations in the PEX26 gene

No. Mutation Zygosity Number of patients Reference

1 T35insC (Leu12Profs*103) Hom 3 (5)

2 296G>A (Trp99*) Hom 4 (2)

3 230+1G>T (Thr77fs*139) Hom 1 (15)

4 73_79delGTGCGCG (Val25Argfs*55) Hom 1 (16)

5 185G>A (Trp62*) Hom 1 (16)

6 315G>A (Trp105*) Hom 1 (16)

7 256T>C (Cys86Arg) Hom 1 (17)

8 265G>A (Gly89Arg) Hom 2 (5)

9 200A>G (Asn67Ser) Hom 1 (18)

10 153C>A (Phe51Leu) Hom 6 (19)

11 506T>C (Leu169Pro) Hom 1 (20)

12 347T>A (Leu116Gln) Hom 1 (21)

13 34del (Leu12Serfs*70) Hom 1 (22)

14 292C>T (Arg98Trp) Hom 10 (5,15)

15 292C>T (Arg98Trp), 254insT (Cys86Valfs*114) Het 1 (5,15)

16 292C>T (Arg98Trp), 131T>C (Leu44Pro) Het 2 (15,23)

17 292C>T (Arg98Trp), 426_548dup122bpinsT (Ala143_Val182dup+Gly183Val) Het 1 (15)

18 292C>T (Arg98Trp), 574C>T (Arg192*) Het 2 (2)

19 292C>T (Arg98Trp), 3G>A (Met1Ile) Het 1 (24)

20 292C>T (Arg98Trp), 127G>C (Asp43His) Het 1 (24)

21 2T>C (Met1Thr), 134T>C (Leu45Pro) Het 1 (5,15)

22 350C>T (Pro117Leu), 457C>G (Leu153Val) + 861del C (Arg288Alafs*79) Het 2 (15,23)

23 37_38delAG (Arg13Glyfs*101), 667+2T>C Het 2 (2,25)

24 192_216del25 (Ser64Argfs*10), 353C>G (Pro118Arg) Het 2 (2,25,26)

25 347T>C (Leu116Pro), 616C>T (Gln206*) Het 1 This study

*, termination. fs, frameshift; Hom, homozygote; Het, heterozygote.



Translational Pediatrics, Vol 13, No 1 January 2024 197

© Translational Pediatrics. All rights reserved.   Transl Pediatr 2024;13(1):192-199 | https://dx.doi.org/10.21037/tp-23-454

3α,7α,12α-trihydroxycholestanoic acid (THCA) and 3α,7α-
dihydroxycholestanoic acid (DHCA), has been observed in 
the brain and liver and is believed to contribute to central 
nervous system damage and liver toxicity. Deficiency in 
plasmalogens leads to growth retardation, psychomotor 
impairment, cataracts, and anomalies in bone development. 
Klouwer et al. also found that there is a significant positive 
correlation between plasma levels of C26:0 and the C26:0/
C22:0 ratio as well as dried blood spot levels of C26:0-
lysoPC and the severity of ZSDs (30). However, it should 
be noted that biochemical tests may appear normal or 
mildly abnormal in some patients with mild ZSDs probably 
due to limited disease progression. This was observed in 
our case where only VLCFA accumulation was detected. 
Further testing using fibroblasts obtained from patients 
can help establish pathogenicity. Unfortunately, this test 
could not be conducted in our case due to a refusal for a 
skin biopsy. Given the heterogeneous nature of the disorder 
which may impede clinical diagnosis considering that 
evidence of biochemical abnormalities may be limited or 
absent in individuals with mild ZSDs, exome sequencing, 
as employed in our case, proves particularly valuable for 
diagnosing ZSDs (31). 

The predominant clinical manifestations in this 
case included hepatic impairment with hepatomegaly, 
sensorineural hearing loss, developmental delay, abnormal 
ossification such as a large anterior fontanelle and 
developmental dysplasia of the hip, mild craniofacial 
dysmorphology such as a high forehead. According to the 
severity scoring system developed by Klouwer et al. (30), 
this patient scored one point for each of the following 
domains: growth, facial morphology, hearing loss, liver 
function abnormalities, and skeletal anomalies. We deemed 
it necessary to continue monitoring despite not requiring 
additional care. Hepatic involvement may exhibit age-
related variability, therefore regular evaluation of hepatic 
function through liver function tests, liver ultrasonography, 
liver elastography, and liver biopsy should be considered 
to assess the extent of hepatic injury and fibrosis (13,26). 
Cholic acid (CA) therapy has demonstrated therapeutic 
efficacy in young patients with less severe liver damage 
(32,33). Other symptomatic treatments include oral 
administration of vitamin K and D supplements. A diet 
low in phytanic acid content and oral DHA therapy are 
recommended to improve partial biochemical abnormalities. 
As sensorineural hearing loss may worsen over time, the 
use of hearing aids or cochlear implant has been proposed 
for ameliorating this condition. Regular evaluation of other 

health indicators such as skeletal function, nutrition, growth, 
psychomotor skills, renal and adrenal abnormalities, vision 
should be conducted to monitor disease progression and 
for the implementation of timely symptomatic treatment. 
Additionally, regular reevaluation of cerebral MRI of the 
head during follow-up is recommended because pathologies 
may gradually manifest and progress over time (17,34). 

In recent years, researchers have recognized that 
pexophagy plays a crucial role in the pathogenesis of 
PBDs caused by variants in PEX1, PEX6, and PEX26 
genes. Therefore, targeting pexophagy may represent a 
promising therapeutic strategy for these patients (8). Prior 
to the availability of an effective treatment, early prenatal 
testing or preimplantation genetic diagnosis is necessary for 
families with a recurrence risk of PBD disorders (35).

Conclusions

Biallelic pathogenic variants in the PEX26 gene give rise 
to a spectrum of multiple congenital disorders known as 
ZSDs. Through exome sequencing, we identified two 
novel variants in the PEX26 gene in a male patient. The 
missense mutation c.347T>C (p.Leu116Pro) is located 
within the crucial Pex6-binding domain and is predicted to 
be deleterious by multiple mutation prediction software. 
The nonsense mutation c.616C>T (p.Gln206*) is suspected 
to be a pathogenic variant. The predominant clinical 
manifestations observed in this patient included hepatic 
impairment with hepatomegaly, sensorineural hearing 
loss, developmental delay, abnormal ossification and mild 
craniofacial dysmorphology. Currently, there are no curative 
therapies available for ZSDs; therefore, symptomatic 
supportive treatment has been provided to the patient who 
is undergoing regular follow-up appointments. This report 
expands upon the spectrum of known mutants in PEX26 
and highlights the effectiveness of highly efficient exome 
sequencing in patients presenting with undefined multiple 
system dysfunctions.
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Table S1 The information on mutations in the coding and shearing regions of ZSD-related genes

Chr Start End Ref Alt ExonicFunc.refGeneWithVer AAChange.refGeneWithVer Func.knownGene Gene.knownGene 1000g2015aug_all gnomAD_genome_ALL SIFT_pred Polyphen2_HDIV_pred Polyphen2_HVAR_pred LRT_pred MutationTaster_pred MutationAssessor_pred FATHMM_pred GERP++_RS REVEL

chr22 18083681 18083681 C T Stop gain NM_001127649.3: exon3: c.616C>T (p.Gln206*) Exonic PEX26 – – – – – U A – – 3.25 –

chr22 18079990 18079990 T C Nonsynonymous SNV NM_001127649.3: exon2: c.347T>C (p.Leu116Pro) Exonic PEX26 – – D D D U D M D 5.65 0.916

chr12 7190513 7190557 GCCTCTGAGGCAGTGAGTGTTCTTGAGGTGGAAAGCCCAGGTGCA – Non-frame shift deletion NM_001351132.2: exon2: c.136_147del (p.Glu48_Ser51del) Exonic PEX5 – 0.170843 – – – – – – – – –

chr11 45915716 45915716 C T Nonsynonymous SNV NM_004813.4: exon4: c.346G>A (p.Val116Ile) Exonic PEX16 1 0.999968 T B B N P N T 5.29 0.092

chr8 76983629 76983629 A G Nonsynonymous SNV NM_000318.3: exon4: c.550T>C (p.Cys184Arg) Exonic PEX2 0.996206 0.982108 T B B N P N T 3.59 0.289

chr7 92518270 92518270 C T – NM_000466.3: exon4: c.358-15G>A Splicing PEX1 0.89397 0.854448 – – – – – – – – –

chr7 92501975 92501975 G T Synonymous SNV NM_000466.3: exon14: c.2331C>A (p.Gly777=) Exonic PEX1 0.94988 0.9181 – – – – – – – – –

chr7 92499848 92499848 A – – NM_000466.3: exon16: c.2584-10T>- Splicing PEX1 – 0.729891 – – – – – – – – –

chr6 143470941 143470941 C G – NM_003630.3: exon5: c.332-20C>G Splicing PEX3 0.323682 0.320119 – – – – – – – – –

chr1 10618431 10618431 A T – NM_004565.3: exon5: c.384+14A>T Splicing PEX14 0.194888 0.194574 – – – – – – – – –

chr1 2408761 2408761 T C Synonymous SNV NM_002617.4: exon3: c.291A>G (p.Thr97=) Exonic PEX10 0.698882 0.738592 – – – – – – – – –

Table S2 The 21 unique variants reported in the “lovd” database that with no documented cases

No. DNA change (cDNA)  Protein

1 911G>A Arg304His

2 *167G>A p.(=)

3 *2162G>A p.(=)

4 743T>C Phe248Ser

5 728C>T 728C>T

6 716T>C Leu239Pro

7 680A>T His227Leu

8 668-5G>T ?

9 c.667+8A>G p.(=)

10 635G>T Gly212Val

11 628C>T His210Tyr

12 409G>C Val137Leu

13 381A>G Leu127=

14 359T>G Val120Gly

15 349C>A Pro117Thr

16 325T>C Tyr109His

17 207C>T Ala69=

18 130C>T Leu44Phe

19 119A>C Glu40Ala

20 98C>T Pro33Leu

21 32C>T Pro11Leu
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