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Hyperammonemia is an accumulation of ammonia, a 
nitrogen compound, resulting from protein catabolism, 
either by intestinal bacteria, or by muscle proteins in the 
presence of reduced energy sources (1,2). Following its 
production, ammonia is then coupled with glutamate for 
glutamine synthesis and later used by hepatic metabolism 
(urea cycle) to convert it into urea and subsequent excretion 
by the kidney (3). 

Wi t h  m u l t i p l e  s i t u a t i o n s  t h a t  c o u l d  l e a d  t o 
hyperammonemia in infants and newborns, there is no final 
consensus on what constitutes normal ammonia values thus 
far. Commonly used cutoffs are below (healthy) and above 
(sick) 100 μmol/L (4,5). 

Hyperammonemia etiologies have been divided into 
three groups (4,6,7): 
 Primary. Direct dysfunction of urea cycle enzymes
 Secondary. Other related enzymes leading to 

indirect dysfunction of the urea cycle 
 Others. Situations that could lead to increased 

ammonia production/processing such as liver 
dysfunction, infections, medications or transient 
status in the newborn. 

Most etiologies within the primary and secondary causes 
of hyperammonemia correspond to a larger group of 
conditions known as inherited metabolic disorders (IMD) 
or inborn errors of metabolism (IEM) (8). These group of 
disorders could be fatal if not promptly identified. 

The symptomatology of hyperammonemia, regardless 
of etiology, is non-specific. Symptoms such as decreased 

appetite, dyspnea, hypothermia, lethargy, seizures and 
ultimately coma (due to cerebral edema) could be seen in 
most if not all the conditions (according to severity) listed 
above (8). Therefore, proper diagnostic work-up (blood-
urine cultures, cerebrospinal fluid (CSF) analysis, liver 
synthetic function tests, renal function tests and metabolic 
tests e.g., plasma acylcarnitines, plasma amino acids, urine 
organic acids) is essential towards specific and more efficient 
management (6,9). 

As confirmed by Li et al. the most common genetic 
disorders leading to hyperammonemia in their cohort 
were cholestasis related disorders, urea cycle disorders and 
organic acidemias (10). The latter two groups are often 
linked, as organic acids are regulators of essential enzymes 
such as N-acetylglutamate synthase (11). Another interesting 
detail is that their most common single gene etiology was 
citrullinemia type 2/citrin deficiency (SLC25A13) a condition 
that some researchers classify as urea cycle disorder while 
some others consider it primarily a cholestasis/liver disorder 
that collaborates with the cycle (12). Citrullinemia type 2 has 
a large prevalence in Japan, but in the past few years, other 
East Asian populations like China, have demonstrated a 
higher prevalence as well, which is further confirmed by Li 
et al. (13,14). 

Li et al. further solidified that IEMs known to cause 
hyperammonemia continue to be the most frequent 
genetic etiologies for this situation. And while they were 
able to identify other genes not previously associated to 
hyperammonemia, such as JAG1, one must be careful 
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upon correlating these data, as there could have been other 
confounding factors not previously recorded; a limitation 
clearly stated by the authors. 

The impact of understanding the presentation and 
prevalence of these hyperammonemia related IEMs lies on 
timely diagnosis. While hyperammonemia could be fairly 
controlled with either high caloric intake (either through 
intravenous fluids or orally), nitrogen scavengers (such as 
sodium benzoate or glycerol phenylbutyrate) or ultimately 
by continuous renal replacement therapy; there is a high 
recurrence risk as the main trigger (which in some cases 
could just be a large meal) has not been identified nor 
managed (6). 

And as we are turning into a rare disease therapeutics era 
that not only involves organ transplantation for IEMs, but 
also mRNA and gene therapy, knowing the most relevant 
details of these conditions will become paramount for their 
care (15-18). 
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