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Background: The clinical manifestations of Wilms tumor and non-Wilms tumor in children are similar, 
and the only way to confirm the diagnosis is by postoperative pathology. Computed tomography (CT) is one 
of the main methods for preoperative diagnosis of the two, but it is also difficult to distinguish because it is 
easily affected by the subjective influence and the experience of the radiologists.
Methods: The CT images of 82 children with renal tumors admitted to the Department of Pediatric 
Urology, Shandong Provincial Hospital from January 2011 to March 2022 were retrospectively analyzed. 
First, we drew the two-dimensional (2D) region of interest (ROI) of the largest cross-section on the 
corticomedullary phase (CMP) and nephrogenic phase (NP) images, and extracted seven types of 107 features  
in the ROI. Then, the texture features with similarity greater than 95% and repetition less than 90% were 
screened out, and the remaining texture features were further screened by analysis of variance (ANOVA) and 
recursive feature elimination (RFE). Finally, 15 texture feature were used to build the machine learning (ML) 
models. We used the synthetic minority oversampling technique (SMOTE) and 10-fold cross-validation to 
build ML models and verified them in the training, testing, and internal validation sets. The area under the 
receiver-operating characteristic curve (AUC) and calibration curve were used to evaluate the diagnostic 
performance.
Results: We collected 77 CMP and 81 NP images, which were randomly divided into the training set and 
the testing set according to the ratio of 7:3. In the internal validation of CMP, the Mean-PCC-ANOVA-
5-AE pipeline model achieved the highest AUC 0.792 [95% confidence interval (CI): 0.653–0.930], and 
its accuracy (ACC), sensitivity (SEN), and specificity (SPE) were 0.833, 0.539 and 0.927, respectively. 
Correspondingly, in NP, the Mean-PCC-ANOVA-2-LR pipeline model achieved the highest AUC 0.655 
(95% CI: 0.485–0.82) in the internal validation. The ACC, SEN, and SPE were 0.696, 0.539, and 0.744, 
respectively. 
Conclusions: The ML models based on CT images have good diagnostic efficiency in differentiating 
Wilms tumors from non-Wilms tumors in children. 
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Introduction

Background

Wilms tumor is the most common primary renal tumor in 
children, accounting for about 80% (1). With the exception 
of Wilms tumor, other renal tumors include clear cell 
sarcoma of the kidney (CCSK), malignant rhabdomyoma 
tumor of the kidney (MRTK), renal cell carcinoma (RCC), 
congenital mesoblastic nephroma (CMN), and multilocular 
cystic nephroma (2). With the development of medicine, 
precision medicine is more respected, and the preoperative 
clear pathological type of tumor is crucial for deciding on 
the treatment plans (3).

Rationale and knowledge gap

The clinical manifestations of Wilms tumor and non-
Wilms tumor are similar, and computed tomography (CT) 
is usually used to diagnose them. With the limitations of 
CT, it is sometimes difficult to identify between the two, 
and it is preferred to diagnose non-Wilms tumors as “Wilms 
tumors”. A reliable preoperative diagnosis is helpful for 
the selection of treatment options for children, which 
is beneficial to the patients. The extensive integration 
of artificial intelligence (AI) with medical research can 
aid clinical decision-making (4,5). On this basis, AI can 
be combined with imaging to correct the influence of 
subjective factors on diagnostic accuracy. As a subset of AI, 
machine learning (ML) can be widely used in renal tumor 
characteristics analysis by identifying information that 

cannot be detected by the human eyes (6,7).

Objective

Based on the aforementioned, we put forward the idea 
of building CT-based ML models to assist radiologists 
and clinicians in preoperative diagnosis and provide more 
objective information, thereby improving the accuracy 
of diagnosis with preoperative images. We present 
this article in accordance with the TRIPOD reporting 
checklist (available at https://tp.amegroups.com/article/
view/10.21037/tp-23-508/rc).

Methods

Patient selection

From January 2011 to March 2022, 83 patients with Wilms 
tumors and 34 patients with non-Wilms tumors admitted to 
the Department of Pediatric Urology, Shandong Provincial 
Hospital were reviewed. The inclusion criteria were as 
follows: age ≤14 years, complete clinical data, definite 
pathological diagnosis, and complete preoperative imaging 
data [corticomedullary phase (CMP) and nephrogenic 
phase (NP)]. The exclusion criteria were the children who 
received chemotherapy or who were with combination 
of renal malformations, images with poor quality, or 
artifacts. The study was conducted in accordance with the 
Declaration of Helsinki (as revised in 2013). The study was 
approved by the institutional review board of Shandong 
Provincial Hospital Affiliated with Shandong First Medical 
University (SWYX: No. 2023-453) and individual consent 
for this retrospective analysis was waived.

Image acquisition and segmentation

A plain scan was performed before the enhanced CT scan. 
The contrast agent applied was ioversol (350 mg/mL), and 
the injection dose was 1.5 mL/kg. The CMP was scanned 
for about 15–30 s after the injection of the contrast agent, 
and the NP was scanned for about 60–90 s.

Images with slice thicknesses of 3 and 5 mm and tube 
voltages of 70, 80, 100, and 120 kv were selected. Firstly, the 
DICOM file was obtained and input into the open-source 
3D Slicer software (version 5.2.2) (8) based on the “Segment 
Editor” module to draw the two-dimensional (2D) region 
of interest (ROI) on CMP and NP, and the drawn ROI was 
output in NIfTI format for the next operation. ROIs were 
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constructed by manually drawing along the tumor edge on the 
largest cross-sectional plane and one image each was collected 
from the CMP or NP respectively. Author H.S. drew all ROIs 
independently, meanwhile, author X.W. used SPSS software 
(version 26.0.0.0) to select 10% of images randomly and then 
delineated the ROI using 3D Slicer software.

Feature extraction and models construction

First-order statistic, shape-based 2D, gray level cooccurence 
matrix (GLCM), gray level run length matrix (GLRLM), 
gray level size zone matrix (GLSZM), neighbouring 
gray tone difference matrix (NGTDM), and gray level 
dependence matrix (GLDM) were extracted by the “Feature 
Extraction” module of the FAE (FeAture Explorer) software 
(version 0.5.4) (9). Additionally, some clinical features such 
as age and sex were also added to the feature selection. 

Similarly, FAE software was also used to build models. 
All images were randomly divided into a training set and 
a testing set at a ratio of 7:3. In the process of building 
the ML models, we first used the synthetic minority 
oversampling technique (SMOTE) to balance the dataset, 
then used two different methods (Z-score and Mean) for 
feature matrix normalization, and then screened features 
with Pearson correlation coefficient (PCC) less than 0.95 
for dimensionality reduction. Then we selected analysis 
of variance (ANOVA), and recursive feature elimination 
(RFE) to select 15 features, and then selected 10 classifiers 
for the final model construction. Finally, ten-fold cross-
validation was used to determine the hyperparameter of 
the final models. The 10 classifiers were support vector 
machine (SVM), linear discriminant analysis (LDA), logistic 
regression (LR), Adaboost, Gaussian process, Auto-Encoder 
(AE), Random Forest (RF), logistic regression-lasso (LR-
lasso), Decision tree, and Naïve Bayes, respectively (Figure 1).

Statistical analysis 

The area under the receiver-operating characteristic 
curve (AUC) and calibration curve were used to evaluate 
the diagnostic performance of the FAE software (version  
0.5.4) (9).

The Shapiro-Wilk (S-W) test and Histogram results 
determined whether continuous variables were normally 
distributed. The rank sum test was used to compare 
nonnormal distributions and the Chi-squared test was used 
to compare categorical variables. The statistical data were 
implemented in SPSS software (version 26.0.0.0). Statistical 

significance was indicated by a P value of less than 0.05.
In addition, R software (version 4.2.0) was taken to 

write code for intraclass correlation coefficients (ICC) and 
selected variables with excellent reliability (≥0.90) (detailed 
coding is provided in Appendix 1).

Results

Patient

According to our inclusion and exclusion criteria, 19 non-
Wilms tumor patients and 63 Wilms tumor patients were 
included in our research (Figure 2). Among the non-Wilms 
tumor children, the median age was 25.84 months, with  
12 males and 7 females, and among the Wilms tumor 
children, the median age was 22.39 months, with 35 males 
and 28 females. 

To expand the sample, we also selected images with slice 
thicknesses of 3 and 5 mm and tube voltages of 70, 80, 100, 
and 120 kv. There were no significant differences in CMP 
or NP (all P>0.05). The results are shown in Tables 1,2.  
There were no significant differences between the two 
groups (non-Wilms tumor and Wilms tumor, all P>0.05). 
The results are shown in Tables 1,2.

ML models

A total of 600 pipelines were built in our ML models, 
including one method of balance data, two normalization 
methods, one method of dimensionality reduction, two 
feature selectors, ten classifiers, and fifteen features. 
Appendix 2 details all features with ICC greater than 0.90 
on CMP and NP. 

Table 3 shows the data of the training and testing sets at a 
ratio of 7:3. Fifty-four patients were in the training set and 
we also selected another 23 cases as the testing set for the 
model of CMP. Sixty-two patients were in the training set 
and we also selected another 19 cases as the testing set for 
the model of NP.

The model of CMP

In the model of CMP, 28 texture features with similarity 
greater than 95% and repetition less than 90% were 
screened, and 15 texture features were further screened 
by ANOVA and RFE for model construction. We found 
that the Mean-PCC-ANOVA-AE pipeline model based 
on five features achieved the highest AUC (0.792) in the 
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validation set. The AUC of the model achieved 0.433 and 
0.814 in the testing and training sets respectively (Figure 3).  
The five texture features that contributed the most to the 
CMP model were firstorder_90Percentile, firstorder_
Interquartilerange, glcm_Sumentropy, glcm_Imc2, and 
firstorder_Uniformity (Figure 4). 

The model of NP

In the model of NP, 59 texture features with similarity 
greater than 95% and repetition less than 90% were 
removed, and 15 texture features were also used to 

construct the models. The Mean-PCC-ANOVA-LR 
pipeline model based on the two features resulted with the 
highest AUC in the validation set. The AUC could achieve 
0.655. In the testing and training sets, the AUC of the 
model achieved 0.693 and 0.784, respectively (Figure 5).  
Shape_SurfaceVolumeRatio and ngtdm_Busyness 
contributed the most to the model (Figure 6).

Discussion

Key findings, strengths, and limitations

CT is the main method for preoperative identification of 

3D slicer

FAE

7:3

Features

Models

Features with good

reproducibility

First-order statistic

Shape-based (2D)

GLCM

GLRLM

GLSZM

NGTDM

GLDM

Balance data (SMOTE)

Normalization (Z-score + Mean)

Preprocess (0.95)

Feature Selector (ANOVA + RFE; Feature: 1–15)

10 Classifiers (SVM/LDA/Logistic regression/

Adaboost/Gaussian process/AE/RF/LR-Lasso/

Decision tree/Naive Bayes)

Cross validation (10-Folder)

Figure 1 The structure of the model. FAE, FeAture Explorer; GLCM, gray level cooccurence matrix; GLRLM, gray level run length 
matrix; GLSZM, gray level size zone matrix; NGTDM, neighbouring gray tone difference matrix; GLDM, gray level dependence matrix; 
SMOTE, synthetic minority oversampling technique; ANOVA, analysis of variance; RFE, recursive feature elimination; SVM, support 
vector machine; LDA, linear discriminant analysis; AE, Auto-Encoder; RF, Random Forest; LR-lasso, logistic regression-lasso.



Translational Pediatrics, Vol 13, No 3 March 2024 421

© Translational Pediatrics. All rights reserved.   Transl Pediatr 2024;13(3):417-426 | https://dx.doi.org/10.21037/tp-23-508

Wilms tumors and non-Wilms tumors (10). However, it is 
difficult to distinguish Wilms tumor from non-Wilms tumor 
through non-invasive examination methods before surgery. 
CT diagnosis is not only often limited by the experience of 
radiologists but also affected by the subjective thoughts of 
radiologists. For example, in our study, 26 of the 34 children 
with non-Wilms tumors were diagnosed preoperatively as 
Wilms tumors by CT diagnosis, three were diagnosed as 
renal tumors, and only three had the same postoperative 
pathological results. Similarly, among 63 children with a 
post-pathological diagnosis of Wilms tumor, 55 cases had a 
diagnosis consistent with the preoperative diagnosis of CT, 
three cases were misdiagnosed (one mesoblastic nephroma, 
one neurogenic tumor, and one angiomyolipoma), four cases 
were diagnosed as renal tumors, and one case was diagnosed 
as retroperitoneal tumors. So, the accuracy (ACC), 
sensitivity (SEN), and specificity (SPE) of radiologists were 
0.592, 0.640, and 0.273 in our research. Then, is there 
a more objective preoperative non-invasive examination 
method that can avoid the influence by experience and 
subjective thoughts, while improving the accuracy of 
diagnosis? If the type of renal tumor in children can be 
diagnosed by imaging before surgery, children with renal 
tumors will benefit. There are differences in the treatment 

of pediatric renal tumors in different regions. For example, 
in North America [the Children’s Oncology Group (COG)], 
it is advocated that tumor resection should be performed 
first, and subsequent treatment should be carried out after 
the pathology is confirmed. In Europe [the International 
Society of Paediatric Oncology (SIOP)], preoperative 
chemotherapy to reduce tumor staging and the risk of 
rupture is followed by operation. For children between the 
ages of 6 months and nine years, the standard chemotherapy 
regimen for Wilms tumor is generally adopted, and when 
non-Wilms tumor is suspected, the chemotherapy regimen 
is determined based on the results of biopsy. For children 
older than 10 years with an uncertain clinical diagnosis, the 
biopsy is generally performed first (11-13). Wilms tumors 
can be distinguished from non-Wilms tumors by non-
invasive methods (imaging), which is beneficial both for the 
plan of direct resection of the tumor and the plan of further 
treatment after biopsy, yet biopsy may cause needle tract 
metastasis and increase the clinical stage. 

Sharaby et al.  (14) used a novel computer-aided 
prediction system to predict the preoperative chemotherapy 
susceptibility of Wilms tumor and this system was based on 
SVM. Wang et al. (15) also used a method based on ML to 
validate and compare the performance of dose reconstruction 

Wilms tumors

Inclusion criteria
• Age ≤14 years
• Complete clinical data
• Definite pathological diagnosis
• Complete preoperative imaging data, CMP or NP

Included:
• 83 patients with Wilms tumors
• 34 patients with non-Wilms tumors

Included:
• 19 non-Wilms tumors 
• 63 Wilms tumors patients

Exclusion criteria
• After chemotherapy
• Combination of renal malformations
• Images with poor quality, or artifacts

Non-Wilms tumors

From January 2011 to March 2022

Figure 2 Inclusion and exclusion criteria of patients. CMP, corticomedullary phase; NP, nephrogenic phase.
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Table 1 Clinical features and the imaging features of CMP and NP

Variables Non-Wilms tumor Wilms tumor Value (Z/χ2) P

Age (months) 25.84 (8.84, 54.77) 22.39 (8.81, 35.18) Z=−0.385 0.7

Gender χ2=0.345 0.557

Female 7 28

Male 12 35

Maximum diameter (cm)

≥11 4 25 χ2=2.216 0.317

<11 15 38

CMP 18 59 χ2=0 0.991

NP 19 62

CMP slice (mm) χ2=3.492 0.138

3 6 5

5 53 13

CMP tube voltages (Kv) χ2=0.772 0.856

70 7 2

80 7 2

100 22 5

120 23 9

NP slice (mm) χ2=2.484 0.247

3 5 4

5 57 15

NP tube voltages (Kv) χ2=1.317 0.725

70 7 3

80 8 2

100 24 5

120 23 9

CMP, corticomedullary phase; NP, nephrogenic phase.

methods in historical radiotherapy plans for Wilms tumor. 
Ma et al. (16) used ML to identify the stage of Wilms tumor 
in children and got an excellent performance. Therefore, 
the ML perhaps could be an excellent method to be applied 
to renal tumors in children, including determination of 
the tumor treatment regimen’s response and the tumor’s 
staging. Thus, although non-Wilms’ tumor is a kind of 
highly heterogeneous disease because of its variety of types 
of tumors (2), ML models can overcome this and distinguish 
Wilms tumor from non-Wilms tumor and ML models 
have been widely used in adult kidney tumors (17-23). So, 

by constructing ML models, Wilms tumors can be better 
distinguished from non-Wilms tumors. To the best of our 
knowledge, few studies have applied ML to distinguish 
pediatric Wilms tumors from non-Wilms tumors. The 
possible reasons are as follows: (I) there are many kinds of 
non-Wilms’ tumors, including CCSK, renal, RCC, MRTK, 
CMN, multilocular cystic nephroma, and other types. (II) 
There are no obvious specific diagnostic signs on CT, about 
Wilms’ tumors, and it is difficult to distinguish them by the 
naked eye. 

In our research, 82 patients, 77 images of CMP, and 
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Table 2 The factors in CMP and NP

Variables CMP NP Value (χ2) P

Age (months) 1.611 0.204

≥26 35 45

<26 42 36

Gender 0.002 0.964

Female 33 35

Male 44 46

Side 0.057 0.812

Left 48 49

Right 29 32

Maximum diameter (cm) 0.154 0.695

≥11 26 26

<11 51 55

CMP, corticomedullary phase; NP, nephrogenic phase.
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Figure 3 The top five models in the CMP, according to the 
performance of AUC. CMP, corticomedullary phase; PCC, 
Pearson correlation coefficient; ANOVA, analysis of variance; 
RFE, recursive feature elimination; AE, Auto-Encoder; LDA, 
linear discriminant analysis; LR, logistic regression; GP, Gaussian 
process; AUC, the area under the receiver-operating characteristic 
curve; ACC, accuracy; SEN, sensitivity; SPE, specificity.

Table 3 Training set and testing set on the CMP and NP ML model

Phase Tumor Training Testing

CMP Wilms tumor 41 18

Non-Wilms tumor 13 5

NP Wilms tumor 43 13

Non-Wilms tumor 19 6

CMP, corticomedullary phase; NP, nephrogenic phase; ML, 
machine learning.
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Image_original_glcm_Imc2 39.41

Image_original_firstorder_Uniformity 40.31
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Figure 4 The AUC (A), texture features (B), and feature number (C) in the model of CMP. The red dashed line indicates models that 
are within 1 standard error of the optimal model. AUC, the area under the receiver-operating characteristic curve; GLCM, gray level 
cooccurence matrix; CMP, corticomedullary phase.

81 images of NP were included for the analysis. One 
of the strengths of our study is the inclusion of age in 
the construction of ML models. Age is one of the most 
common clinical indices for preoperative diagnosis (3) 
and the age distribution of each renal tumor in children 
is different (24,25). In the CMP model, we received the 
highest performance of AUC (0.792), ACC (0.833), SEN 
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(0.923), and SPE (0.927), where the highest AUC, ACC 
and SPE were generated by the Mean-PCC-ANOVA-5-
AE pipeline model and the highest SEN was generated by 
the Mean-PCC-RFE-1-LR pipeline model. Compared to 
the performance of the CMP model (the AUC of training, 
testing, and validation sets were 0.814, 0.433, and 0.792 
respectively), the NP model received a firm performance 
(the AUC of training, testing, and validation sets were 
0.784, 0.693, and 0.655 respectively). The accuracy of 
CMP models ranged from 0.630 to 0.833, and all of our 

CMP models performed better than the accuracy (0.592) of 
preoperative image diagnosis. Different from the selected 
phase of Ma et al. (16,26), we selected CMP and NP as our 
targeted phases and received excellent results. In terms of 
building a model to distinguish Wilms tumors from non-
Wilms tumors, Zhu et al. (3) built a deep learning (DL) 
model (ResNet34) to achieve this. In contrast to their study, 
we carefully drew the ROI along the edge of the tumor 
to avoid the influence of peritumoral renal parenchyma 
and fat. However, they chose 1.2 ROI to extract features. 
Fine manual drawing of ROI along the tumor margin may 
be beneficial to the final result of the models. Regardless 
of ML or DL, the performance of models is most closely 
related to the sample size. To improve the performance 
of our model, the sample size should be further increased 
in the future. In the ML model of CMP, the AUC of 
the testing set was 0.433. About this result, we did some 
analysis and the possible reasons are as follows: (I) although 
the CMP could not only identify the border of tumors 
distinctly but also could provide a piece of comprehensive 
information, the NP could better recognize peritumor renal 
parenchyma and peritumor perirenal fat. (II) Renal tumors 
in children are large and often accompanied by internal 
necrosis and cystic degeneration. In CMP, the CT value of 
the renal parenchyma was higher than that of the tumor 
(mean CT value: 120 vs. 45 HU), thus potentially masking 
the tumor.

Conclusions

In order to improve the clinical diagnosis by non-invasive 
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gray tone difference matrix; NP, nephrogenic phase.
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imaging methods, we presented ML models with excellent 
results for identifying non-Wilms tumors from Wilms 
tumors in children with excellent results. Each phase, 
whether it is CMP or NP, has its own advantages and 
disadvantages. CMP is better than NP in discrimination, 
but NP is less affected by various factors and more stable. 
Perhaps, our research can promote the integration of 
pediatric renal tumors and ML, thereby further promoting 
the application of AI in pediatric tumors.
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Supplementary

> install.packages("psych")
library(psych)
setwd("~/Desktop/Fanomics")
> getwd()
> df_icc1 <- read.csv("icc1.csv")
> df_icc2 <- read.csv("icc2.csv")
>  n <- dim(df_icc1)[1]
> p <- dim(df_icc1)[2]
> df_intra <- rbind(df_icc1,df_icc2)
icc_all_intra <- apply(df_intra, 2, function(x) ICC(x = data.frame(x[1:n], x[(n+1):(2*n)]),lmer = F)$results[1,2])
df_icc_all_intra <- data.frame(feature = names(df_intra),icc = icc_all_intra, row.names = 1:ncol(df_intra))
write.csv(df_icc_all_intra,"df_icc_all_intra.csv")

Appendix 1 Detailed coding for intraclass correlation coefficients
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Appendix 2 All features with intraclass correlation coefficients greater than 0.90 on CMP and NP

CMP NP

Feature ICC Feature ICC

image_original_shape_SurfaceVolumeRatio 0.999703 image_original_ngtdm_Strength 0.997886

image_original_ngtdm_Coarseness 0.999602 image_original_shape_SurfaceVolumeRatio 0.997055

image_original_gldm_SmallDependenceEmphasis 0.999219 image_original_glszm_ZoneVariance 0.994225

image_original_firstorder_RobustMeanAbsoluteDeviation 0.998798 image_original_glszm_LargeAreaEmphasis 0.994144

image_original_glszm_ZonePercentage 0.998405 image_original_glszm_SizeZoneNonUniformityNormalized 0.993853

image_original_firstorder_MeanAbsoluteDeviation 0.998284 image_original_glrlm_LongRunLowGrayLevelEmphasis 0.990296

image_original_glcm_Contrast 0.99777 image_original_glcm_ClusterShade 0.988236

image_original_glcm_Imc1 0.997564 image_original_gldm_DependenceNonUniformityNormalized 0.987703

image_original_firstorder_90Percentile 0.997399 image_original_glrlm_RunVariance 0.987175

image_original_glcm_DifferenceEntropy 0.997288 image_original_glrlm_LongRunEmphasis 0.98707

image_original_glcm_SumSquares 0.997225 image_original_gldm_LargeDependenceEmphasis 0.985449

image_original_glcm_ClusterTendency 0.997185 image_original_glcm_DifferenceEntropy 0.983747

image_original_glrlm_GrayLevelNonUniformityNormalized 0.997132 image_original_glrlm_RunPercentage 0.983314

image_original_glcm_DifferenceAverage 0.996764 image_original_glcm_DifferenceVariance 0.982974

image_original_gldm_DependenceNonUniformity 0.996724 image_original_gldm_GrayLevelNonUniformity 0.981646

image_original_firstorder_Energy 0.996709 image_original_glcm_InverseVariance 0.981574

image_original_gldm_GrayLevelVariance 0.996695 image_original_glcm_Id 0.980907

image_original_glrlm_RunLengthNonUniformityNormalized 0.996597 image_original_glcm_Idm 0.980738

image_original_glcm_DifferenceVariance 0.996488 image_original_glszm_LargeAreaLowGrayLevelEmphasis 0.980694

image_original_glcm_Idm 0.996361 image_original_glcm_DifferenceAverage 0.980483

image_original_firstorder_RootMeanSquared 0.996295 image_original_glrlm_RunLengthNonUniformityNormalized 0.98037

image_original_glcm_Id 0.996225 image_original_ngtdm_Coarseness 0.980166

image_original_firstorder_Variance 0.99615 image_original_glcm_Contrast 0.97914

image_original_firstorder_Entropy 0.996053 image_original_glszm_SmallAreaEmphasis 0.97773

image_original_firstorder_Uniformity 0.995976 image_original_ngtdm_Busyness 0.974418

image_original_glrlm_RunPercentage 0.99597 image_original_gldm_DependenceNonUniformity 0.966119

image_original_firstorder_Median 0.995948 image_original_shape_MinorAxisLength 0.965445

image_original_glcm_JointEntropy 0.995881 image_original_glszm_LargeAreaHighGrayLevelEmphasis 0.964691

image_original_glrlm_LongRunEmphasis 0.995749 image_original_glrlm_LongRunHighGrayLevelEmphasis 0.961037

image_original_glcm_InverseVariance 0.995528 image_original_gldm_DependenceVariance 0.958119

image_original_gldm_GrayLevelNonUniformity 0.995504 image_original_gldm_SmallDependenceEmphasis 0.957753

image_original_gldm_LargeDependenceEmphasis 0.995439 image_original_glszm_GrayLevelNonUniformity 0.955541

image_original_glcm_Correlation 0.99543 image_original_firstorder_Minimum 0.939263

image_original_shape_Maximum2DDiameterColumn 0.995421 image_original_ngtdm_Complexity 0.938753

image_original_glcm_SumEntropy 0.995352 image_original_glrlm_GrayLevelNonUniformity 0.935427

image_original_glrlm_ShortRunEmphasis 0.994974 image_original_shape_Sphericity 0.935179

image_original_glcm_MCC 0.994897 image_original_glcm_MaximumProbability 0.934252

image_original_firstorder_Mean 0.99483 image_original_glszm_LowGrayLevelZoneEmphasis 0.933156

image_original_glcm_JointEnergy 0.994762 image_original_glcm_ClusterProminence 0.933095

image_original_firstorder_TotalEnergy 0.99472 image_original_glrlm_ShortRunEmphasis 0.932651

image_original_glrlm_LongRunLowGrayLevelEmphasis 0.994709 image_original_glcm_Idn 0.927744

image_original_firstorder_InterquartileRange 0.994634 image_original_shape_SurfaceArea 0.923885

image_original_glrlm_RunVariance 0.994585 image_original_firstorder_10Percentile 0.923572

image_original_glcm_Imc2 0.994256 image_original_shape_VoxelVolume 0.921104

image_original_glrlm_RunEntropy 0.994007 image_original_shape_MeshVolume 0.921026

image_original_gldm_DependenceEntropy 0.993948 image_original_shape_Maximum2DDiameterRow 0.916918

image_original_gldm_DependenceVariance 0.993479 image_original_glszm_ZonePercentage 0.913083

image_original_glrlm_GrayLevelNonUniformity 0.993425 image_original_glrlm_ShortRunLowGrayLevelEmphasis 0.901776

image_original_gldm_DependenceNonUniformityNormalized 0.993417

image_original_shape_Sphericity 0.993237

image_original_shape_VoxelVolume 0.990466

image_original_shape_MeshVolume 0.990441

image_original_shape_MajorAxisLength 0.990134

image_original_glrlm_RunLengthNonUniformity 0.990073

image_original_shape_SurfaceArea 0.990066

image_original_firstorder_10Percentile 0.989598

image_original_shape_Maximum2DDiameterSlice 0.989024

image_original_shape_Maximum3DDiameter 0.989024

image_original_glcm_MaximumProbability 0.989006

image_original_glrlm_LongRunHighGrayLevelEmphasis 0.988914

image_original_glszm_GrayLevelNonUniformityNormalized 0.987143

image_original_shape_MinorAxisLength 0.987114

image_original_shape_Maximum2DDiameterRow 0.986042

image_original_glszm_SizeZoneNonUniformityNormalized 0.982644

image_original_glszm_SizeZoneNonUniformity 0.982329

image_original_glszm_GrayLevelNonUniformity 0.981122

image_original_glszm_LargeAreaLowGrayLevelEmphasis 0.977235

image_original_glszm_ZoneEntropy 0.970264

image_original_glrlm_GrayLevelVariance 0.965288

image_original_glszm_SmallAreaEmphasis 0.96069

image_original_glszm_LargeAreaEmphasis 0.950659

image_original_glszm_ZoneVariance 0.94956

image_original_firstorder_Skewness 0.946556

image_original_glszm_LargeAreaHighGrayLevelEmphasis 0.941172

image_original_glszm_SmallAreaLowGrayLevelEmphasis 0.925727

image_original_ngtdm_Busyness 0.916888

image_original_gldm_LargeDependenceLowGrayLevelEmphasis 0.910933

image_original_firstorder_Minimum 0.908471

image_original_glcm_ClusterShade 0.901755


