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Transcatheter valve implantation

The first report of successful transcatheter pulmonary valve 
implantation was in 2000 (1). After a successful multi-center 
United States Investigational Device Exemption trial, the 
Melody™ Transcatheter Pulmonary Valve (Medtronic, 
Inc., Minneapolis, Minnesota, USA) became the first FDA 
approved transcatheter pulmonary valve in 2010 (2,3). 
Results from the United States Post-Approval Study and 
several international Melody valve implantation registries, 
led to the quick adoption of this therapy in patients with 
congenital heart disease as these valves exhibited excellent 
reduction in both right ventricular outflow tract stenosis 
and insufficiency (4-6). The initial indication for Melody 
valve implantation was for use in dysfunctional right 
ventricle-to-pulmonary artery conduits. However, off-
label use of the device quickly expanded to dysfunctional 
bioprosthetic pulmonary valves (now an on-label use of the 

Melody valve), as well as implantation in non-pulmonary 
positions, including the mitral valve, tricuspid valve, and 
aortic valve, as well as implantation in the bilateral branch 
pulmonary arteries (7-10). 

While the Melody valve, and its delivery system, were 
specifically designed for use in the pulmonary position, the 
Edwards Sapien valve (Edwards Lifesciences, Irvine, CA, 
USA) originally designed as a transcatheter aortic valve, 
also expanded its market into the pulmonary space (11). 
The next generation device, Edwards Sapien XT valve 
(Edwards Lifesciences, Irvine, CA, USA) received FDA 
approval in 2016 for the use in dysfunctional right ventricle 
to pulmonary artery conduits. The COMPASSION 
Trial (COngenital Multicenter trial of Pulmonic vAlve 
regurgitation Studying the SAPIEN InterventIONal THV 
COMPASSION Trial) is completing data collection and 
the COMPASSION Post-Approval Study is currently 
underway. A newer version of the Sapien valve, the S3 valve, 
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has also been implanted successfully in the pulmonary 
position and non-pulmonary prosthetic valves (12-14).

A recent meta-analysis of implanted transcatheter 
pulmonary valves, including both Melody and Sapien valves, 
confirms what has been shown in multiple smaller studies: 
a very high rate of implantation success (96.2%) in over 
1,000 reported implants in the literature (15). Further, after 
accounting for the practice of pre-stenting conduits, which 
has drastically lowered the incidence of stent fracture in the 
Melody valve population, re-intervention rates were quite 
low (2.9 per 100 patient years, compared to 6.9 per 100 
patient years in patients without pre-stenting). 

Despite the excellent success of transcatheter pulmonary 
valve therapies, patients with dysfunctional conduits or 
bioprosthetic valves comprise the minority of patients 
with right ventricular outflow tract dysfunction. It is 
estimated that the currently available therapies will only 
effectively treat ~15% of patients with severe pulmonary 
insufficiency (16). Of the remaining 85% of patients, the 
majority have severe pulmonary regurgitation secondary to 
surgical right ventricular outflow tract patch augmentation, 
typically in the setting of Tetralogy of Fallot. Over time, 
chronic pulmonary regurgitation leads to right ventricular 
dilation, decreased exercise tolerance, and increased risk 
for arrhythmia and sudden cardiac death (17-21). These 
patients, however, often have severe dilation of the outflow 
tract making pulmonary valve replacement with currently 
available transcatheter valves not feasible and therefore 
making surgical pulmonary valve replacement the only 
option. Now with the availability of larger diameter S3 
valves, as well as several creative ways to reduce the size 
of the right ventricular outflow tract to allow for the safe 
implantation of currently available transcatheter valves 
(22,23), treatment of so-called “native” outflow tracts 
is possible but remains limited. Therefore, this patient 
population represents a significant unmet need in the field 
of congenital heart disease.

Several newer valves are currently being developed to 
expand our ability to treat patients with severe pulmonary 
insufficiency and right ventricular outflow tracts too large 
for currently approved devices. The first of such devices, 
which is now better known as the Medtronic Harmony™ 
Transcatheter Pulmonary Valve (Medtronic, Inc.), was 
successfully implanted in 2010 (16). This self-expanding 
nitinol covered stent with a porcine pericardial valve 
sewn at the center has shown promising results in animal 
models, with improved right ventricular size on follow-
up volumetric imaging (24). More recently, the Harmony 

early feasibility study showed a high rate of implantation 
success (95%) with few procedural complications (25). 
Furthermore, 100% of patients had mild or less pulmonary 
regurgitation at 6-month follow-up, compared to 95% with 
severe and 5% with moderate pulmonary regurgitation at 
baseline (25). The Pivotal Trial for the Harmony valve is 
currently underway in the United States with successful 
implantation in the first patient in September 2017. Other 
devices being implanted outside the United States include 
the Venus P valve (Venus Medtech, Shanghai, China) (26-
29), as well as the self-expanding device by the TaeWoong 
Medical Company (Gyeonggi-do, Republic of Korea) (30). 
All devices have shown promising early results but further 
longitudinal study is necessary to understand how each of 
these devices will change the landscape of pulmonary valve 
replacement.

Transcatheter valve implantation—conclusions

Transcatheter valve implantation is one of the fastest 
growing areas of innovation in our field. Current devices 
have allowed us to treat a large number of patients who 
previously required surgical re-operations and future 
technologies promise to grow the patient population that 
we can serve. A critical next step will be refining when we 
intervene, particularly in the setting of chronic pulmonary 
regurgitation, and understanding if earlier intervention 
improves long-term patient outcomes, especially compared 
to surgical valve replacement.

Hybrid procedures

A “hybrid procedure” refers to any procedure where 
interventional catheterization and surgical techniques 
are used in tandem. In congenital heart disease, hybrid 
procedures are often synonymous with the hybrid stage I 
palliation for infants with hypoplastic left heart syndrome 
(HLHS), however hybrid procedures are utilized in many 
other situations extending beyond infants with HLHS. In 
fact, in the era of increasingly complex interventions on 
increasingly high-risk patients, hybrid procedures offer 
many potential advantages over traditional interventional 
catheterization and surgical techniques because, during 
hybrid procedures, we are able to combine the best parts 
of each specialty. Often, performing a procedure with 
a hybrid approach allows for more direct access with 
larger bore equipment in smaller patients while avoiding 
cardiopulmonary bypass. More importantly, hybrid 
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procedures are an example of using cross-discipline 
innovation, collaboration, and group-thought to solve 
complex problems. 

The first “hybrid” procedure was described in 1972 (31). 
Although never referred to as a hybrid procedure, what 
we would now refer to as hybrid techniques were utilized 
to facilitate patent ductus arteriosus closure. Interestingly, 
the authors comment that they were “impressed by the 
simplicity and quickness of the procedure,” which is often a 
main advantage of hybrid procedures over more traditional 
surgical and transcatheter techniques (31). Since that time, 

hybrid procedures have been used for a myriad of purposes 
(Figure 1). Here we will highlight two of these hybrid 
procedures; the hybrid approaches for hypoplastic left heart 
syndrome and pulmonary atresia with intact ventricular 
septum.

HLHS

Probably the most commonly discussed hybrid procedure 
in the field of pediatric cardiology is the use of a hybrid 
procedure for patients with HLHS. This alternative to 
the standard surgical Norwood palliation involves stenting 
of the ductus arteriosus, bilateral pulmonary artery band 
placement, and atrial septostomy, and was first described 
in 1993 (32,33). Now commonly referred to as the hybrid 
stage I palliation, or the hybrid Norwood, the procedure 
has undergone some modifications with time but the three 
main objectives of the hybrid stage I palliation for infants 
with HLHS are the same as the surgical approach: create 
unobstructed pulmonary return across the atrial septum, 
create unobstructed systemic arterial blood flow, and create 
restricted pulmonary blood flow (Figure 2).

From a technical standpoint, the hybrid stage I palliation 
can be completed by a surgeon and interventional pediatric 
cardiologist with minimal additional equipment or training. 
Several techniques have been developed to help ease the 
learning curve associated with the procedure, like the 
appropriate tightness when placing the pulmonary artery 
bands (34). Some centers across the country have adopted a 
strategy of using the hybrid Norwood in all single ventricle 
patients, while other centers use the hybrid Norwood 
only in high-risk patients, or patients felt to be at a higher 
risk of morbidity or mortality after the surgical Norwood 
palliation (35-42). In these high-risk patients, avoiding 
cardiopulmonary bypass during the neonatal period may 

Figure 1 Common current uses of hybrid procedures in congenital 
heart disease.

Figure 2 Comparison of the surgical and hybrid Norwood palliation for patients with hypoplastic left heart syndrome.
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lower mortality and morbidity during the staged single 
ventricle palliation (43-48). Our center is currently 
examining the impact of utilizing the hybrid approach in 
high-risk single ventricle patients when compared to a 
similar high-risk cohort prior to the advent of the hybrid 
procedure. 

Importantly, the hybrid stage I palliation has also been 
used successfully in the non-single ventricle population. 
For example, in patients with factors which might place 
them at higher risk of morbidity or mortality after major 
complex congenital heart repair during infancy, the stage 
I hybrid palliation can be used to stabilize the circulation 
and post-pone definitive anatomic repair until later in  
childhood (49,50).

There are some anatomic and potential pathophysiologic 
complications uniquely associated with the hybrid stage 
I palliation, including recurrent atrial septal restriction, 
reverse coarctation of the aorta, and pulmonary artery 
stenosis. Additionally, several studies comparing the 
hybrid to standard surgical Norwood approaches using 
computational flow modeling have found some important 
differences in systemic and cerebral oxygenation as well as 
ventricular mechanics which may favor the standard surgical 
approach (51,52). Therefore, as with any novel approach to 
a complex problem, careful and longitudinal analysis will be 
important as we identify which patients will most benefit 
from the hybrid palliation.

Pulmonary atresia with intact ventricular septum

A subset of patients with pulmonary atresia with an intact 
ventricular septum will be anatomically suitable to undergo 
a biventricular repair. This involves opening the right 
ventricular outflow tract, typically in the neonatal period. 
Traditionally, this could be done via a surgical approach 
(pulmonary valvotomy) or via a transcatheter approach 
(percutaneous pulmonary valve perforation and balloon 
valvuloplasty). The hybrid procedure in this lesion is a 
great example of how taking advantage of the benefits from 
each approach facilitates a procedure while minimizing 
procedural complications and long-term deleterious effects. 

The hybrid approach to pulmonary atresia with intact 
ventricular septum typically involves periventricular access 
via a midline sternotomy with needle perforation of the 
atretic pulmonary valve followed by balloon pulmonary 
valvuloplasty (53,54). In many patients, a systemic-
pulmonary artery shunt is performed due to persistent 

(typically muscular) subvalvar right ventricular outflow 
tract obstruction. Fortunately, this shunt can be placed 
without the use of cardiopulmonary bypass. Surgical 
exposure to the right ventricle allows for direct access to the 
pulmonary valve with much lower risk of right ventricular 
outflow tract perforation, a risk of the transcatheter 
approach to pulmonary valve perforation. Combining 
the use of transcatheter techniques, the entire procedure 
can be performed without cardiopulmonary bypass with 
nearly identical high procedural success, low procedural 
complication rates, and mid-term outcomes compared to 
the surgical approach (53). Proponents of the transcatheter 
approach frequently site the need for a midline sternotomy 
as a major downfall of the hybrid approach. However, 
up to 76% of patients (range, 33–76%) who undergo 
the transcatheter approach ultimately require a midline 
sternotomy either to augment pulmonary blood flow 
(typically with placement of a systemic-pulmonary artery 
shunt) in the setting of post-procedure hypoxia, or due to 
inadvertent perforation of the right ventricular outflow 
tract (55-61). A comparison of the various approaches for 
right ventricular decompression in patients with pulmonary 
atresia with intact ventricular septum is detailed in Figure 3.

Hybrid procedures—conclusions

As we continue to develop less invasive ways to treat 
complex congenital heart disease, hybrid procedures will 
undoubtedly continue to help shape the interventional 
landscape. We must continue to both push the boundaries 
of these procedures, while continuing to study the 
outcomes to assure we are providing acute results better 
than standard transcatheter and surgical approaches alone, 
or acute results equivalent to standard approaches with 
better overall long-term patient outcomes. For some types 
of hybrid procedures, like intra-operative pulmonary artery 
stent placement, fairly long-term patient follow-up is  
available (62). Only by directly comparing hybrid 
approaches to other standard approaches will we be able to 
choose the best options for our patients.

Biodegradable technologies

Through years of innovation, interventional pediatric 
cardiologists have been afforded a wide array of devices to 
palliate and treat patients with congenital heart disease. 
These include stents of various diameters, lengths, and 
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physical properties, coils and vascular occlusion devices, 
and devices designed to close atrial septal defects, 
ventricular septal defects, and the patent ductus arteriosus. 
However, a significant drawback of all these devices is their 
permanence. Outside of surgical excision, these devices 
are implanted permanently. For some patients, there are 
potential benefits to permanent implantation. For example, 
left pulmonary artery stenosis secondary to compression by 
the aorta likely will require a permanent stent to maintain 
patency. But a major consideration for the majority of 
patients with congenital heart disease undergoing cardiac 
catheterization procedures early in life is somatic growth. A 
stent placed in the aorta or pulmonary artery at 8 years of 
age will undoubtedly require further dilation in adulthood. 
And besides somatic growth, many heart lesions would be 
much better treated with a temporary implant. For example, 
at the current time closure of a patent ductus arteriosus 
or atrial septal defect requires implantation of a device 
(coil, vascular occlusive device, septal occlude, etc.) which 
generally results in immediate and complete occlusion. 
But in a relatively short time period, endothelialization 
forms a permanent “natural” covering over the defect. 
At this point, the implanted device, which really served 
as a scaffold to facilitate the endothelialization process, 
is an unnecessary remnant of the procedure. So how can 
we get the excellent results we expect from our current 
medical devices but limit the negative consequences related 
to their permanence? One possible solution may come 
in the form of biodegradable technology. Biodegradable 
materials have been used for years in medicine (for example, 
absorbable sutures), however, more recently, there has been 
tremendous effort by several research teams to develop 
these materials for use in patients with congenital heart 

disease. This includes development of vascular stents and 
occlusion devices, which can be applied across a wide variety 
of cardiovascular diseases.  

Grossly, current biodegradable materials can be broken 
into two major categories based on their composition: 
bioabsorbable polymers and biocorrodible metals (63). 
Each material has advantages and limitations and each may 
have an important role in various devices. Polymers, for 
example poly L-lactic acid, break down by hydrolysis. The 
material strength and rate of bioabsorption can be altered 
by engineering the composition of the individual monomers 
and how they are inter-connected (63,64). Because 
bioabsorption occurs by hydrolysis and the monomers are 
commonly occurring and/or inert substances, these are 
likely to be very safe. One drawback, especially from the 
perspective of the interventional cardiologists, is that these 
materials are completely radiolucent unless modified. In 
contrast, biocorrodible materials, like zinc or magnesium, 
break down by biocorrosion. Biocorrosion is potentially 
inflammatory or toxic at the cellular or tissue level, although 
some research indicates Zinc may actually suppress 
inflammation at the cellular level. For the development of 
stents, this may be beneficial in lowering rates of neointimal 
proliferation, which is problematic for current small and 
medium diameter bare metal stents (65,66). Being metallic, 
there are radio-opaque and may have more similar physical 
properties, including radial strength and deployment 
characteristics, to currently commercially approved medical 
devices. 

Many biodegradable stents and occlusion devices are in 
various stages of development with potential applications 
within the congenital heart disease space (63,65,67). The 
first commercially approved bioabsorbable stent became 

Figure 3 Comparison of the various approaches for right ventricular decompression in pulmonary atresia with an intact ventricular septum. 
Adapted from Zampi, et al. (34). 1, data presented as median (interquartile range).
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available in the United States in July 2016. The Absorb 
GT1 Bioresorbable Vascular Scaffold (BVS) stent (Abbott 
Vascular, Abbott Park, IL, USA), showed promise for use 
in coronary artery disease during the initial ABSORB 
trials (68). This bioabsorbable polymer stent made of poly 
L-lactic acid, was compared directly to a commercially 
available bare metal coronary stent through a series of 
first in man, then prospective and randomized clinical  
tr ials  (68) .  Unfortunately,  the stent is  no longer 
commercially available. Although the company cites low 
sales, the device was removed from the market in mid 
2017 due to a higher incidence of late stent thrombosis, 
in addition to evidence of higher rates of target lesion 
failure during long-term follow-up from the ABSORB III 
clinical trial (69). Although this is certainly a major set-
back for biodegradable technologies, hopefully this early 
failure does not hinder future research and development 
of what will surely be an important part of the pediatric 
interventionalists’ armamentarium in the near future. Most 
recently, in Europe a new device for atrial septal defect 
closure has received CE mark. The Carag bioresorbable 
septal occluder (CBSO) (Carag AG) was approved for use 
across Europe in mid-September 2017 (Figure 4). With 
time, we hope that this device and other devices of its kind 
will continue to improve the care we provide to patients 
with congenital heart disease.

Biodegradable technologies—conclusions

Biodegradable technologies represent an important merger 
between materials scientists and clinicians as we strive to 
improve the care we deliver with both excellent short-term, 
and long-term outcomes for our patients. In congenital 
heart disease, accounting for growth potential is crucially 
important as we perform interventions on increasingly small 
children and strive to minimize re-interventions on devices 

implanted during childhood. 

Magnetic resonance imaging-guided cardiac 
catheterization 

X-ray fluoroscopy has traditionally provided guidance for 
cardiac catheterization procedures, however fluoroscopy 
is limited by 2-dimensional projections, limited soft tissue 
definition, and necessary exposure to ionizing radiation. In 
patients with congenital heart disease, early and multiple 
exposures to ionizing radiation over the course of their lives 
puts them at higher cumulative risk associated with ionizing 
radiation exposure (70-73). Practices and techniques to 
minimize radiation exposure in this vulnerable group 
of pediatric patients, therefore, is of particular focus 
in pediatric interventional cardiology. One emerging 
technology that allows for minimal or no radiation exposure 
is magnetic resonance imaging (MRI)-guided cardiac 
catheterization. 

Cardiac MRI (CMR) provides excellent soft-tissue 
definition and provides important information about 
structure, function, and perfusion/flows. However, 
measurement of intracardiac hemodynamics still requires 
cardiac catheterization, which is invasive and exposes 
patients to radiation. The guidance for this catheterization 
can be modified to include no radiation through the use 
of real-time CMR. Clinical CMR was first reported as 
an adjunct to X-ray fluoroscopy in adults over 10 years 
ago (74) and has continued to evolve since that time, with 
many small studies evaluating the feasibility and outcomes 
of radiation free CMR-guided cardiac catheterization. 
This includes both animal and adult pilot studies for both 
diagnostic and limited interventional procedures (75-77). 
In their pilot study comparing X-ray and CMR-guided 
right heart catheterization in 16 adult patients, Ratnayaka 
and his colleagues found that CMR-guided catheterization 
was able to be safely and successfully performed, and had 
a total procedure time similar to that of X-ray guided 
catheterization (76). In their patients, CMR-guided 
catheterization has now become the preferred modality 
for adult patients referred for a right heart catheterization. 
They have since published on 50 radiation-free transfemoral 
CMR-guided right heart catheterizations in children (78). 
All catheterizations were successful with no complications, 
and given the short procedure time with a realistic 
workflow, they hope to be able to offer this technology 
routinely in the pediatric population in the near future (78). 

Figure 4 Careg bioresorbable septal occluder (image courtesy of 
Careg AG).
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CMR-guided catheterization requires an elaborate set-
up, which has limited its widespread use. A combined 
fluoroscopy/CMR suite with biplane X-ray fluoroscopy 
and adjoining CMR rooms, separated by X-ray and 
radiofrequency shielded doors, are fashioned with 
special mobile tables that can transfer a patient from the 
fluoroscopy lab to the MRI scanner while maintaining 
sterility (Figure 5). The other challenge with CMR-guided 
catheterization is that all equipment used in the MRI 
room must be MRI compatible, including all catheters, 
guidewires, and potential devices. At this time, visualization 
of catheters on MRI is limited to the tip only, where a 
commercially available balloon tipped catheter is inflated 
with gadolinium to allow localization of the catheter tip. 
There are currently no commercially available guidewires 
to aid manipulation of catheters into specific locations or 
over which balloons and stents can be delivered, and this 
remains the biggest hurdle to the expansion of CMR-guided 
interventional catheterization. The added superiority of 
real-time MRI imaging, however, has the potential to allow 
for safer performance of complex interventions. Recently, 
Ratnayaka et al. published their experience with MRI-
guided transcatheter cavopulmonary shunt creation in  
15 swine (79). 

Magnetic resonance imaging-guided cardiac 
catheterization—conclusions

The ability to offer transcatheter cardiac procedures 
more safely and without ionizing radiation is particularly 
relevant for patients with complex congenital heart 
lesions who require multiple catheterization procedures 
over their lifetime. Although eliminating exposure to 

ionizing radiation, and continuing to expand the scope of 
transcatheter interventions, seems like a pipe dream, it may 
soon become a reality with CMR-guided catheterization. 

Innovative imaging and modeling techniques

No transcatheter intervention would be possible without 
appropriate imaging to plan, guide, and assess the impact 
of a procedure. The development and more widespread 
use of innovative imaging techniques is paramount 
in the interventional cardiologist’s ability to perform 
increasingly complex interventions on complex anatomy, 
broadening the scope of procedures that can be performed 
via a transcatheter rather than surgical approach. Three-
dimensional (3D) imaging and advanced visualization 
techniques have allowed for superior imaging with lower 
radiation doses and have allowed for the understanding of 
more complex anatomy and anatomic relationships.

3D rotational angiography (3DRA) 

Originally designed for use in interventional neurovascular 
procedures (80,81), over the last 10 years, angiographic 
computed tomography (CT), or 3DRA, has become an 
integral part of the modern day cardiac catheterization lab. 
This technology uses cross-sectional CT images created 
from a rotational angiogram to display a volumetric data set. 
The angiogram is performed over a slow, multiple second 
injection of dilute contrast (typically 50–60% strength) 
while a standard C-arm mounted flat panel detector rotates 
~190 degrees around the patient. This rotational angiogram 
provides a robust data set, which can be post-processed 
into a 3D reconstruction within minutes. The source 
images obtained are identical to that of a cross-sectional 
CT scan, therefore in addition to post-processing into a 
3D reconstruction, the cross-sectional CT images may also 
be viewed and are particularly useful for visualizing soft 
tissue structures, allowing for the operator to appreciate 
relationships and interactions between vascular/cardiac 
structures and other soft tissue structures within the  
chest (82,83). 

Respiratory and cardiac motion over the duration of 
the rotational angiogram make the cardiac applications 
of this technology understandably more difficult than the 
neurovascular applications for which they were originally 
designed. However 3DRA can provide diagnostic quality 
images in the majority of cases with comparable overall 

Figure 5 Combined fluoroscopy and cardiac MRI suite (Image 
courtesy of Dr. Elena Grant, Children’s National Medical Center).
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radiation and contrast doses to standard cineangiography 
(84-87). The 3D reconstructions are particularly useful 
in understanding complex pulmonary artery or aortic 
arch anatomy and the relation of these vascular structures 
to soft tissue structures such as the airway (82,83), 
frequently providing additional, clinically relevant data 
when compared with standard biplane angiography (87). 
While dependent in part on the structure being visualized, 
quantitative measurements of structures made by 3DRA 
are comparable to those by 2D angiography (88). The 
reconstruction can also be manipulated on the workstation 
to visualize areas that are difficult or impossible to profile 
by standard 2D angiographic views and can be more 
sensitive for detection of some stenotic lesions (88). “Ideal” 
camera angles for viewing a particular lesion can also be 
easily identified, standard fluoroscopic C-arms moved to 
these angles, and the lesion of interest viewed at optimal 
working 2D angles. This can potentially lower the number 
of angiograms needed to visualize a lesion, which may 
result in lower radiation exposure and contrast dose. An 
overlay of the reconstruction can also be projected on 
the fluoroscopic image to allow for real time guidance of 
catheters and interventional equipment and can assist with 
complex catheter manipulations (Figure 6). 

3DRA—conclusions

The use of 3DRA in congenital heart disease allows 
for a more robust understanding of complex anatomic 
relationships compared to standard biplane angiography. 
The ability to create and manipulate 3D volumetric data 
sets in real time allows for facile evaluation of both cardiac 

and non-cardiac lesions and procedural guidance. These 
attributes make 3DRA an important adjunctive imaging 
modality for the treatment of complex congenital heart 
disease in cardiac catheterization procedures. 

Multimodality image fusion

While 3DRA allows for acquisition of a new CT dataset 
during the catheterization, if a pre-existing cross-
sectional dataset derived from CMR or CT scan is 
available, these images can be fused with live fluoroscopy 
to provide additional anatomic guidance during a cardiac 
catheterization. Particularly appealing, the use of X-ray 
magnetic resonance fusion (XMRF) allows a 3D dataset 
with soft tissue definition obtained without ionizing 
radiation to be used to guide a live catheterization. Various 
methods can be used to fuse these images with fluoroscopy 
by using internal (bone, airway, artifact, calcium) or external 
fiducial markers (89,90). Once fused, these overlays can be 
used similarly to those obtained with 3DRA, and function 
to guide catheter manipulation, choose optimal working 
camera angles, and guide interventions. Multiple small 
studies have shown that use of XMRF can reduce radiation 
and contrast dose and reduce fluoroscopic time for select 
interventional procedures (89,91,92)

The multimodality fusion techniques described 
above have the downside that they do not provide real-
time imaging to account for cardiac and respiratory 
motion and changes in patient position. A newer fusion 
technique, initially approved for use in 2012, is a software 
called EchoNavigator (Philips Healthcare, Best, The 
Netherlands), which allows for fusion of real-time 

A B C

Figure 6 3D reconstruction of branch pulmonary arteries at baseline (A), use of 3D image overlay during stent placement in the right 
pulmonary artery stenosis (B), and 3D reconstruction post-stent (C).
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echocardiographic images onto live fluoroscopy (93). 
This technique takes the wide field of view and excellent 
visualization of bony structures, devices, and catheters 
provided by fluoroscopy, and couples it with the excellent 
soft tissue visualization provided by echocardiography 
(standard 2D or 3D). These images are then displayed 
in the same orientation as a single fused image viewable 
by the operator (93). Areas of interest, such as a baffle or 
paravalvular leak, can be marked on the echo image and 
then viewed on the fused fluoroscopy image to help with 
localizing structures not visible by fluoroscopy alone. This 
modality has found wider use in adult structural heart 
disease, with multimodality guidance utilized for left atrial 
appendage occlusion, transcatheter mitral valve repair, 
and paravalvular leak closure (93-96). It has started to find 
a place within the realm of congenital heart disease as 
well, with proposed uses for atrial and ventricular septal 
defect closure, Fontan fenestration closure, and transseptal 
puncture (97,98). Compared to a historical control group 
of patients undergoing atrial septal defect closure, use of 
EchoNavigator was shown to provide superior procedural 
guidance compared with standard echocardiography alone 
in the majority of cases, with lower overall fluoroscopy time 
and radiation dose (97).

Multimodality image fusion—conclusions

Fusion of CT or MRI derived volumetric data sets, and 
2D/3D echocardiographic data sets with fluoroscopy allows 
for improved understanding of anatomic relationships and 
enhanced procedural guidance. While the use in congenital 
heart disease is in its infancy, we anticipate continued 
growth in this area as we continue to look for ways to 
lower radiation doses and await application of additional 
technologies, like 3D TEE, in the pediatric space. 

3D printing and 3D modeling

Over the last decade, advances in 3D imaging techniques 
have allowed the ability to translate cross sectional imaging 
data into interactive, real-life modeling through the use 
of 3D printing (99). Also known as rapid prototyping or 
additive printing, 3D printing has been used since the 
1980s. More recent advances in imaging and printing 
technology have allowed for 3D printing to be more readily 
accessible (cheaper and faster) and used in dynamic cardiac 
structures (100). Non-invasive imaging datasets (CT, 

MRI, and more recently 3D echocardiography) can now 
be used to create patient-specific 3D printed heart models 
of complex cardiac anatomy and provides an innovative 
approach to pre-procedural planning, communication, and 
patient and trainee education (99,101) (Figure 7).

Historically, cross sectional imaging in the form of 
contrast-enhanced CT images were used most frequently to 
create 3D models. Free-breathing 3D whole heart MRI has 
become increasingly popular with complex congenital heart 
lesions (102). More recently, 3D echocardiography has also 
been utilized for the creation of 3D printed models. This 
modality offers a more accessible and cost-effective option 
and is particularly beneficial when visualization of structures 
not well seen by cross-sectional imaging, such as the atrial 
septum and valve leaflets, are the area of interest (103-105). 
Hybrid imaging, which combines a cross sectional dataset 
with an ultrasound dataset to take advantage of the best 
components of multiple modalities, is also evolving and is a 
promising avenue for production of a complete heart model 
with imbedded valve leaflets (106,107). 

Once created, these models have been used successfully 
in the understanding of intracardiac and extracardiac lesions 
including complex intracardiac relationships, aortic arch 
anomalies, pulmonary artery branches, and aortopulmonary 
collaterals. These models can then facilitate pre-procedural 
planning both for transcatheter and surgical interventions. 
Multiple studies have shown the feasibility and accuracy of 
3D printed models for reconstruction of complex cardiac 
lesions, with excellent correlation (within millimeters) of 
3D models to the anatomic details visualized by cross-
sectional imaging or by direct visualization in the operating 
room (104,105,108-110). In interventional cardiology, these 
models can be used in pre-procedural planning, in order to 
better understand complex anatomy (104,111-114) and to 
allow for mock-implants of a device or stent within a 3D 
printed model to better understand device fit in a particular 
patient (113,115,116). Additionally, there is the potential 
for patient specific 3D models to be used for education of 
patients and families, improving patient satisfaction, and 
improving communication between providers and between 
providers and their patients. 

While there is endless potential for the use of 3D 
printing within congenital heart disease, there are a number 
of limitations. There is currently a lack of a standardized 
approach to imaging, segmentation, and processing which 
results in wide variation in the models produced. While the 
cost and time associated with segmentation and printing 
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has decreased significantly over the recent years, these 
are still very real limitations to wide-spread use of the 
technology (101). In terms of clinical use for direct patient 
care decisions, more stringent validation of these models 
across imaging modality and printing materials is necessary 
before it can be widely used to make crucial, real-time 
patient decisions (99,100). Cardiac structures are dynamic, 
and 3D models provide only one look at this changing 
structure. A more thorough understanding of the phase of 
the cardiac structure used for a model, and the properties of 
the materials used for printing will be necessary (99,101). 

3D printing and modeling—conclusions

Despite its current limitations, 3D printing is an evolving 
technology within cardiology which will continue to 
expand as the technology and materials for printing evolve. 

The future of 3D printing is the potential for creation 
of custom implants or prosthesis, including heart valves 
and devices. At our center, Morrison et al., have already 
created such a device, an airway splint, for patients with 
tracheobronchomalacia (117). While a cardiac application 
is still in development, the ability to print a cardiac device, 
created to accommodate an individual patient’s anatomy is 
an exciting prospect and the epitome of personalized cardiac 
medicine.

Conclusions

Innovative techniques in cardiac catheterizations for 
patients with congenital heart disease are rooted in 
tremendous advances in both technology and imaging. 
These advances will continue to broaden our ability to treat 
patients using less-invasive techniques hopefully leading to 
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Figure 7 Creation of a 3D model (images courtesy of Dr. Michael Seckeler, Banner University Medical Center). (A) Segmenting of the axial 
imaging (MR or CT) involves highlighting the areas of interest to generate a virtual 3D model. This is then exported in stereolithography 
file format. This model was created in a 3-year-old with transposition of the great arteries and coarctation of the aorta, s/p arterial switch 
procedure, with Lecompte procedure of the pulmonary arteries, now presenting with recurrent coarctation; (B) the 3D model of the aorta 
and branch pulmonary arteries is further cleaned and smoothed as needed; (C) the model is then sliced to convert the stereolithography 
format into instructions for the 3D printer to execute. Note the support structures that are generated to allow for printing complex 
structures; (D) the completed model is printed, in this case with polylactic acid (PLA) to create a hard model. Multiple colors can be used to 
highlight different structures (aorta shown here in red and pulmonary arteries in blue).
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both excellent immediate procedural success and also long-
term improvement in patient outcomes compared to the 
state-of-the-art approaches of the recent past.
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