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Phenylketonuria (PKU) and 
hyperphenylalaninaemia (HPA)

Phenylketonuria (PKU, OMIM 261600) is an inborn 
error of metabolism, predominantly caused by mutations 
in the phenylalanine hydroxylase (PAH) gene. The mode 
of inheritance is autosomal recessive. Mutations in PAH 
lead to impaired function of the hepatic enzyme PAH (EC 
1.14.16.1), which catalyses the conversion of the essential 
amino acid l-phenylalanine (l-Phe) to l‑tyrosine (l-Tyr), a 
precursor of the neurotransmitters dopamine, noradrenaline 
and adrenaline. The resulting elevated levels of l-Phe, a 
condition known as hyperphenylalaninaemia (HPA), which 
is the primary biochemical marker of PKU and the more 

benign form mild hyperphenylalaninaemia (MHP).
PKU was described by A. Følling in 1934 (1). The 

accumulation of l-Phe drives an alternate metabolic 
pathway, resulting in the detection of phenylketones 
(phenylpyruvate and phenylacetate) in the urine of PKU 
patients (2). These ketones are also excreted in sweat, 
creating a ‘mousy’ odour characteristic of the disease. The 
unravelling of the metabolic pathway from l-Phe to l-Tyr 
to subsequent products, and the subsequent development 
of a newborn screening strategy (3) were significant in the 
establishment of a treatment and in contributing to the 
understanding of metabolic diseases at that time. Prior 
to this, children with PKU failed to attain developmental 
milestones, ultimately exhibiting profound intellectual 
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impairment. Hyperactivity and seizures also featured 
later in life, and many untreated individuals have a fairer 
complexion and hair colour than other family members (4). 
Most cases of PKU are caused by mutations in the PAH 
gene (1). The remaining cases are caused by mutations 
affecting either the synthesis or the regeneration of 
tetrahydrobiopterin (BH4), the co-factor of PAH (5). The 
genes involved in the BH4-deficiency type HPA include 
guanosine triphosphate cyclohydrolase I (GTPCH) (6), 
6-pyruvoyl-tetrahydropeterin synthase (PTPS) (7), pterin-
4a-carbinolamine dehydratase (PCD) (8), and quinoid 
dihydropteridine reductase (DHPR) (9). Sepiapterin 
reductase (SR) is also a genetic factor in BH4-deficiency 
disorders, but mutations in SR do not lead to HPA (10). The 
remainder of this review focuses on issues more relevant to 
HPA caused by a primary deficiency of PAH.

PKU occurs in approximately 1 in 10,000 Caucasian 
births (11), equivalent to a carrier rate of 1 in 50. However, 
the incidence rate may vary widely amongst different 
countries or regions (Table 1). Finland and Japan have the 
lowest reported incidence of PKU, at 5 and 8 cases per 
million births respectively (21,23). Incidence rates are 
highest in Sicily with 1 in 2,700 births diagnosed as PKU, 
and 1 in 4,200 in Turkey (13,23). There is also a high level 
of clinical heterogeneity in PKU. Disease severity can be 
classified by blood Phe levels. In patients with classic PKU, 
the most severe form, blood Phe levels can rise to over 

1,200 µmol/L, compared to 120 µmol/L in a normal healthy 
person. In moderate and mild PKU, the values range from 
900 to 1,200 µmol/L and 600 to 900 µmol/L respectively, 
and in non-PKU MHP, between 120 and 600 µmol/L (4).

An additional complication is the effect of maternal 
PKU on foetal development. The features in the affected 
newborn (who in most cases does not have PKU) include 
microcephaly, congenital heart defects, dysmorphic facial 
features, intrauterine growth retardation, with often severe 
cognitive impairment becoming apparent in childhood 
(24,25). Treatment of women with PKU during pregnancy 
is vital for reducing the likelihood of the so-called maternal 
PKU syndrome in the offspring, and can be achieved by 
maintaining a Phe level of 120-360 µmol/L from the first 
trimester, and ideally even before conception (24). 

Molecular bases of PKU

Mutations in the PAH gene accounts for 98% of cases of 
PKU (25). The human PAH gene maps to chromosome 
region 12q23.2, on the minus strand, spanning close to 80 kb  
(NCBI reference sequence NM_000277.1, Figure 1) (26,27). 
The gene consists of thirteen exons, forming a transcript 
with an open reading frame of 1,359 bases and encoding a 
polypeptide of 452 amino acids (NCBI reference sequence 
NP_000268.1). 

The PAH polypeptide is highly homologous in mammals 
and retains a high level of homology even in more distant 
eukaryotes. The 52 kDa polypeptide is divided into three 
functional domains (28). The N-terminus is the regulatory 
domain (amino acid residues 1-142), followed by the 
catalytic domain (residues 143-410) and the C-terminal 
tetramerisation domain (residues 411-452). The hepatic 
PAH enzyme catalyses the conversion of l-Phe to l-Tyr, 
in the presence of the co-factor BH4 [(6R)-l-erythro-5, 
6,7,8-tetrahydriobiopterin] and O2 (29). The l-Tyr is 
then further converted to neurotransmitters dopamine, 
noradrenaline and adrenaline. In the absence of the PAH, 
an alternative metabolic pathway breaks down l-Phe to 
phenylketones (Figure 2). In plants and fungi, another 
enzyme, PAL is involved in the catabolism of l-Phe, and 
enzyme substitution therapy using PAL is currently being 
investigated (30).

There are currently over 560 PAH mutations reported 
in the PAHdb (http://www.pahdb.mcgill.ca) (31). Mutations 
causing PKU have been identified in all three domains, 
but a mutation hotspot in exon 7 of PAH corresponds 
to the catalytic active site of the protein. The majority 

Table 1 Incidence rates of PKU in different populations/countries

Ethnic group/

population
Incidence of PKU Reference

Sicily 1:2,700 Guldberg et al. [1993] (12)

Turkey 1:4,200 Ozalp et al. [2001] (13)

Ireland 1:4,500 Zschocke et al. [1997] (14)

Catalonia 1:6,600 Mallolas et al. [1999] (15)

Israel 1:8,200 non-Jews;  

1:12,500 Jews

Bercovich et al. [2008] (16)

Caucasian 1:10,000 Zschocke [2003] (11)

Northern China 1:11,000 Song et al. [2005] (17)

Cuba 1:20,000 Desviat et al. [2001] (18)

Korea 1:41,000 Lee et al. [2004] (19)

Taiwan 1:55,000 Chien et al. [2004] (20)

Japan 1:80,500 Kimura et al. [2001] (21)

Finland 1:100,000 Guldberg et al. [1995] (22)

PKU, phenylketonuria.
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of pathogenic mutations in PAH are missense mutations 
(65.4% of mutations reported in PAHdb), followed by small 
insertions and/or deletions (both in-frame and frame-shift, 
16.4%), mutations affecting splicing (12.2%), then nonsense 

mutations (5.2%). Large deletions and duplications, 
involving an entire exon or exons, have also been reported, 
but they are thought to account for less than 1% of disease 
alleles within a population (32-34).

Figure 1 (A) Structure of the human PAH gene. The horizontal line represents the full length of the PAH gene, spanning 79.3 kb. Each vertical 
bar represents an exon. The location of the start codon ATG in exon 1 is indicated (+1); (B) Schematic representation of PAH mRNA. The 
vertical lines mark the boundaries between exons. The three functional domain of PAH are coloured purple for the regulatory domain, light 
green for the catalytic domain and orange for the tetramerisation domain. UTR, untranslated regions; PAH, phenylalanine hydroxylase.

Figure 2 Metabolic pathway of l-Phe. The primary pathway (blue box) is the catalytic conversion of l-phe to l-Tyr by phenylalanine 
hydroxylase (PAH). In phenylketonuria (PKU), the deficiency of PAH enzyme leads to the production of phenylketones by an alternative 
pathway (red box). A third pathway (green box) can be found in plants and yeast involving the enzyme phenylalanine ammonia lyase (PAL).

A

B
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As more PAH mutation data were made available, 
it became clear that there was a relationship between 
the mutations and the severity of the disorder, allowing 
classification of some PAH mutations as being likely to 
cause a particular phenotype (17,35-38). In silico prediction 
of phenotype (the severity of disease) from genotype may 
be useful in refining diagnosis and providing a baseline for 
treatment (36). However, the establishment of a system 
by which phenotype may be predicted from genotype is 
hampered by the large number of PAH mutations resulting 
in a larger number of possible genotype combinations.

The classification of a mutation as ‘severe’, ‘moderate’, 
‘mild’ or ‘MHP’ is based upon individuals who are 
functionally hemizygous, whereby one of the alleles is 
shown or predicted to be a null allele (39). Null alleles 
(which are classed as ‘severe’ mutations) include nonsense 
mutations, frameshift mutations, splicing mutations 
affecting the canonical AG-GT dinucleotides at the exon-
intron boundaries, and missense mutations that result in 
little residual enzymatic activity, such as p.Arg252Trp, 
p.Arg408Trp, p.Pro281Leu (36). Although most analyses 
have shown that this model is successful in correlating 
phenotype to genotype to a large degree, a significant 
number of discrepant findings have also been reported. 
This is most striking in patients who are homozygous for 
one mutation. For example, of the six patients homozygous 
for p.Leu48Ser reported in Bercovich et al., (16) two were 
classified as having classic PKU, 2 with moderate PKU and 
the other 2 with mild PKU. Similarly, in another study, 
three patients who are homozygous for p.Ile65Thr had the 
three classifications PKU, variant and non-PKU MHP (35).

Phenotype classification may vary between different 
centres and misclassification may contribute to some of the 
incongruities (36). The method of phenotype classification 
(by plasma Phe levels or dietary Phe tolerance) is also a 
possible source of misclassification, with the former more 
closely aligned with genotype predictions than the latter (36).  
Different studies or centres may also use different cut-off 
for classifying the severity of phenotypes. These arbitrary 
cut-off points may not necessarily reflect the continuum in 
both the clinical phenotype and in the residual activity in 
the various mutations. In addition, it is highly probable that 
other genetic factors play a role in determining PKU severity. 
Modifier genes, such as the loci involved in the regeneration 
of BH4, are postulated to have an effect on the phenotypic 
outcome (40). Similarly, the enzymes involved in the alternate 
catabolic pathway of l-Phe can modulate dietary Phe 
tolerance (41). Differences in the transport of l-Phe across 

the blood-brain barrier have also been suggested as a possible 
source of phenotypic variance (42).

In vitro studies have been valuable in demonstrating 
the nature of pathogenicity in many missense mutations 
and in elucidating the specific role of individual amino 
acids in the PAH peptide (43-45). In particular, analyses of 
the enzymatic activity of missense mutations have shown 
strong correlation to disease severity (46-48), and for rare 
missense mutations these studies are useful in predicting 
the metabolic phenotype. Missense PAH mutations may 
be grouped under broad headings: (I) null mutants with no 
detectable enzymatic activity; (II) Vmax mutants with reduced 
maximum activity; (III) kinetic mutants with altered KM for 
either substrate or co-factor and (IV) unstable mutants with 
decreased levels of PAH polypeptide (25).

Understanding the molecular defect of the missense 
mutations may also have therapeutic implications. For 
example, the aggregation of PAH protein carrying single 
amino acid changes such as p.Gly46Ser is thought to be 
caused by misfolding (49). Co-expression of bacterial 
chaperonins in Escherichia coli and other novel molecular 
chaperones increase both PAH protein levels and residual 
activity (50), giving rise to a new class of potential chemical 
compounds that may be of benefit for the treatment of 
PKU.

Treatment of PKU

The primary treatment of PKU is the restriction of 
dietary protein (and thus l-Phe). Due to early detection 
through newborn screening, treatment can be started in 
the first weeks of life. Early intervention and good dietary 
compliance are essential for cognitive outcome (measured as 
IQ) and for reducing the risk of neurological complications 
and behavioural problems in PKU patients (51). Whilst 
foods high in protein, including meat, dairy, nuts and 
legumes, should be eliminated or highly restricted, the 
intake of foods high in starch, e.g., potatoes, pasta, bread, 
needs to be monitored as well. Patients with the severe 
classic form of PKU must adhere most strictly to the dietary 
limitations and patients with non-PKU MHP may not 
require any dietary restrictions at all. Supplementary diet 
formulae exist for a variety of age ranges, and are critical 
to ensure the correct balance of the other essential amino 
acids, vitamins, minerals and trace nutrients are provided to 
reach recommended daily intake targets (4). 

The target level of Phe concentration varies according to 
the age of the patient (52). In children under two years of age, 
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the target concentration is generally below 360 µmol/L, and 
increasing to up to 1,200 µmol/L in adults in countries such 
as Germany, Austria and France, whilst at our clinic the 
target for adolescents and young adults is 750 µmol/L. The 
stringent restrictions at an early age are due to the particular 
sensitivity of the developing brain in young children to 
the neurotoxic effects of the elevated Phe levels (52). Diet 
termination at eight years of age resulted in a decrease of 
intellectual function in children (53), although the effects 
may be subtle (54). Similar findings have been shown in 
adult patients, as well as higher risks of eczema, phobias, 
depression and neurological problems (55). Therefore, 
maintaining treatment for the duration of their lifespan 
may be beneficial for patients with PKU. At the same time, 
it is important to remember that early intervention was only 
made possible by the introduction of newborn screening 
for PKU in the 1960s (3), and that the long term effects of 
treatment in PKU patients are still to be fully determined (56). 

Concerns over dietary treatment of PKU

There are three main issues relating to the current treatment 
regimen for PKU: (I) the level of adherence to Phe-restricted 
diets, especially in older children and adults; (II) the 
nutritional adequacy of the Phe-restricted diet; and (III) 
the effects of the diet and management on physical and 
psychosocial patient wellbeing, including their quality of life. 

The level of diet adherence in patients with PKU is 
similar to that reported by the World Health Organization 
for patients with chronic disease complying with treatment 
recommendations (57). A study of children in Italy under 
the age of 18 with PKU found 56% of them to be adherent 
to the dietary prescriptions, based on food diaries (58). 
Across ten PKU management centres in Europe, blood 
Phe concentrations revealed a marked decrease in diet 
compliance with increasing age, with 88% of children under 
one year old meeting their target Phe range, compared 
to only 65% in adults (59). The main challenges to diet 
adherence are inconvenience of meal preparations, limitations 
on food choices, palatability of the diet, cost and availability 
of treatment. Additional barriers include poor social 
functioning, social and family support and relationships, 
illiteracy or language difficulties in the patient or carers, social 
stigma, knowledge and ability of the carer (59). Cotugno et al.  
also found that the education level of the mother to be a 
major determinant of diet adherence in their study (58). An 
overly restrictive PKU diet can lead to growth impairment 
in early childhood (60), likely due to malnutrition. These 

diets are also low in long-chain polyunsaturated fatty acids 
(LCPUFA) and docosahexaenoic acid (DHA), both of 
which are important in neurological development (61,62). 
Supplementation of pre-formed LCPUFA have been shown 
to improve neurological function in children with PKU 
(63,64). Micronutrient deficiency is far more common and 
poses a greater danger (60). In patients not taking dietary 
supplements, deficiencies of vitamins A, C and E, coenzyme 
Q10, iron, zinc, calcium, manganese and selenium have 
been reported (52,65). Vitamin B12 deficiency, which can 
lead to neurological impairment, is also very common 
in older patients, due to its main source being meat and 
seafood (66-68). The problem is further compounded by 
the level of serum vitamin B12 not correlating to the level 
of functional vitamin B12, masking its deficiency in PKU 
patients (69). Children on amino acid-restrictive diets 
also have decreased bone mineral density, placing them at 
high risk of fractures and osteoporosis, despite receiving 
adequate levels of calcium, phosphorus and magnesium, and 
independent on the length of time on the diet (70,71). In 
addition, recent report has also suggested that patients on 
Phe-free formulae are at higher risk of developing chronic 
kidney disease (72).

Additional issues in the dietary treatment that require 
further addressing are related to the neurological or 
psychosocial outcomes and quality of life in patients with 
PKU (73). In spite of early intervention, children with PKU 
have lower intellectual functioning than their siblings and 
the general population (74,75), and poorer measures in 
other neurocognitive outcomes (76). Social and emotional 
difficulties have also been documented (77,78). Studies 
have also been carried out to determine how quality of life 
(QoL) in PKU patients is affected with a general perceived 
decreased in many aspects of QoL in both children and 
adults with PKU (79-83). 

The discovery that a Phe-restricted diet was beneficial 
to PKU patients remains a prime example of nurture 
triumphing over nature (84). However, mounting evidence 
relating to diet adherence, nutritional deficiency and 
suboptimal neurological outcomes (and the interplay 
between the three factors) supports the need to find 
alternate treatment strategies for PKU.

Tetrahydrobiopterin (Sapropterin) treatment for PKU

Tetrahydrobiopterin (BH4) is the natural co-factor of PAH, 
and is a requisite for its catalytic activity. In 1999, Kure et al.  
first demonstrated that pharmacological doses of BH4 may 
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lead to decreases in plasma Phe concentrations in patients with 
HPA caused by mutations in PAH (85). BH4 supplementation 
has also been shown to lead to a decrease in blood Phe 
level, improved Phe tolerance, i.e., the amount of Phe 
allowed in diet, resulting in relaxation of the Phe-restricted  
diets in many patients (86-88). Measures of Phe:Tyr 
and stability of Phe levels, which are hypothesised to be 
determinants of long-term neurological outcomes, have also 
been found to improve upon BH4 treatment (89,90). Other 
benefits reported include improvement of depression and 
panic attacks in an adult female patient (91). 

BH4 supplementation is beneficial only in a proportion 
of PKU patients (so-called BH4-responsive). BH4-
responsiveness can be assessed by a BH4 loading test, in 
which patients are given a single oral dose of 20 mg/kg.  
A reduction of Phe levels after 24 h of greater than 30% 
is defined as responsive (92). However, other variations in 
loading levels, time points at which measurements are taken, 
and Phe starting levels, have also been reported (93-95),  
and these may yield different response classifications, as some 

patients may show an initial Phe decrease (at 8 h) but return 
to baseline Phe levels at 24 h (96,97). On the other hand, 
some patients may return a positive response only at 48 h (94). 
Studies involving larger cohorts of patients revealed that BH4 
supplementation is more effective in decreasing Phe levels 
in patients with milder forms of PKU, compared to those 
with the severe classical form (Table 2) (86,93). Overall, the 
percentage of PKU patients for whom BH4 doses may be of 
benefit is estimated to be 30% to 50% (106). 

Certain PAH mutations are frequently identified in 
BH4-responsive patients, suggesting that genotype may 
be an important factor in BH4-responsiveness (85). An 
allele is usually only considered to be BH4-responsive 
if it is identified in a homozygous patient or a patient 
compound heterozygous with a second null allele (107). 
However, there is also evidence that genotype is not the 
sole determinant of BH4-response. Whilst some mutations 
(e.g., p.Leu48Ser, p.Ile65Thr, p.Arg261Gln) can be found 
in BH4-responsive patients at a high frequency, some of 
these mutations may also be found in patients who are non-

Table 2 Proportion of patients with MHP, mild or classical PKU who are BH4-responsive after a BH4-loading test

Reference
Phenotypea

MHP [%] Mild/moderate [%] Classical [%]

Muntau et al., [2002] (86) 10 of 10 [100] 17 of 21 [81] 0 of 7 [0]

Desviat et al., [2004] (98) 6 of 6 [100] Mild 6 of 12 [50]; 

moderate 1 of 5 [20]

1 of 8 [13]

Pérez-Dueñas et al., [2004] (99) 10 of 10 [100] 9 of 12 [75] 9 of 42 [21]

Hennermann et al., [2005] (100) 11 of 12 [92] 4 of 5 [80] 3 of 23 [13]

Fiori et al., [2005] (101) 87 of 90 [97] 3 of 7 [43] 1 of 10 [10]

Matalon et al., [2005] (102) 2 of 3 [67] 8 of 11 [73] 12 of 24 [50]

Mitchell et al., [2005] (97) 5 of 6 [83] Mild 8 of 9 [89]; 

moderate 3 of 7 [43]

1 of 15 [7]

Leuzzi et al., [2006] (103) 5 of 5 [100] 8 of 15 [53] 4 of 30 [13]

Bóveda et al., [2007] (104) 4 of 4 [100] 4 of 7 [57] 2 of 25 [8]

Burton et al., [2007]b (95) 31 of 57 [54] Mild 38 of 157 [24]; 

moderate 14 of 135 [10]

13 of 136 [10]

Fiege and Blau, [2007]c (96) 54 of 64 [84] Mild 46 of 64 [72]; 

moderate 24 of 55 [44]

11 of 110 [10]

Burlina and Blau, [2009] (105) 11 of 11d [100] 12 of 19d [63] –

Anjema et al., [2011] (94) 34 of 37 [92] 33 of 47 [70] 18 of 84 [21]
a, unless otherwise specified, phenotypes classed by the following baseline Phe levels: MHP, 300-600 µM; mild, 600-900 µM; 

moderate, 900-1,200 µM; classical, >1,200 µM. b, Responsiveness was measured at day 8 with daily BH4 dose (10 mg/kg), compared to 

24 h and 20 mg/kg BH4 in other studies; c, Data taken for responsiveness (>30% reduction) at 24 h; MHP, <500 µM; mild, 500-900 µM;  

moderate, 900-1,300 µM; classical, >1,300 µM; d, MHP, <450 µM, mild/moderate, 450-900 µM. PKU, phenylketonuria; MHP, mild 

hyperphenylalaninaemia.
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BH4-responsive (101,108,109). These discrepancies may 
be incidental, relating to the methods of ascertaining and 
interpreting BH4-responsiveness, but there are also possible 
differences specific to each individual patient, such as BH4-
absorption, protein catabolic rate, and Phe intake during 
the test (94,96,97). The improvement of enzymatic activity 
in certain mutant PAH proteins expressed in vitro in BH4 
supplemented media strongly supports the notion that 
genotype may play a role in determining BH4-response (110). 
However, the BH4-loading test is still the best determinant 
for BH4-responsiveness in PKU patients.

Although the treatment with BH4 offers a safe and effective 
alternative for many patients with PKU, its appropriateness 
is limited to primarily patients with a milder biochemical 
phenotype. Most classical PKU patients, in whom the disease 
is more difficult to manage and the consequences of dietary 
non-compliance are greater, are unlikely to benefit from 
this treatment, and further research into other therapies is 
required to provide alternative solutions for this group of 
patients.

Alternate treatments for PKU

New dietary approaches

Research on new dietary supplements for the treatment 
of PKU is ongoing, including more palatable medical 
formulae, medical foods using glycomacropeptide (GMP), 
a naturally low-Phe protein, and supplementation of large 
neutral amino acids (LNAA). Supplementation of LNAA has 
been shown to stabilise the concentration of cerebral Phe, 
despite an increase observed in the plasma level, suggesting 
that the influx of LNAA may block the transport of Phe 
across the blood brain barrier (111). Other clinical trials 
have also found decreases in blood Phe concentrations with 
the added LNAA intake, although brain Phe levels were not 
measured in some of these studies, and it has been suggested 
that these LNAAs may also exert their effect by competing 
with Phe for active transport across the intestinal mucosa 
(112-115). This treatment is currently only recommended 
for adult patients not complying with a low-Phe diet, as those 
on diets would generally be supplemented with a medical 
formulae encompassing these amino acids (116). 

GMP is a by-product of cheese production, and is a 64 
amino peptide with no Phe residues, which makes food 
made from GMP a good alternative source of protein for 
patients with PKU (117). The use of these products in 
the murine model of PKU has shown promising results 

regarding growth rates and bone mineral density (118,119), 
and a number of these products are now commercially 
available (http://www.cambrookefoods.com).

Gene therapy

Research into novel treatments for PKU involves different 
methods for overcoming the deficiency of the host PAH by 
gene therapy or enzyme substitution/replacement.

Recombinant adeno-associated virus (AAV) vectors 
have been used to deliver PAH gene to the liver in a 
murine PKU model, allowing correction of HPA of up to 
one year (120-122). The loss of PAH activity over time 
is due to the continual regeneration of hepatocytes and 
the loss of the AAV vector. Antibody-mediated immune 
responses also reduced the efficacy of any reinjections of 
the same vector. There was also an apparent gender-bias 
in the efficacy of transduction, with female mice showing 
a poorer improvement in blood Phe levels (123). Using an 
AAV8-pseudotype vector with a self-complementary AAV 
genome, Yagi et al. (124) were able to achieve high levels 
of liver transduction and expression of PAH with complete 
phenotypic correction and normal blood Phe for over one 
year, with equivalent levels of improvement in male and 
female mice.

Skeletal muscle has been considered a more promising 
target for gene therapy, as it is easily accessible compared 
to the liver and the cells are longer-lived (125). On the 
other hand, the enzymes required for the biosynthesis of 
BH4, the co-factor of PAH, are not expressed in this tissue.  
Co-expression of PAH with two of these enzymes, delivered 
via AAV2 pseudotype 1, led to long-term and stable reduction 
of blood Phe in the Pahenu2 mouse model (126). Development 
in viral vectors is likely to continue to drive improvement in 
both liver- and muscle-directed gene therapies.

Enzyme replacement and substitution therapies

Enzyme replacement via introduction of wild-type, 
functional PAH protein has been hampered by the 
instability of the protein produced in vitro (127), rendering 
large-scale production and purification of the protein 
costly and inefficient. Although storage of the protein in 
high glycerol concentrations or mannitol provides some 
protection against protein denaturation and aggregation, 
the loss in enzymatic activity after a period of storage is 
significant (128). Therapeutic liver repopulation, whereby 
wild-type hepatocytes would be transplanted onto the livers 
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of patients with PKU, has also been suggested as a potential 
therapy (129). This concept has been proven in the PKU 
mouse model, in which the introduction of hepatocytes 
from wild-type and heterozygous (but phenotypically 
normal) mice to the livers of homozygous affected mice 
resulted in normal blood Phe levels if there is a high enough 
level (greater than 10%) of repopulation of wild-type (or 
heterozygous) cells (130). 

An alternative to enzyme replacement is substitution 
with phenylalanine ammonia lyase (PAL, EC 4.3.1.5). PAL, 
an enzyme normally found in plants and fungi, catalyses 
the deamination of phenylalanine to ammonia and trans-
cinnamic acid, the latter of which is then quickly converted 
into hippurate and excreted in urine (131). The use of 
recombinant PAL (with polyethylene glycol polymers 
covalently linked to lysine residues, so-called PEGylation) 
avoids the immune-mediated degradation of the enzyme (132). 
Weekly subcutaneous injections of PEGylated-PAL enzyme 
in a murine PKU model can sustain correction of blood 
Phe for up to one year (133). A phase II clinical trial using 
this formulation has since commenced. Given the constant 
requirement of therapy, a less invasive method of delivery 
would ensure greater compliance to treatment in patients, 
especially as they enter adulthood. Although initial work on 
orally-administered PAL enzyme in mice was unsuccessful 
due to proteolytic degradation in the gut (134,135), there 
has also been renewed interest in this form of enzyme 
administration (136). Again, PEGylation of the PAL 
enzyme is useful in protecting the enzyme from protease 
degradation in the gut, and oral-administration to mice with 
HPA significantly reduced (but not completely corrected) 
blood Phe levels (137). 

Chaperone therapy

Another group of novel treatments examine how native PAH 
in patients can be restored to sufficient catalytic activity 
such that normal range blood Phe levels can be achieved. 
Indeed, BH4 (sapropterin) treatment is likely to act via 
this method, although the exact mechanism is uncertain. 
During in vitro expression of mutant PAH protein, the 
presence of BH4 leads to increased protein levels and thus 
catalytic activity, supporting a chaperone-like role of the 
BH4, increasing the half-life of the mutant PAH protein and 
protecting it from targeted degradation in the ubiquitin-
dependent proteolytic pathway (138-141). Similar screening 
of chemical libraries found other candidate chaperones for 
the p.Val106Ala variant, which is the mutation carried in 

one of the PKU mouse models, Pahenu1. These compounds 
not only normalised blood Phe concentrations in vivo, but 
also showed higher efficacy than BH4 (142). It remains 
to be seen how these compounds might perform with a 
wider range of mutations and whether a larger proportion 
of PKU patients would benefit from treatment with these 
compounds.

As indicated above, most mutations in the PAH gene 
cause single amino acid (missense) substitutions. A subset of 
these mutants are known to cause aggregation of the PAH 
protein, hypothesised to be a result of misfolding of the 
mutant polypeptide (49). In other genetic diseases, it has 
been shown that such misfolding and aggregation would 
lead to a greater rate of targeted degradation (143,144). By 
expressing the mutant PAH in an in vitro expression system 
in the presence of a chemical chaperone, both PAH protein 
levels and residual activity can be restored, suggesting 
that such molecular chaperones are good candidates as 
therapeutic agents for PKU (145). Due to its readiness 
to form high molecular weight aggregates, the missense 
mutation p.Gly46Ser (p.G46S) has been used for testing the 
ability of a range of chaperones to restore proper folding 
and enzymatic activity (50). Several compounds have shown 
to inhibit formation of p.Gly46Ser aggregates, including 
glycerol and Compound III (146), identified as a potential 
chaperone by Pey et al. (145) for other missense PAH 
mutations. Other anti-aggregation agents (such as trehalose 
and sodium 4-phenylbutyrate) may also be good candidate 
drugs to test in vitro for similar missense mutations causing 
protein aggregation (147-149). 

Nonsense read-through therapy

Another novel type of therapy of genetic disorders is the use of 
the nonsense read-through agents, such as the aminoglycoside 
antibiotic gentamicin, for treating individuals with nonsense 
mutations, e.g., in cystic fibrosis, Duchenne muscular 
dystrophy (150,151). The development of other novel 
chemical compounds to overcome toxicity problems associated 
with traditional aminoglycosides has made nonsense read-
through compounds a potentially viable long-term treatment 
option (152-154). In vitro testing of two aminoglycosides 
against four PAH nonsense mutations have demonstrated 
their ability to restore PAH enzyme activity (155).  
In some populations, the proportion of patients with a 
nonsense mutation can be as high as 22% (19). This mode 
of therapy therefore merits further study, in particular in a 
clinical setting, as to allow evaluation of the extent of the 
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restoration of enzyme activity on regulation of Phe levels 
and of the short- and long-term effects on the patients.

Conclusions

Different modes of therapy for PKU are now under 
development. These therapies illustrates the range of 
solutions that can be deployed to address the root problem 
of PKU, the loss of catalytic activity of the PAH enzyme. 
Although many of these have been high efficacious in the 
murine model of PKU, they all require greater research 
efforts and clinical testing to ensure the safety and longevity 
of treatment, with the goal of eliminating the rigorous 
dietary restrictions in many, if not all, patients with PKU. 
These treatment solutions may also be highly applicable to 
other genetic disorders of metabolism, and research into 
PKU therapies will have far-reaching consequences in the 
field of genetic medicine in the next few decades. 
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