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Introduction

Respiratory failure is a common reason for pediatric 
intensive care unit (PICU) admission. The vast majority of 
children requiring mechanical ventilation can be supported 
with conventional mechanical ventilation (CMV) but 
certain cases with refractory hypoxemia or hypercapnia 
may require more advanced modes of ventilation; although 
high-level evidence supporting these modes is limited. For 

the purposes of this review, advanced ventilator modes 
include high-frequency oscillatory ventilation (HFOV), 
high-frequency percussive ventilation (HFPV), high-
frequency jet ventilation (HFJV) airway pressure release 
ventilation (APRV), and neurally adjusted ventilatory assist 
(NAVA). Adaptive Support Ventilation was considered 
for inclusion; however, we determined the mode was 
an advanced servo regulated mode similar to pressure-
regulated pressure control. Proportional assist ventilation 
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(PAV+) was also considered for inclusion but we were 
unable to identify any studies germane to the PICU; 
PAV+ has been found to be feasible and safe in premature 
neonates (1). We present the following narrative review in 
accordance with the Narrative Review reporting checklist 
(available at http://dx.doi.org/10.21037/tp-20-332) on the 
use of advanced ventilator modes in pediatric critical care 
and discuss evidence generated from clinical, animal, and 
bench studies.

Methods

We searched MEDLINE for studies done in pediatric 
patients for clinical studies and all bench and animal studies 
potentially relevant to pediatric critical care, excluding 
studies of neonates or premature animal models. Adult 
animal and bench models were included as they are 
applicable to older children. All studies published prior to 
October 1, 2020 were included unless specifically stated 
in the individual sections. Searches were supplemented 
by reviewing references within individual papers. We 
reviewed primary sources for pediatric studies and relied on 
systematic reviews of adult data. The keywords used for the 
search included: high-frequency ventilation, HFOV, HFPV, 
HFJV, airway-pressure release ventilation, and NAVA. 
Boolean logic was used to limit the search to children and 
identify animal studies.

Principles and physiology of high-frequency 
ventilation

During normal spontaneous breathing and CMV, gas 
movement occurs due to convection and molecular 
diffusion. Convection is the bulk flow of gas through 
the conducting airways [anatomical dead space (VD)] as 
the result of a pressure gradient caused by diaphragm 
contraction during normal breathing or from positive 
pressure ventilation. Diffusion is the movement of gas 
molecules down a concentration gradient in the distal parts 
of the airway and alveoli. Based on these mechanisms, 
alveolar ventilation (VA) theoretically can only occur if the 
tidal volume (VT) exceeds VD. 

High-frequency ventilation uses a VT that often 
is lower than VD but alveolar ventilation still occurs. 
The precise mechanisms of gas transport during high-
frequency ventilation remain unclear and vary depending 
on the high frequency technique employed, yet six distinct 
gas transport mechanisms have been proposed (Figure 1). 

These are bulk gas flow, pendelluft, cardiogenic mixing, 
asymmetric velocity profiles, Taylor dispersion, and 
molecular diffusion (2-7). The details of gas exchange 
mechanisms during high-frequency ventilation is beyond the 
scope of this article and have been reviewed elsewhere (2-7). 

HFOV
 

HFOV is a technique that employs respiratory rates 
between 5 and 15 Hz (300 to 900 breaths per minute), and 
a VT (approximately 1–3 mL/kg) that often are ≤ VD. 
During HFOV, the ventilator circuit is pressurized by 
the combination of bias flow (gas entering the circuit) 
and leakage through a low pass filter or exhalation valve 
(gas leaving the circuit) that determines the mean airway 
pressure (mPaw). Gas is then displaced towards and 
away from the patient through a piston or a magnetically 
controlled piston-diaphragm system. 

HFOV is unique in that both inspiration and exhalation 
are active processes.  During HFOV, oxygenation 
and ventilation are relatively independent, although 
overdistension or low functional residual capacity may 
affect carbon dioxide (CO2) clearance. Oxygenation is 
controlled by the fraction of inspired oxygen (FiO2) and 
mPaw while ventilation is dependent on VT (amplitude, 
controlled by the power setting) and frequency (in Hz). 
Ventilation is inversely proportional to frequency; lower 
frequencies result in higher VT and increased ventilation. 
VT increases or decreases in the same direction as 
amplitude. Pressure amplitude in the more distal airways 
is significantly attenuated during HFOV, thus mechanical 
strain and stress on the alveoli are minimized. HFOV has 
been purported as a form of lung protective ventilation that 
minimizes volutrauma, atelectrauma, and biotrauma (8). 
A detailed description of HFOV physiology, gas transport 
mechanisms, and settings for various clinical conditions 
is beyond the scope of this article and has been discussed 
elsewhere (3,9).

Clinical studies 

HFOV has been well studied in adults with ARDS (10-16), 
but randomized controlled trials (RCTs) in pediatric ARDS 
(PARDS) are sparse. A meta-analysis performed prior to two 
large RCTs—OSCAR (13) and OSCILLATE (14)—concluded 
HFOV might improve survival and is unlikely to cause harm, 
but the analysis included studies where the control groups did 
not receive lung-protective ventilation (17). While the OSCAR 
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trial showed no benefit of HFOV over protective CMV, the 
OSCILLATE trial found that HFOV increased mortality, 
possibly due to the inclusion of a large number of patients 
with sepsis and hemodynamic instability. Subsequent meta-
analyses that included OSCAR and OSCILLATE did not 
demonstrated a survival benefit for HFOV, especially when 
excluding studies in which the control group did not receive 
lung-protective ventilation (18-20). 

Pediatric studies

An early report demonstrated that HFOV using a high 
mean lung volume strategy was safe and effective in seven 
children with diffuse alveolar disease and severe respiratory 
failure (21). HFOV was also effective as a rescue modality 
in a cohort of twelve children with severe respiratory failure 

refractory to CMV (22). The first RCT comparing HFOV 
to CMV in 70 children with severe hypoxemic respiratory 
failure showed that HFOV improved oxygenation and 
decreased the need for supplemental oxygen at 30 days, but 
did not decrease mortality (23). Another RCT involving 61 
children (HFOV =37 vs. CMV =24) with acute hypoxemic 
respiratory failure was stopped prematurely for lower than 
expected enrollment (11). Analysis of the available data 
did not demonstrate differences, but a post-hoc analysis 
suggested that HFOV might be beneficial in patients with 
an oxygenation index greater than 30 (11).

A recent retrospective observational study compared 
outcomes of HFOV to CMV using propensity score 
matching (24). This study included 9,177 patients from 
98 hospitals in the Virtual PICU System database, and 
concluded that the application of HFOV (both early 

Figure 1 Mechanisms of gas exchange during high-frequency ventilation. (A) Direct ventilation by bulk gas movement reaching the most 
proximal alveoli. (B) Streaming of gas flow in a diverging conduit: 1, inspiration; 2, active exhalation; 3, net effect depicting fresh gas being 
transported through the center of the airway and carbon dioxide-rich gas through the periphery of the airway. (C) Pendelluft between two 
adjacent alveoli of different time constants: a fast alveolus [1] emptying into a slow alveolus [2]. (D) Radial mixing from diffusion during 
augmented (Taylor) dispersion. (E) Cardiogenic mixing. (F) Molecular diffusion along concentration gradients.
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and late) was associated with increased mortality. These 
findings must be taken with caution, since the propensity 
score matching used in that study did not include clinically 
important variables, such as FiO2, airway pressures, and 
arterial blood gas measurements. Therefore, it is possible the 
subjects receiving HFOV represented a sicker cohort (24).  
A multicenter study of HFOV vs. CMV used propensity 
score matching to study 118 pairs of children with PARDS 
found HFOV was associated with increased mortality but 
no difference in ventilator-free days (25). In a secondary 
analysis of the RESTORE trial, propensity score matching 
found early application of HFOV was associated with 
longer duration of mechanical ventilation but did not affect 
mortality (26). 

de Jager et al. recently described the feasibility of a 
physiologic, open-lung recruitment strategy of HFOV in 
143 subjects treated in a single center (27). This strategy 
uses a starting frequency of 12 Hz for all subjects and uses 
incremental-decremental staircase adjustments to select 
the “optimal” mPaw on the deflation limb of pressure-
volume curve (27). Ventilation is controlled by adjusting 
the frequency after maximizing the power (amplitude) 
setting (27). This is in contrast to prior HFOV strategies, 
which have used a fixed starting frequency based on the 
patient’s size and controlled ventilation with changes in 
power (amplitude). The reported mortality for different 
PARDS severity was similar to the mortality reported in a 
large, multicenter, international point prevalence study (28). 
Importantly, this HFOV strategy is currently being employed 
in the ongoing PROSpect trial.

Animal studies

Relevant animal studies of HFOV were completed over two 
decades ago and demonstrated it to be superior to CMV for 
physiologic and pathobiologic outcomes (29-33). Although 
crucial in refining the HFOV strategies for translation 
into human trials, these early studies suffered from the 
limitation that the CMV groups did not receive lung 
protective ventilation with physiologic (4–8 mL/kg) VT 
and adequate PEEP (29). Therefore, it was not surprising 
that HFOV performed better than non-protective CMV. 
When optimal HFOV was compared against optimal CMV, 
both modalities performed similarly, suggesting that a lung 
protective approach—accomplished through either CMV 
or HFOV—attenuates experimental lung injury regardless 
of the technique employed (34,35). 

Conclusion and recommendations for clinical practice

The Pediatric Acute Lung Injury Consensus Conference 
(PALICC) recommends that HFOV should be considered as 
an alternative ventilatory mode in patients with moderate-to-
severe PARDS in whom plateau pressure exceeds 28 cmH2O, 
provided chest wall compliance is normal (36). When 
used, HFOV should be titrated to optimize lung volume 
through exploration of the potential for lung recruitment 
by a stepwise increase and decrease of the mPaw under 
continuous monitoring of the oxygenation and ventilation, 
along with hemodynamic parameters (36). Although the 
safety and feasibility of HFOV is well established in 
PARDS and is associated with improvement of short-
term physiologic endpoints, HFOV has not been shown to 
improve clinically meaningful outcomes, such as mortality 
or ventilator-free days. HFOV is a complex, nuanced mode 
of ventilation with a steep learning curve, so its use must be 
approached with respect even by those experienced its use. 
Until more definitive data are available, it is reasonable to 
continue to utilize HFOV as an option for the management 
of select patients with moderate-to-severe PARDS (37). 

The question of whether HFOV has a definitive role 
in the management of PARDS can only be answered by a 
large multicenter RCT. The PROSpect trial comparing 
HFOV to CMV and prone positioning to supine in a two-
by-two factorial adaptive design is currently ongoing, with a 
planned enrollment of 1,000 children with acute hypoxemic 
respiratory failure (38). 

HFPV

HFPV is a pneumatically powered, time-cycled and 
pressure-limited ventilation form of mechanical ventilation 
used predominantly in inhalation injury, burns, and as 
a rescue mode for selected patients failing CMV. High-
frequency percussive breaths are superimposed upon a 
conventional pressure-controlled breath, usually in a 1:1 
inspiratory to expiratory ratio with 10–30 breaths per 
minute, depending on patient size. It can be used with other 
I:E ratios (39). Peak inspiratory pressure (PIP) and positive 
end-expiratory pressure (PEEP) are set; however, due to 
the Phasitron, both the PIP and PEEP “oscillate” around 
the set value, and the mean value for both PIP and PEEP 
are used (Figure 2). The percussive rate is set between 200 
and 900 cycles per minute. Due to the unique mechanism 
of action, the lung is inflated in a controlled manner until 
the PIP is reached. Exhalation is passive and patients cannot 
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trigger the ventilator, although there is a reserve volume 
within the circuit with which patients can spontaneously 
inspire gas. We reviewed the literature over the past 15 years; 
earlier data have been discussed elsewhere (39). 

Clinical studies

RCTs involving children are lacking and data are limited to 
case series/reports and retrospective studies (Table 1) (40-46). 
HFPV has been better studied in the adult burn population; 
however, case reports/series and retrospective studies 
comprise the majority of current data, with few RCTs and 
systematic reviews. 

A systematic review of high frequency modalities as 
salvage therapy in adult and pediatric patients with smoke 
inhalation-associated acute lung injury concluded that 
HFPV may decrease mortality and pneumonia when 
compared to CMV, although the quality of evidence was 
low (47). A small before (n=22) and after (n=14) study found 
that HFPV use in pediatric extracorporeal life support 
(ECLS) was associated with more ECLS-free days, but not 
with improved survival or ventilator free days (48). 

Animal studies

HFPV was evaluated against large VT CMV (10 mL/kg) 
in a sheep burn/ARDS model and was found to increase 
survival without adverse hemodynamic effects (49). There 
were no differences in P/F ratio, although PaCO2 was lower 
during HFPV at a lower PIP (49). In a sheep smoke/burn 
model (50), HFPV in conjunction with extracorporeal CO2 

removal showed improved survival compared to HFPV or 
low-tidal volume ventilation. There were no differences in 
hemodynamics or bronchial obstruction, although HFPV 
alone had less bronchial obstruction than those treated with 
arterio-venous CO2 removal (50). 

The effects of HFPV on nitrogen washout were studied 
in an ex-vivo model of adult porcine lungs with normal or 
low compliance using a HFPV-high [PIP 40 cmH2O and 
continuous positive airway pressure (CPAP) 20 cmH2O] 
or HFPV-low (PIP 30 cmH2O and CPAP 10 cmH2O)  
strategy (51). Compared to CMV, both HFPV strategies 
resulted in similar washout rates as CMV, but at a much 
lower VT and mean airway pressure (51). 

In a rabbit model of gastric aspiration, HFPV improved 
respiratory mechanics, oxygenation, and markers of lung 
injury compared to non-protective CMV, and performed 
similarly to protective CMV and HFOV (52). During 
HFPV, rabbits required higher doses of anesthetics to 
reach a predetermined surgical plane of anesthesia with no 
differences in gas exchange (53). While not confirmed in 
humans, this could suggest that patients receiving HFPV 
may require more sedation than those receiving CMV. 

Bench studies

Bench models have evaluated VT delivery, the ability to 
measure accurate VT in clinical practice, humidification, 
nitrogen washout, and nitric oxide delivery during HFPV. 
Delivered VT and nitrogen washout during HFPV were 
affected by changes in elastance and resistance (54). When 
resistance was increased, the rise in VT was slower; when 

Figure 2 Graphic representation of high-frequency percussive ventilation (HFPV) pressure waveforms over time. Set peak inspiratory 
pressure (PIP) and positive end-expiratory pressure (PEEP) are the mean values during inspiratory and expiratory phases.
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elastance was increased, the VT reached a plateau quickly, 
resulting in a longer “plateau” during inspiration. The 
measured VT total (or total gas delivered during each 
inspiratory phase) ranged from 710 to 1,820 mL, which 
is outside the lung protective range, although 300 to 
848 mL was exhaled during the inspiratory phase due to 
passive exhalation following percussive breaths. Changes 
in elastance and resistance also resulted in changes in 
the delivered mPaw and PIP with both increasing when 
elastance and resistance increased. The VT delivered 
during the percussive breaths was more effected by changes 
in resistance than in elastance (54).

During HFPV, endotracheal tube cuff deflation resulted 
in a decrease in proximal airway pressure (Pvent), measured 
mPaw, and FiO2 at the simulated carina (55). The lower 

FiO2 was likely due to increased entrainment of ambient air. 
Pvent was equal to the mPaw at the carina when the cuff 
was inflated (55). Increasing the percussive rate resulted in 
decreased VT but no change in the delta pressure with the 
cuff deflated (56). A study of airway humidification during 
HFPV found none of the humidification systems tested 
provided optimal humidity (57). 

Gas distribution in a two-compartment lung model with 
varying elastance and resistance levels demonstrated VT 
delivery was affected by changes in lung mechanics (58). 
Nitrogen washout was more efficient at a lower mPaw 
during HFPV. Despite similar settings at the airway, 
HFPV was found to deliver 55% of the mPaw compared 
to PCV (58). Delivered VT can be measured accurately in real 
time during HFPV with external or portable monitors (59,60). 

Table 1 Studies on high-frequency percussive ventilation in neonatal and pediatric patients 

Author, year 
published

Type of study N Pathology, if known Findings of HFPV initiation

Rizkalla,  
2014

Retrospective 31 Acute respiratory failure  
largely secondary to  
infectious etiologies

Improved gas exchange at lower PIP (median 38 vs. 26 cmH2O); 
improved OI and P/F as early as 12 hours later; decreased PaCO2 
within 6 hours of initiation; initiation did not lead to increased 
hemodynamic instability or more air leaks

Tawfik,  
2016

Retrospective 27 Acute respiratory failure,  
multiple etiologies

Most commonly documented reasons for HFPV: secretion 
management (52%) and ventilation (30%); improved oxygenation, 
decreased PaCO2 levels 6 hours after initiation (PIP <30 cmH2O, mPaw 
16±2.9); complications: hypotension requiring return to CMV (4%), 
pneumothorax (4%), and bronchoscopy for secretion removal (15%)

Paviotti,  
2014

Case  
series

6 Persistent pulmonary  
hypertension of the  
newborn (PPHN); severe 
hypoxemic  
respiratory failure

Marked oxygenation improvement with a decrease in OI—achieved 
without an increase in mPaw and PIP; no change in PaCO2 values, 
although hypercarbia is rarely a complicating factor in PPHN; 
concluded HFPV could play a role in neonatal hypoxemic respiratory 
failure unresponsive to CMV/HFOV and medical management, 
especially in centers where ECMO is unavailable

Mabe,  
2007

Case  
report

1 Aspiration pneumonitis from 
hydrocarbon inhalation

Mobilization of large amounts of secretions
Improvement in oxygenation

Fitzgerald,  
2011

Case  
report

1 ARDS secondary to post  
intubation tracheal injury with 
severe air leak  
syndrome on VV ECMO

Prior to ECMO decannulation, marked improvement in secretion 
clearance; complete expansion of bilateral lungs without disrupting 
healing trachea

Claudet,  
2012

Case  
report

1 ARDS secondary to hydrogen 
sulfide gas intoxication from 
submersion in a manure tank

Recovery from respiratory failure

Blondonnet, 
2015

Case  
report 

1 ARDS secondary  
aspiration pneumonia

Large improvement in oxygenation and ability to decannulate from 
ECMO within 24 hours of HFPV initiation with a mPaw of 25 cmH2O 
and PEEP of 15 cmH2O

HFPV, high-frequency percussive ventilation; PIP, peak inspiratory pressure; CMV, conventional mechanical ventilation; mPaw, mean airway 
pressure; HFOV, high-frequency oscillatory ventilation.
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Elastance and resistance can also be estimated through 
an external monitor during HFPV with acceptable 
accuracy (61). It is not possible to precisely deliver inhaled 
nitric oxide during HFPV (62). 

Conclusion and recommendations for clinical practice 

HFPV has a role in the treatment of patients with smoke 
inhalation or burns. Its use in children and neonates has 
been shown to improve gas exchange without the need for 
higher airway pressure. HFPV is purported to improve 
secretion clearance, yet this has not been objectively 
demonstrated in children. Bench studies have shown that 
VT delivery is outside of the currently acceptable lung-
protective range; although studies have shown conflicting 
results, likely due to how individual studies defined VT. 
Animal and bench models reveal complex cardiopulmonary 
interactions and further research is needed to elucidate 
what patient populations may benefit from HFPV. Future 
studies should attempt to include transpulmonary pressure 
monitoring, VT, and electric impedance tomography to 
evaluate the effect of HFPV on lung volumes.

HFJV 

HFJV achieves ventilation through delivery of high-velocity 
gas using a solenoid activated pinch valve. This results in 
a pulsating stream of gas at a rate between 240 and 660 
cycles per minute and an inspiratory time of 0.02 to 0.034 s  
(Figure 3). The resulting PIP is attenuated down the 
respiratory system and theoretically provides lung 
protective ventilation (63,64). HFJV most often is utilized 
in premature infants or within neonatal intensive care 
units (NICUs) (65,66). HFJV requires the use of both a jet 
ventilator and a conventional ventilator, the later used to 
provide PEEP and periodic recruitment or “sigh” breaths. 
The CMV rate is usually set between and 0 and 5 breaths 
per minute and the PIP is set below the HFJV PIP to avoid 
interruption of jet ventilation during CMV breaths. The 
use of HFJV in the PICU has been limited to small, single 
center case series and one outdated RCT (67-69).

Recent clinical studies of HFJV in the PICU

The use of HFJV in 35 infants (median 2.9 months and 
5.2 kg) with acute respiratory failure from multiple etiologies 
in a quaternary PICU was recently reported (67). HFJV 
improved CO2 clearance but had no effect on oxygenation. 

HFJV failure was common, with 29% of subjects failing 
within 4–6 h post initiation and 51% making a successful 
transition from HFJV back to CMV. Initial HFJV PIP was 
46 cmH2O with a rate of 360 breaths per minute and mPaw 
of 14 cmH2O. ECMO was required for 26% of subjects and 
the overall survival was 74% (67).

HFJV was evaluated in a case series of 12 infants (1.7 
to 14.2 kg) with respiratory syncytial virus (RSV) failing 
CMV (68). HFJV was initiated primarily due to hypercapnia 
although 11/12 patients also met PARDS criteria. The 
overall survival rate was 91%. The mean partial pressure of 
CO2 (PaCO2) prior to HFJV decreased by nine mmHg after 
24 hours; there was no significant change in oxygenation 
index (68). Importantly, the HFJV settings used, initiation 
criteria or detailed data prior to HFJV initiation were not 
reported.

The use of HFJV in 25 infants with congenital 
diaphragmatic hernia resulted in significant improvement 
in pH with a decrease in PaCO2 (70). The study reported 
general ventilation guidelines in which the mPaw was 
<12 cmH2O, PIP ≤25 cmH2O, mild-moderate permissive 
hypercapnia (pH >7.25) and target SpO2 ≥85% but not did 
not report the specific settings used. Mortality rate was 
64% (70). Importantly, congenital diaphragmatic hernia 
may be managed in both NICUs and PICUs, depending 
on the center (71). HFJV with heliox as the driving gas 
was used in an infant with significant barotrauma and 
hypercapnia despite HFJV. The addition of heliox resulted 
in improved PaCO2 levels (72). 

Figure 3 Graphic representation of proximal versus distal pressure 
during high-frequency jet ventilation (HFJV) compared to 
conventional mechanical ventilation (CMV). As the HFJV pulses 
move down the airway, there the pressure amplitude is attenuated, 
unlike CMV (courtesy of Evan Richards, RR).
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Clinical studies published before 2000

Acute hypoxemic respiratory failure
Smith et al. (69) evaluated HFJV in 29 patients with PARDS 
(mean 1.0 years) and air leak syndrome. Prior to HFJV, PIP 
was 48 cmH2O during CMV and PaCO2 was 45 mmHg. 
The survival rate was 69% (69). This study predates 
the wide-spread adoption of lung-protective ventilation 
and suggest HFJV may have a role in managing air-leak 
syndrome.

Post cardiac surgery
Several studies have evaluated the effect of HFJV on gas 
exchange and hemodynamics in infants and children with 
congenital heart disease. These have been small, single 
center studies with limited applicability in current PICUs.  

HFJV was used in nine patients (mean age 9 months) 
after congenital heart surgery who met pulmonary 
criteria for ECMO, predominantly due to pulmonary  
hypertension (73). Ventilation and oxygenation improved 
during HFJV with similar PIP and mPaw as during CMV 
with stable hemodynamics. ECMO was avoided in all but 
one patient. The mortality rate was 33% and one patient 
developed a pneumothorax (73). HFJV was used in 13 
patients (mean age 3.9 years, mean weight 13.9 kg) after the 
Fontan operation (74). There were no differences in PaCO2 
before, during or after HFJV but adequate support was 
achieved at a lower mPaw (9.2 vs. 4.6 cmH2O) with overall 
improved hemodynamics and cardiac index (74). Current 
management after the Fontan procedure is early extubation 
and avoidance of high intrathoracic pressures; it is unclear 
if HFJV still has a role in the management of children post 
Fontan as current devices may not be able to effectively 
ventilate larger children.

When HFJV was used in six infants weighing 2.4 
to 5.7 kg post cardiac surgery, ventilation was achieved 
with lower PIP, significantly lower tracheal pressure (24 vs. 
14 cmH2O) compared to CMV, with no change in measured 
hemodynamic parameters (75). A similar study evaluated the 
effect of HFJV on hemodynamics of six infants post cardiac 
surgery and demonstrated a significant decrease in PIP 
from 25 to 11 cmH2O and reduction in mPaw from 7 to 
5 cmH2O, although this was likely related to a decrease in 
set PEEP. There was no relationship between HFJV and 
cardiac index, although in patients with low cardiac index, 
HFJV resulted in a 33% increase. There were no other 
differences in hemodynamic measurements (76). 

Animal studies of HFJV

HFJV has been studied in various animal models. Airway 
pressures and gas exchange were compared between CMV, 
HFJV, and HFOV in 12 pigs weighing between 10 and 
16 kg (77). HFJV resulted in lower PaCO2, higher pH, 
and higher cardiac index with a lower mPaw compared 
to both CMV and HFOV. Importantly, this study found 
that the mPaw measured at the proximal airway and the 
trachea were nearly identical in contrast to a prior study 
in which tracheal pressure was significantly lower (75). 
This study examined HFJV in a configuration that may 
not be used in clinical practice in PICUs and the CMV 
strategy was not protective. A study of rabbits concluded 
that HFOV and HFJV cannot be compared on the basis of 
mPaw and demonstrated that mPaw accurately estimated 
mean alveolar pressure during HFJV (78). A study 
comparing HFJV and HFOV in cats with a mean weight 
of 4.5 kg showed that HFJV resulted in lower PaCO2 
and higher pH at similar airway pressures but no change 
in oxygenation (79). Transition from HFJV to HFOV 
in this study resulted in acidosis, increased pulmonary 
artery pressure, increased PVR, and a decreased cardiac  
output (79). 

Bench studies

Aerosol delivery during HFJV using magnetic resonance 
imaging of a phantom lung was lower in comparison to that 
during HFOV, and both were lower compared to CMV (80). 
Importantly, this study utilized the MiniHeart nebulizer 
driven by 2 L/min of flow within the inspiratory limb of the 
conventional ventilator circuit. A mathematical equation 
to predict what PEEP needs to be set to match the mPaw 
when transitioning between HFJV and HFOV suggested 
that mPaw should be increased by 4 to 6 cmH2O when 
initiating HFJV (81).

Conclusion and recommendations for clinical practice

Data evaluating HFJV in the PICU are limited to small, 
single center case series, outdated RCTs or physiologic 
studies without control groups. HFJV may have a role in 
refractory hypercapnia in children with viral bronchiolitis, 
in air leak syndrome, and post cardiac surgery to improve 
hemodynamics, although the impact on more relevant 
outcomes requires further investigation. 
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APRV

APRV is a time-cycled, pressure controlled, synchronized 
intermittent mandatory ventilation mode generally utilized 
with an inverse I:E ratio. It was first described in 1987 by 
Stock and Downs as a strategy to maintain lung volume, 
maximize alveolar recruitment, and avoid overdistension 
and collapse (82-86) (Figure 4). APRV maintains PIP 
(or P-high) with brief cyclical releases to enhance CO2 
removal, with unrestricted spontaneous breathing during 
P-high. APRV has been used primarily as a rescue strategy 
in patients with ARDS or refractory hypoxemia (84,87,88). 
Detailed descriptions of the intricacies of APRV are 
beyond the scope of this paper, but have been reviewed 
elsewhere (84,86,89). A recent meta-analysis of adult studies 

found that APRV was associated with a higher number 
of ventilator free days, lower ICU length of stay, lower 
hospital mortality, and no significant adverse effects (90). 
These results need to be interpreted cautiously due to the 
low quality of the included trials and the fact that many 
control groups did not receive lung-protective ventilation. 
Importantly, what defines APRV and how it is used in 
clinical practice in adults varies widely (91,92).

Proposed advantages of APRV include lung recruitment, 
improved oxygenation, unrestricted spontaneous breathing, 
improved hemodynamics, better V/Q matching, and 
reduction in sedative requirements. Disadvantages of 
APRV include difficulty of controlling VT, concern for 
atelectrauma during releases (especially in lung units with 
low compliance and resistance), and exposure to high 

Mandatory 
breath

Spontaneous  
breath

Pressure

Volume

Muscle pressure

P High

P Low

T High

T High

T Low

Flow

Volume

T Low

A

B

Figure 4 Pressure (green) and volume (black) over time curve in airway pressure release ventilation (APRV). Shown in the figure: 2 full 
mandatory breaths (not triggered by muscle effort), and 2 full spontaneous breaths (triggered by muscle effort, in blue) on the top of the 
mandatory ones. Muscle pressure (blue): the long arrow represents the T high, and the short arrow represents the T low of the mandatory 
breath. B: Flow (black) and volume (green) over time curve in APRV. T high is the start of the inspiratory flow to the start of expiratory 
flow, T low is the start of expiratory flow to the beginning of the next inspiratory flow. The 2 red intersecting lines are at 50% of the peak 
expiratory flow. [Reproduced with permission from: Daoud EG, Farag HL, Chatburn RL. Airway pressure release ventilation: what do we 
know? Respir Care. 2012;57(2):282-92.]
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transpulmonary pressure during spontaneous breathing 
at P-high. Current data evaluating APRV in children are 
limited to single center case series as a rescue mode for 
patients with refractory hypoxemia and one small, single 
center RCT (93-103). 

Prospective clinical studies in children

A single center RCT comparing low VT CMV to APRV 
in PARDS was terminated early after enrolling 52 subjects 
due to a higher mortality rate (54% vs. 27%) in the APRV 
group (98). There were significant differences in baseline 
characteristics between the groups, with the APRV group 
having lower baseline P/F ratio and higher oxygenation 
index, although VT, P/F ratio and oxygenation index were 
similar 12 h post randomization and mPaw was approximately 
2 cmH2O higher in the APRV group throughout the study. 
After controlling for illness severity, APRV was associated 
with a risk ratio of 2.02 for mortality (98). 

A prospective, crossover study comparing APRV to 
CMV in children after Tetralogy of Fallot, Glenn or 
Hemi-Fontan, or Fontan procedures found that APRV 
improved pulmonary blood flow, although SvO2 and other 
indexes of oxygenation were similar on both modes (100). 
APRV did not adversely affect hemodynamics using a 
P-high of 13–20 cmH2O (100). An increase in pulmonary 
blood flow was observed only when patients in APRV 
were spontaneously breathing. There were no differences 
between groups in global hemodynamics measurements 
or gas exchange. This study revealed that during releases, 
the pleural pressure was negative despite a reasonably set 
T-low of 0.3–0.5 seconds. In contrast, the end-expiratory 
transpulmonary pressure in the CMV group was at or 
above 0 cmH2O throughout (100). 

Retrospective case series

A retrospective analysis of 104 pediatric patients with 
ARDS, who were transitioned to either APRV or HFOV 
for refractory hypoxemia on CMV found that improvement 
in oxygenation after transition was associated with improved 
survival, independent of the rescue mode used (101). A 
similar study found that survival in immunocompromised 
patients with ARDS was significantly associated with 
improved oxygenation 24 h after transition to APRV or 
HFOV (102). A recent retrospective analysis of 30 pediatric 
patients with severe PARDS transitioned from CMV to 
APRV for refractory hypoxemia found that the SpO2/

FiO2 ratio increased from 132 to 165, likely secondary to 
increased mPaw with a lower PIP, and a mortality rate of 
17% (103). Previous small pediatric case series/case reports 
also observed improved oxygenation at lower peak airway 
pressure (93,94,97,99) and no adverse hemodynamic effects 
(95,96). A retrospective study comparing outcomes of 
rescue APRV (n=22) or HFOV (n=25) found no differences 
between the two groups (104). An important consideration 
during APRV is that the reduction in PIP may not result in 
a reduction of end-inspiratory transpulmonary pressure,  as 
the patient’s breathing effort will add to the P-high. Thus, 
a reduction of PIP during APRV may result in excessive 
transpulmonary pressure even when the P-high is within 
the lung-protective range, especially if tube compensation 
or pressure support are used.

Animal models

Multiple investigators have sought to examine the effects 
of APRV on lung microstrain and alveolar recruitment 
in animal models. In a porcine model of combined brain 
injury/ARDS, there were no differences in gas exchange 
or histopathology between APRV and an ARDSnet-based 
CMV strategy, although microdialysis trends suggested 
increased brain ischemia in the APRV group (105). APRV 
utilizing varying ratios of peak expiratory flow rate (PEFR) 
was compared to CMV with multiple levels of PEEP in a 
rat model of lung injury. During APRV, peak expiratory 
flow rate (PEFR) is terminated at a percentage of the peak 
expiratory flow, prior to complete exhalation, in order 
to create intrinsic PEEP as an alternative to extrinsically 
set PEEP. When this strategy is used, P-low is generally 
set to 0 cmH2O (86,91). They found that both a PEEP 
greater than 16 and APRV with a PEFR targeted at 75% 
minimized microstrain, however APRV also improved 
alveolar recruitment (106). A similar study found a PEFR 
target of 75% during T-low resulted in the least alveolar 
microstrain (107). In other animal models, APRV has had 
a favorable effect on dynamic alveolar homogeneity (108) 
and has also led to improved mucous clearance (109). 
APRV was found to reduce inflammation and pulmonary 
edema in a rabbit model of ARDS (110). 

Spontaneous breathing during APRV has been associated 
with improved gastrointestinal (111,112), renal (113), and 
nervous system perfusion (114), and may reduce risk of 
lung injury (115). In a rat model, preemptive application of 
APRV to a normal lung prevented development of ARDS-
like histopathology (116). In a porcine model of indirect 
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lung injury, animals treated with APRV did not develop 
ARDS (117). It is important to note that the control groups 
in these studies did not receive lung-protective ventilation. 
APRV was compared to the ARDSnet protocol to examine 
whether ARDS could be prevented (118). The APRV group 
had preserved oxygenation with lung histology showing 
preserved lung architecture and less pulmonary edema. 
APRV was also shown to prevent ARDS in a rat model of 
hemorrhagic shock (119). Importantly, the vast majority of 
these animal studies originate from a single research group 
and most have used an ischemic-reperfusion sepsis model 
to induce extrapulmonary ARDS. The applicability of these 
results to primary pulmonary ARDS is limited. Lastly, these 
pre-clinical studies have yet to be translated to clinical 
practice.

Bench models

A case report demonstrated that VT during APRV ranged 
from 4 to 12 mL/kg and the patient had CT scan consistent 
with ventilator induced lung injury. In a bench model, 
control of VT and auto-PEEP could not be achieved even 
in a passive model (120). In a study of APRV using a high-
fidelity simulator, auto-PEEP was found to be highly 
variable and resulted in unstable lung volumes (121). In a 
lung model, VT delivery during APRV was lower when 
compared to other modes (122). Spontaneous breathing 
during APRV results in variable VT and carries a risk of 
high VT delivery (123), yet aerosol deposition is increased 
compared to other modes (124). When compared to BiPAP 
with similar settings, APRV resulted in higher mPaw and 
higher total PEEP, and PEEP could not be predicted by 
lung mechanics (125). There is considerable variability in 
auto-PEEP during APRV among six commercially available 
ventilators (126). 

Conclusion and recommendations for clinical practice

There is controversy on the choice of optimal settings, 
indication, and clinical efficacy of APRV. Current data have 
shown short-term improvements in oxygenation; however, 
this may not translate into improved patient outcomes and 
a pediatric RCT has suggested possible harm associated 
with APRV (98). Bench and animal studies have shown it to 
be a complex mode where VT and auto-PEEP cannot be 
easily controlled, even under ideal conditions. Importantly, 
its performance also varies across different ventilator 
platforms. High-quality, multi-center RCTs studies are 

needed to elucidate the role of APRV in PARDS. Other 
areas of interest requiring further study are the utility of 
APRV during ECMO and as a strategy to prevent the 
development of lung injury. 

NAVA
 

NAVA is an advanced mode of mechanical ventilation in 
which breaths are synchronized to the electrical activity of 
the diaphragm (EAdi) using a proprietary ventilator and 
specialized gastric tube containing an array of electrodes 
positioned in the esophagus at the level of the diaphragm (127). 
The NAVA level is adjusted to provide positive pressure in 
proportion to the patient’s effort, or EAdi, and synchronizes 
to the patient’s neural respiratory drive (127). The EAdi 
signal is processed to provide the highest possible quality 
and is not artificially influenced by changes in lung volume, 
muscle length, chest wall configuration, intraabdominal 
pressure, and applied end-expiratory pressure (128-130) 
(Figure 5). NAVA is can be used in both invasive and non-
invasive ventilation.

Adult data

A meta-analysis found NAVA improved ventilator synchrony 
but had no effect on patient outcomes such as length of stay, 
ventilator free days, or mortality (131). A recent RCT of 
critically ill adults expected to be mechanically ventilated 
for more than 72 hours found that NAVA resulted in four 
more ventilator free days, and 4.1 fewer days on mechanical 
ventilation, although there was no effect on mortality (132). A 
smaller RCT in patients at high risk of prolonged ventilation 
found NAVA to be associated with more ventilator free days 
and a decrease in mortality (133). 

Clinical use of NAVA in the PICU 

A recent meta-analysis 464 patients treated with NAVA 
or CMV showed NAVA to be associated with improved 
ventilator synchrony, lower PIP, and higher oxygen 
saturation (131). Crossover studies of NAVA in the PICU 
have consistently demonstrated improved patient-ventilator 
synchrony (134-139). An asynchrony rate between 12% 
and 73% has been described during CMV compared to 
zero to 20% during NAVA (140). NAVA has been shown to 
improve COMFORT scores (138,141) and reduce sedation 
needs (142). An RCT of 170 subjects observed shorter ICU 
LOS using NAVA, although there was no difference in 
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time on mechanical ventilation (142). In infants recovering 
from PARDS, NAVA showed improved synchrony, lower 
PIP, and a tendency toward higher VT (141). NAVA-
triggered breaths have been shown to have less trigger 
delay and shorter system response time in infants with 
bronchiolitis (143). In another report of three children 
with bronchiolitis, NAVA was found to reduce PIP, 
improve patient-ventilator synchrony, and reduce FiO2 
requirement (144). In a selected population of difficult 
to wean pediatric patients recovering from moderate 
PARDS, NAVA improved synchrony and resulted in better 
oxygenation compared to PSV (145).

Congenital heart disease
In children with congenital heart disease, NAVA has been 
shown to improve ventilator synchrony (134) with lower PIP 
and mPaw (146-148). NAVA had no effect on hemodynamics 
in the majority of patients post cardiac surgery (149). More 
recently, in a physiological cross-over study, NAVA was 
compared to PSV and PSV SIGH (PSV with 1 machine breath 
per minute) in hypoxemic infants after cardiac surgery. NAVA 
resulted in better patient-ventilator synchrony compared with 

pressure support but there was no difference in oxygenation 
and static compliance of the respiratory system (150). 

In a small retrospective series, NAVA was used in six 
pediatric patients with severe respiratory failure on VV 
ECMO. NAVA was initiated when diaphragmatic electrical 
activity (EAdi) allowed for triggering. Proportionate to 
EAdi (1.8–26 μV), initial PIP ranged from 21 to 34 cmH2O, 
and VT from 3 to 7 mL/kg. During weaning, PIP increased 
proportionally to EAdi increase (5.2–41 μV), with VT 
ranging from 6.6 to 8.6 mL/kg. Improved synchrony during 
NAVA may help patients liberate from ECMO or help 
assess readiness for sweep gas trials (151). 

Animal models

In a rabbit model, the use of NAVA was associated with 
less ventilator-induced lung injury, attenuated systemic 
inflammation, and preserved cardiac and kidney function (152). 
Other animal models have also demonstrated more 
efficient and synchronous ventilation (153,154) with 
unloading of respiratory muscles without excessive VT 
and low mPaw (153). In animals recovering from lung 

Figure 5 Pressure, flow, volume, and electrical activity of the diaphragm (EAdi) waveforms from a patient on pressure support ventilation, 
and the presumed pressure curve (grey) if the patient was on neurally adjusted ventilatory assist (NAVA), with a preset NAVA level not 
shown. Breath 3 demonstrates expiratory timing asynchrony: there is continued mechanical inflation after the start of the neural expiration, 
causing a delay between the neural expiration and the mechanical deflation. [Reproduced with permission from Verbrugghe W, Jorens PG. 
Neurally adjusted ventilatory assist: a ventilation tool or a ventilation toy? Respir Care. 2011;56(3):327-35.]
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injury, NAVA reduced asynchrony, trigger delay, and 
the pressure time product (155). In animals ventilated 
without PEEP after ALI, EAdi level was increased during 
the exhalation phase (128,156). Application of PEEP in 
a step-wise fashion showed a dose-response reduction in 
tonic activity and re-institution of phasic breathing (156). 
In an anesthetized and spontaneously breathing rabbit 
model, adjusting pressure continuously in proportion to 
both inspiratory and expiratory EAdi showed a reduction 
in inspiratory effort compared to triggered NAVA (157). 
Recent experimental study demonstrates the use of EAdi to 
control negative pressure ventilation in small animals (158). 

In an animal model of mild ARDS, NAVA showed that 
increasing PEEP reduced respiratory rate, atelectasis, 
recruitment/derecruitment, and breath size variability but 
increased VT and transpulmonary pressure (159). NAVA 
may be superior to PSV in preventing diaphragm injury 
during mechanical ventilation, and both NAVA and PSV 
were associated with less atrophy than CMV (160). 

Conclusion and recommendations for clinical practice

NAVA can be safely applied in pediatric patients and is 
associated with improvements in ventilator synchrony and 
sedation requirements. These benefits are based on a small 
number of studies and have not translated into improved 
survival, ventilator-free days or time on mechanical ventilation. 
A large multicenter RCT to comparing NAVA and CMV in 
children is needed. Current evidence would suggest NAVA 
be applied in difficult to liberate patients or those in whom 
asynchrony has been observed or is highly suspected.

Summary of advanced ventilator modes in the 
PICU and future directions for research

The evidence supporting advanced ventilator modes is weak 
and consists largely of single center case series although 
some RCTs have been performed. This may have resulted 
in publication bias as centers with less favorable experiences 
with HFPV, HFJV, and APRV in particular, may not have 
published their results. Animal and bench models illustrate 
the complexities of different modes and the challenges of 
applying these clinically. Importantly, animal and bench 
models have often produced contradictory results, which 
underscores the need for additional research. Some modes 
are proprietary to certain ventilators, are expensive, or may 
only be available at well-resourced centers. 

Future efforts should include large, multi-center 

observational, interventional, or adaptive design trials of 
different rescue modes (e.g., PROSpect trial), evaluate their 
use during ECMO, and should incorporate assessments 
through volumetric capnography, electric impedance 
tomography, and transpulmonary pressure measurements, 
along with precise reporting of ventilator parameters and 
physiologic variables. 
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