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Abstract: Muscle wasting is now recognized as a growing, debilitating problem in critically ill adults, 
resulting in long-term deficits in function and an impaired quality of life. Ultrasonography has demonstrated 
decreases in skeletal muscle size during pediatric critical illness, although variations exist. However, muscle 
protein turnover patterns during pediatric critical illness are unclear. Understanding muscle protein 
turnover during critical illness is important in guiding interventions to reduce muscle wasting. The aim of 
this review was to explore the possible protein synthesis and breakdown patterns in pediatric critical illness. 
Muscle protein turnover studies in critically ill children are lacking, with the exception of those with burn 
injuries. Children with burn injuries demonstrate an elevation in both muscle protein breakdown (MPB) 
and synthesis during critical illness. Extrapolations from animal models and whole-body protein turnover 
studies in children suggest that children may be more dependent on anabolic factors (e.g., nutrition and 
growth factors), and may experience greater muscle degradation in response to insults than adults. Yet, 
children, particularly the younger ones, are more responsive to anabolic agents, suggesting modifiable muscle 
wasting during critical illness. There is a lack of evidence for muscle wasting in critically ill children and its 
correlation with outcomes, possibly due to current available methods to study muscle protein turnover in 
children—most of which are invasive or tedious. In summary, children may experience muscle wasting during 
critical illness, which may be more reversible by the appropriate anabolic agents than adults. Age appears an 
important determinant of skeletal muscle turnover. Less invasive methods to study muscle protein turnover 
and associations with long-term outcome would strengthen the evidence for muscle wasting in critically ill 
children.
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Introduction

Concerns of reduced function and physical impairment in 
critically ill children following pediatric intensive care unit 
(PICU) stay have increased in the past few years (1,2). This has 
prompted the study of interventions, such as early mobilization, 
in reducing long-term impairments (3,4). In critically ill adults, 
similar observations of functional impairment have been 
reported, attributable to acute muscle wasting that occurs 
during intensive care unit (ICU) stay (5,6). Muscle wasting in 
critically ill adults is increasingly recognized as a debilitating 
problem both within and outside the ICU. Significant short 
term consequences include difficulty in weaning off mechanical 
ventilation and increased risk of mortality (7). In some patients 
the effects of muscle wasting can persistent beyond hospital 
stay, resulting in functional impairment and the inability to 
carry out activities of daily living or return to work (5).

Critically ill adults experience elevated muscle protein 
breakdown (MPB) early in the disease course with a 
depression in muscle protein synthesis (MPS), resulting in 
a net negative muscle protein balance (6,8). MPS appears to 
increase with time while MPB remains constant, resulting 
in a less negative net protein balance (8). Although the exact 
pathophysiology is unclear, drivers of critical illness muscle 
wasting are likely multi-modal—an interaction between 
metabolic alterations and ICU therapy (9). Pro-inflammatory 
cytokines with sepsis (10), hyperglycemia (11), sedation and 
immobilization during mechanical ventilation (11), and high 
corticosteroid dose (11) are some factors that can trigger 
MPB and/or suppress MPS. 

It is unclear whether children experience similar MPS 
and MPB changes as that in adults. Like adults, children are 
also exposed to the aforementioned insults during critical 
illness (12). Yet, children differ in metabolism and body 
composition (13), suggesting differences in skeletal muscle 
turnover than adults. Understanding protein turnover in 
pediatric critical illness is an important step in reducing or 
preventing muscle loss. The aim of this narrative review 
was to explore the evidence for muscle wasting in critically 
ill children through pathophysiology of muscle wasting and 
existing pediatric literature on muscle protein homeostasis. 
We present the following article in accordance with the 
Narrative Review reporting checklist (available at http://
dx.doi.org/10.21037/tp-20-298). 

Methods

Medline, Embase and the Cumulative Index to Nursing 

and Allied Health Literature (CINAHL) databases were 
searched from the earliest available dates up until June 
2020. Keywords and major subject headings used in 
combination included: “skeletal muscle”; “muscle protein 
synthesis”, “muscle protein degradation”, “protein 
metabolism”; “growth and development”, “nutrition”, 
“immobility”, “exercise”, “disease”, “critical illness”. Results 
were limited to full articles and those pertaining to children 
(0–18 years). Conference abstracts and those pertaining 
to neuromuscular disease were excluded. After accounting 
for duplicates, titles abstracts were scanned and full articles 
were retrieved for shortlisted papers. Additional relevant 
studies were identified from hand-searching of reference 
lists of the shortlisted articles.

Muscle protein turnover

The process of muscle protein homeostasis, summarized 
in Figure 1, is well known and has been detailed elsewhere 
(14,15). Briefly, muscle growth or atrophy is determined 
by the net balance of MPS and MPB. When MPS exceeds 
MPB, there is a resultant net positive balance and muscle 
accretion occurs, whereas atrophy occurs when MPB exceeds 
MPS. MPS is energy dependent, controlled by various 
pathways which centers around the mammalian target of 
rapamycin (mTOR) and Protein Kinase B (Akt) (16). One of 
the major pathways for MPS is referred to as the Insulin-like 
Growth Factor 1/Phosphotidylionositol-3-kinase/Protein 
kinase B (IGF-1/PI3K/AKT) pathway, although anabolism 
can also occur via direct activation of mTOR by amino 
acids (15,17,18). Various upstream factors including IGF-1 
and amino acids, activate Akt and mTOR, which in turn 
signal the three groups of proteins: Eukaryotic Initiation 
Factors (EIFs), Eukaryotic Elongation Factors (EEFs) and 
Eukaryotic Release Factors (ERFs) to carry out initiation, 
elongation and termination respectively (15). 

MPB occurs mainly via the Ubiquitin Proteasome 
Pathway (UPP), and to a smaller extent the lysosomal and 
calpain proteolytic pathways (19,20). The UPP can be 
activated by phosphorylation of AKT, resulting in FOXO 
translocation to the nucleus upregulating ubiquitin ligases. 
Two ubiquitin ligases found responsible for increased 
UPP activity are the Muscle Ring Finger 1 (Murf-1) 
and the atrogin-1/F-box component (MAFbx). Of note, 
AKT independent activation can occur via NFκB, likely 
downstream of TNF superfamily receptors (21). 

During critical illness, many factors upregulate 
MPB or inhibit MPS, or both. Risk factors associated 
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with ICU muscle wasting include sepsis (10,11), organ  
dysfunction (11), mechanical ventilation (11), acute lung 
injury (6), hyperglycemia (22) and high corticosteroid 
dose (11). Sepsis results in the release of pro-inflammatory 
cytokines and oxidizing free radicals, which have been 
shown to upregulate production of Murf-1 (23) and 
inhibit MPS via decreased phosphorylation of mTOR and 
downstream eukaryotic initiation factors (24). Patients are 
typically mechanically ventilated, sedated and immobilized, 
reducing the mechanical load on the muscle, which can in 
turn upregulate MPB and decrease MPS resulting in disuse 
atrophy (25). The mechanistic processes are described 
further in following sections. However, interventions 
focusing on appropriate sedation dose and duration, as 
well as early mobilization, have shown promising results 
to counter this (26,27). Hyperglycemia likely increases 
muscle breakdown via caspase proteolysis and UPP (28), 
while corticosteroid use has been associated with increased 
ubiquitin mRNA encoding and higher Murf-1 and MAFbx 
expression (29).

Direct measurements of MPS usually involve stable 
isotope infusions followed by skeletal muscle biopsy to 

determine the isotope incorporation rate (30). This is 
usually done in conjunction with measuring muscle protein 
balance across a limb via blood flow, and estimating limb 
MPB via tracer dilution (31). Molecular drivers of MPS 
and breakdown, e.g. mTOR, Murf-1 and MAFbx, have also 
been used to identify cellular pathways and mechanisms for 
muscle protein turnover (6,32), though no single protein 
currently serves as a good marker for protein turnover (6,33). 
Due to these limitation, isotope incorporation studies 
have mostly been conducted in animals (34,35), a major 
constraint in their generalizability.

As such, whole body protein turnover studies have been 
used to extrapolate muscle protein turnover (Table 1) (36). 
Nitrogen balance has been traditionally used to reflect 
whole body protein balance, but can be inaccurate 
due to methodological limitations and physiological  
instabilities (37). More recently, the accuracy has improved 
using stable isotope studies (37). However, the proportion 
of whole body protein turnover that is attributable to 
muscle varies depending on metabolic state, and thus whole 
body protein turnover may not be accurate reflection of 
MPS in critical illness (36,38). Nevertheless, together with 
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Figure 1 Simple depiction of muscle protein synthesis and breakdown pathways. On the left of the image are factors promoting muscle 
protein synthesis, on the right are factors promoting muscle protein breakdown (6). 4EBP-1, 4E binding protein 1; AKT, protein kinase 
B; FOXO, forkhead box O; GR, glucocorticoid receptor; GSK3β, glycogen synthase kinase 3 beta; IGF-1, insulin-like growth factor 1; 
IGF1-R, insulin-like growth factor receptor; IL-6, interleukin 6; MURF1, muscle ring finger 1; MAFBx, muscle atrophy F-box/atrogin-1; 
mTOR, mammalian target of rapamycin; NFκβ, nuclear factor kappa beta; PI3K, phophoinositide 3-kinase; p70s6K, p70 s6 kinase; TNFα, 
tumor necrosis factor alpha.
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observations from healthy children and children with non-
critical illness, these protein turnover studies provide some 
insight to possible mechanisms driving muscle turnover in 
critically ill children.

MPS and breakdown in healthy children

Growth in healthy well-fed infants is rapid, where MPS 
and MPB are highest (34,39). Isotope incorporation 
studies show that MPS rates in rats are highest at birth 
and fall to a third at weaning, then a further 5–6 times 
to reach adult levels (35,39). Decreasing MPS rates with 
age has been attributed to declining growth factors and 
resistance to anabolic agents (40). MPB is also high during 
rapid growth presumably to allow for muscle remodeling, 
decreasing at a slower rate than that of MPS from infancy 
to adulthood (39,41). The exception to this is during 
puberty, where whole body protein turnover using [1-13C]
leucine tracer showed significantly lower proteolysis in 
pubertal children compared to pre-pubertal children while 
whole body protein synthesis rates were similar or slightly 
decreased (42,43). Lower proteolysis may be explained 
by the higher concentrations of growth promoters (e.g., 
insulin, IGF1) in pubertal children (42,43). The net positive 

balance throughout childhood results in continuous muscle 
deposition, until MPB and MPS eventually reach an 
equilibrium after puberty, resulting in stable adult levels 
(39,44). During these stages, various factors can influence 
muscle protein turnover (Table 2).

Growth factors and hormones

Differences in muscle protein turnover during different 
stages of infancy, childhood and adolescence may be 
partially explained by growth factors including growth 
hormone (GH) and IGF-1. IGF-1 levels are low in infancy, 
rising steadily and peaking during puberty, decreasing after 
(91,92). GH levels follow a similar trend and are generally 
higher in pubertal children than in pre-pubertal children or 
adults (93). Their necessity for muscle growth is evident in 
that both IGF-1 and GH knockout mice have consistently 
retarded growth and reduced muscle mass (94). Such effect 
is also seen in children with GH and IGF-1deficiency (95), 
which improves after exogenous GH therapy (96). 

IGF-1 stimulates MPS mainly through the IGF-1 
receptor and activation of PI3K and AKT, which 
subsequently phosphorylates mTOR and GSK3B MPS 
pathways while inhibiting MPB (97,98). GH appears to 

Table 1 Methods used to study muscle protein turnover

Method Notes Limitations

Stable isotope incorporation 
into muscle

Most common and robust method for studying muscle  
protein synthesis. Muscle breakdown usually inferred via 
tracer dilution

Invasive as muscle biopsy required

3-Methylhistidine (3MH) Muscle breakdown inferred from 3MH, a breakdown product 
of myofibrillar proteins (myosin and actin)

3MH may not be specific to skeletal muscle

Animal-free diet required throughout study

Nitrogen balance Measures the difference between nitrogen (protein) intake 
and excretion

Difficult to collect accurate samples of  
nitrogen excretion

Unable to distinguish between breakdown and 
synthesis rates

Whole body protein isotope 
turnover

Measures whole body isotope incorporation and excretion. 
More accurate than nitrogen balance, non-invasive as  
muscle biopsy not required

Whole body protein turnover may not reflect 
muscle protein turnover

Molecular signaling proteins Signaling proteins involved with muscle breakdown or  
synthesis, including mTOR, MuRF1, MAFbx

Concentrations may not necessarily reflect 
rates of muscle protein synthesis or  
breakdown

No single protein serves as a good marker for 
protein turnover

mTOR, mammalian target of rapamycin; MuRF1, muscle ring finger 1; MAFbx, atrogin-1/F-box component.
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act by stimulating IGF-1 mRNA expression, but also 
independently by increasing myotube size via cell fusion 
(96,99). The complete anabolic pathway of GH is unclear 
and still being studied (100). 

GH and IGF-1 are also important for puberty, both in the 
onset of as well as growth during puberty (101,102). Higher 
IGF-1 concentrations were observed in pubertal children 

which corresponded with leucine retention, and may explain 
the lower proteolysis seen in pubertal children (42,43). GH 
and IGF-1 promotes protein synthesis while inhibiting fat 
deposition (101), promotes cartilage and bone formation for 
linear growth (101), and interacts with sex steroid hormones 
to amplify their action during puberty (103). In addition, 
sex steroid hormones are also an independent determinant 

Table 2 Skeletal muscle protein synthesis and breakdown in response to various factors

Child Adult

MPS MPB MPS MPB

Anabolic drivers

GH/IGF1 (41,45,46) ↑a ↓ a ↑a /↔ a ↓ a

Testosterone (47,48) ↑a ↔ a ↑ ↔

Insulin (49-54) ↑a ↓a ↑a /↔ ↓ b

Leucine (amino acids) (40,51,55-57) ↑↑a ↔ a ↑ b /↔ b ↓ a /↔a

Resistance exercise (58-60) ? ? ↑ /↔ ↑ /↔

Aerobic exercise (41,61) ↑a ? ↑ / ↔ a ↑a

Low dose glucocorticoid (62,63) ↔ ↓ ↔ a ↓a

Catabolic drivers

Starvationc (64-66) ↓↓a ↑a ↓ a ↑a / ↔a 

Marginal malnutritiond (39) ↓a ↓a ↔a ↔a

Immobility (67-69) ↓a ↑a ↓ ↑a / ↔

Burne (70-74) ↑↑ ↑↑ ↑ ↑↑

Amino acids/protein (73-75) ↔ ↔ ? ?

Exercise (76) ? ? ? ?

IGF1/rGH (77,78) ↑ ↔ ↑ ?

Oxandrolone/testosterone (79,80) ↑ ↔ ↔ ↓

Beta blocking agents (81) ↑ ↔ ? ?

Sepsise (82-84) ↓a ↑a ↓a ↑a

Leucine/amino acids (82,85,86) ↑a ? ↔a ↔a

Insulin/IGF1 (49,52,85) ↑a ? ↑a ↓ a

Acidosis (87-89) ↓a ↑a ↓ ↑

High dose glucocorticoid (47,90) ↓a ↑a ↓ a ↑ a

Critical illness (6) ? ? ↓ ↑

↑, Increased; ↓, decreased; ↔, no change; ?, unclear or no evidence; GH, growth hormone; IGF1, insulin-like growth factor 1; rGH,  
recombinant growth hormone; MPS, muscle protein synthesis; MPB, muscle protein breakdown. Studies are human studies except as 
specified: a, animal studies; b, animal and human studies; c, Starvation is defined as complete food deprivation; d, marginal malnutrition 
is defined as an intake that may be sufficient for maintenance, but insufficient for growth; e, Sub-points demonstrate effects that are in  
addition to that observed in the major factor. 
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of muscle mass—male pubertal rats given testosterone 
have greater muscle growth; hypogonadal adolescent boys 
experience an increased muscle mass after testosterone 
administration (101,104). Testosterone appears to increase 
satellite cell numbers and muscle fiber size (105). In females, 
the opposite is seen as estrogen and progesterone appear 
to inhibit MPS in pubertal ovariectomized rats (106). 
Increased MPS may instead be due to the indirect action of 
estrogen stimulating GH production (44,107). Higher GH, 
IGF-1 and sex steroid hormones in males released during 
puberty are likely responsible for greater muscle deposition 
compared to females (102). 

Adults may be less responsive to growth hormones 
and factors than in children. Provision of GH does not 
consistently activate MPS, particularly in the elderly 
(108,109). Although GH administration was able to increase 
MPS in young men, GH was unable to increase IGF-1, 
MPS rates, or muscle fiber size in elderly men (108,109).

Nutrition

Nutrition is crucial in maintaining muscle mass, demonstrated 
by animal feeding and starvation models (65,82). Feeding 
increases amino acid levels, thus stimulating MPS (49,110). 
This stimulatory effect appears to be primarily achieved by 
the branched-chain amino acid (BCAA) leucine, but not 
valine, isoleucine or non-BCAAs (56,111). However, leucine 
action is still dependent on total amino acid availability, 
as leucine supplementation alone could not stimulate 
MPS in starved piglets unless amino acids were infused  
concurrently (112). 

Feeding also activates MPS and inhibits MPB via insulin 
release, which is best achieved with pulse feeding instead of 
a constant provision of nutrients, as shown by the inability 
for continuous feeding to stimulate insulin and amino acid 
increases in neonatal piglets (50,51). However, a recent 
trial in critically ill adults found that bolus feeding was not 
more protective against muscle wasting than continuous 
feeding (113). Conversely, insulin resistance inhibits MPS 
and lean body mass accretion as shown by dual-energy X-ray 
absorptiometry (DXA) (114). 

The response to nutrition also appears to be age-
dependent. Ten-day-old pigs exhibited higher post-prandial 
MPS rates than 28-day-old pigs (115), while some elderly 
rats and humans showed no evident change in MPS (40,57). 
These attenuations are hypothesized to be due to several 
factors, including decreased sensitivity to amino acids and 
lower insulin production with feeding (35,57), a drop in 

activation of insulin receptors in skeletal muscle (34), and 
decreased MPS signaling proteins with age (40). Similarly, 
starvation resulted in rapid inhibition of MPS and up-
regulation of MPB in newborn and young animals, while 
less drastic changes were observed in adult animals (64-66).  
With marginal malnutrition, decreases in both MPB 
and MPS were evident in young, but not adult rats (39). 
Fortunately, these decreases in MPS were reversed after 
nutritional rehabilitation (39). Collectively, these emphasize 
the dependence of muscle homeostasis and growth on 
nutrition in the young. 

Immobility and exercise

Immobility in adults results in downregulation of MPS 
without change in MPB (68,69), while in young rats both 
downregulation of MPS and upregulation of MPB occur (67). 
Unloading of hind limb in infant rats for 3 months resulted 
in a smaller soleus leg muscle fiber size than controls despite 
reloading, implying long-term deficits in muscle mass (116). 

Resistance exercise improves MPS and muscle protein 
balance in adults (59,60). However, muscle hypertrophy 
is thought to occur only in the presence of androgens, 
which occurs in early and late adolescence (117). In pre-
pubertal children, muscle strength improvements may 
result from neurological adaptations instead of muscle size 
changes. Pre-pubescent boys who underwent resistance 
training for 5 months experienced increases in strength 
independent of changes in muscle cross sectional area (118). 
Increases in upper-arm and mid-thigh strength were more 
closely correlated with improved motor skill coordination 
and motor unit activation (118). In contrast, rat models 
demonstrate that aerobic exercise appears to have a greater 
anabolic effect in the young (41). 

Nutrition is also important in exercise associated protein 
homeostasis, as essential amino acids attenuated MPB and 
enhanced MPS after resistance exercise in adults (58). In 
children, whole body [15N]glycine tracer protein turnover 
studies suggest similar effects as intake of protein or 
protein-containing food has been shown to improve protein 
balance in children after exercise (119). 

Alterations of muscle protein homeostasis in 
disease states

Burns

In disease states, muscle turnover in children is altered 
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due to a variety of factors. Muscle protein turnover studies 
utilizing isotope incorporation with muscle biopsy in 
disease states are rare and mostly limited to children with 
burns. Several isotope tracer turnover studies using [ring-
13C6]phenylalanine accompanied by vastus lateralis biopsy 
have been conducted in children with severe burn injuries 
(70,71,79). Burn injury results in a state of inflammation 
characterized by high inflammatory cytokine concentrations 
such as TNF-α and IL-6 (120), which can trigger MPB 
pathways via NFKB activation (121). Phenylalanine tracer 
studies demonstrate increased muscle breakdown in the 
leg immediately post burn (1–2 weeks), which continues 
to increase and peak at 4 weeks post burn before falling to 
approach normal levels after 2 years (70,71). MPS follows a 
similar pattern (70,71), and the net muscle protein balance 
depends on several factors including burn size and degree, 
sepsis, time to excisional treatment, age and gender (70,122). 
Muscle wasting and loss of lean body mass can continue 
up to even after 9 months post injury (123). Similar 
hypermetabolic responses have been reported in adults with 
burn injury (124).

Therapies to reduce catabolism in burned children 
include nutrition, exercise therapy, anabolic agents and beta 
blocking agents (76,79,81,125). Although supplemental 
whey protein improved weight gain and plasma amino acid 
levels in children 1.5 months after major burn (125), [13C6]
phenylalanine incorporation studies show that immediately 
post-burn, high dietary protein in children increased 
protein synthesis of the skin but not muscle, suggesting 
a prioritization of wound healing over preservation of 
muscle (74). Similarly, provision of intravenous amino acids 
were unable to significantly increase MPS across the leg 6 
months post-burn (73,75), although this was possibly due to 
small sample sizes. 

A combination of resistance and aerobic exercise for 
12-weeks significantly improved muscle strength and lean 
body mass gain in burned children as shown by DXA (76). 
However, whether this was due to an attenuation of MPB 
or increased MPS is unclear. MPS rates by [ring-2H5]
phenylalanine isotope incorporation were not significantly 
higher than in controls, although this could be because 
MPS was not measured immediately but at ≥48 hours post-
exercise (76). 

Exogenous anabolic agents appear to ameliorate 
catabolism in children with burns by modulating MPS. 
Short-term provision of IGF1 and beta-blockers following 
major burns were able to stimulate MPS (77,81), while 
recombinant human GH increased lean body mass 

(126,127). Oxandrolone administered soon after burn injury 
also increased MPS and net muscle protein balance (79), the 
anabolic effect being greater when combined with aerobic 
and resistance exercise (123). Provision of oxandrolone for a 
year post-burn continued to aid lean body mass accrual for 
up to 5 years as shown on DXA scans, although this only 
occurred in children above 7 years, possibly as they were 
less anabolic than younger children (123,128,129). 

Sepsis, glucocorticoids and acidosis

Dysregulations in the GH/IGF-1 axis have been observed 
in critically ill patients. In a cohort of children with sepsis 
or trauma, levels of IGF-1 were lower and levels of GH 
were higher than those in healthy children (130). The 
increased GH was thought to be a response to the increase 
in inflammatory cytokines produced during critical illness, 
as well as a lack of feedback inhibition from the depressed 
IGF-1 levels, creating a state of GH resistance. In another 
cohort of critically ill children with sepsis, study authors 
found that GH concentrations were higher and IGF-1 
concentrations were lower in non-survivors compared to 
survivors, suggesting that this dysregulation was predictive 
of mortality (131). However, it is unclear how this 
dysregulation translates to protein turnover in critically ill 
children.

Age-different responses have also been observed in 
sepsis-induced animal models (83). Sepsis has been shown 
to decrease MPS due to reduced mRNA translation of 
anabolic signaling (132), while MPB remains high through 
upregulation of ubiquitin ligases MuRF1 and MAFbx (121). 
The increase in MuRF1 and MAFbx during sepsis is greater 
in older than young animals (83). In response to feeding, 
MPS is increased in septic neonatal (131) but not adult 
animals (83), further suggesting that the young may be 
more sensitive to stimulants of MPS than adults.

The role of glucocorticoids in pediatric muscle protein 
turnover appears equivocal, and possibly dependent on dose 
and the condition in which muscle wasting occurs (133). 
Glucocorticoids are thought to independently increase 
MPB by upregulating expression of FOXO, MuRF1 and 
MAFbx (134), as well as reducing MPS through inhibiting 
amino acid and IGF-1 production, and suppressing mTOR 
signaling (135,136). Glucocorticoids also appear to be 
necessary for sepsis and tumor induced MPB, as Murf-1 
and MAFbx mRNA levels are not significantly increased 
in young animal models where glucocorticoid receptors 
were blocked or knocked-out (121,137). High dose steroids 
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upregulated MPB and downregulated MPS in young  
rats (90), and have been associated with increased protein 
breakdown and decreased synthesis in children with Crohn’s 
disease (138). High dose steroid use has also been associated 
with myopathy in pediatric asthma (139). However, low 
dose glucocorticoids prevented muscle atrophy through 
suppression of Akt/FOXO inhibition and blunting of 
lysosomal protein breakdown in adult rats (63). Low-dose 
glucocorticoids have also been shown to decrease MPB 
(without change in MPS), with accompanying increases in 
muscle mass and strength in boys with Duchenne muscular 
dystrophy (62).

The presence of acidosis has also been shown to affect 
protein homeostasis in children with chronic renal failure (140). 
Whole body protein turnover studies in children with chronic 
kidney disease (CKD) demonstrate breakdown increased with 
the severity of acidosis, while whole body protein synthesis was 
comparable (140). Although whole body protein turnover is 
not necessarily reflective of muscle protein turnover, metabolic 
acidosis has shown to increase MPB in adults with CKD (87). 
Muscle mass visualized by peripheral quantitative computed 
tomography and DEXA have also been found to be reduced 
in CKD children (5–21 years) compared to healthy children, 
with muscle deficits that correlated with the severity of CKD 
(141,142). 

Further research needed for clinical translation

Critically i l l  children, l ike adults,  are exposed to 
many risk factors for muscle wasting [e.g., sepsis (12),  
hyperglycemia (143), malnutrition (144) and high dose, 
prolonged corticosteroid use (145)]. Factors upregulating 
MPB, such as starvation, immobility and burns, appear to 
impact the young more than adults. The young are also more 
dependent on growth factors for muscle maintenance and 
growth than adults, suggesting that children may be more 
susceptible to muscle wasting than adults in the presence of 
critical illness-related starvation and immobility, especially 
during periods of rapid growth (i.e., infancy and puberty). 
Yet, children have proportionally fewer type 2 muscle  
fibers (146), which may be preferentially targeted in 
ICU muscle wasting (9), possibly resulting in less muscle 
wasting. The young also appear to be more responsive to 
anabolic agents and resilient to catabolism during sepsis 
and burns (34,72). Yet, whole body turnover studies have 
not demonstrated consistent evidence of improved protein 
balance with increased protein provision in critically ill 
children, possibly affected by other factors regulating 

protein turnover such as degree of inflammation (147,148). 
Unfortunately, without actual studies on muscle protein 
turnover, it is difficult to conclude the effect critical illness 
has on muscle in children. 

In addition, of greater clinical relevance would be 
the effect of muscle wasting on health and outcomes of 
pediatric critical care survivors, and whether muscle wasting 
results in persistent impairment in function and strength as 
observed in adults (5). Muscle wasting due to major burns 
can result in loss of strength, power and aerobic capacity in 
children (76). Prolonged muscle loss can also reduce bone 
mineral content and limit growth potential through lowered 
mechanical load that the bone is exposed to (149), as 
observed in children with CKD (142). Pediatric intensivists 
are increasingly aware of morbidities following critical 
illness and are beginning to study the effect of critical 
illness on long-term outcomes (150). Physical limitations 
have been reported in survivors of critical illness (150), and 
body composition at PICU admission has been associated 
with functional impairment at discharge (151), but whether 
functional impairment is associated with muscle wasting in 
critically ill children has yet to be determined. 

The limited evidence of muscle wasting in critically ill 
children is largely due to the methods currently available 
in studying muscle protein turnover. Less invasive and 
complex methods of identifying muscle wasting would 
be beneficial. Generalized weight loss and reduced mid 
upper arm circumference have been commonly reported in 
critically ill children. Losses in weight and mid-upper arm 
circumference correlated with lower energy and protein 
intakes, and were more evident in older than younger 
children, similar to children with burns (12,72,144). 
However, weight and arm circumference losses may be 
influenced by edema or fat loss (144), and methods to 
assess skeletal muscle would help better inform muscle-
specific changes. Some methods used in adult ICUs include 
muscle mass visualization by ultrasonography, bioelectrical 
impedance analysis and tests of strength and physical 
function (hand grip strength, six-minute walk test) (5-7). A 
longitudinal study demonstrated loss in ultrasound-derived 
diaphragm and limb muscles thickness in critically ill 
children, which was greater in older children compared to 
younger children (152). Ultrasound, bioelectrical impedance 
analysis and strength and function testing are relatively 
simple and inexpensive tests that have just begun to be 
used in critically ill children (152-154), but demonstration 
of their validity in this population is needed. Research on 
muscle protein turnover has traditionally been restricted 
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by the need for muscle tissue biopsies, which are invasive 
and thus difficult to obtain, especially in children. However, 
recent work in cancer cachexia patients seem to suggest 
the feasibility of using urine and serum for metabolomics 
research to understand the mechanistic pathways of muscle 
wasting (155,156), which could potentially be translated to 
critical illness. Future studies using these methodologies and 
associating them with functional outcomes would further 
characterize the clinical significance of muscle changes in 
these children.

Limitations

Extrapolation of muscle protein homeostasis from 
animals and other pediatric populations to critically 
ill children may be too simplistic given differences in  
metabolism (157). Detailed consideration of factors such as 
dose and time-course of interventions across populations 
is needed. Furthermore, given the heterogeneity of 
critical illness, metabolic responses may vary depending 
on primary diagnosis, co-morbidities and illness severity. 
Generalizations from a specific patient group (e.g., burns) 
to the entire pediatric ICU cohort may be erroneous, 
and speculations of muscle wasting patterns may have 
to be tailored according to the risk factors observed in 
individual patients. Finally, we did not delve into the role of 
microRNAs or satellite cells as these were beyond the scope 
of this review, although their role in muscle homeostasis has 
been studied increasingly in recent years (14).

Conclusions

Factors influencing muscle protein turnover appear to 
be similar in adults and children, but baseline protein 
homeostasis and response to catabolic and anabolic 
stimuli may be different. Compared to adults, children 
are equally or more susceptible to muscle catabolism with 
starvation, burn injury and immobility. However, children, 
particularly young ones, appear to be more responsive to 
anabolic factors. Critically ill children experience muscle 
wasting, which may be reversible with the right anabolic 
interventions. Closer study of muscle protein turnover at 
various ages, time points of critical illness and response to 
therapies are needed in critically ill children. 
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