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Acute respiratory distress syndrome (ARDS) is characterized 
by acute onset of diffuse bilateral pulmonary edema and 
severe hypoxemia not fully explained by cardiac dysfunction 
(1-3). Since its initial description in 1967 (3), ARDS has been 
considered an immune-mediated phenomenon. ARDS is 
triggered most commonly by pulmonary and non-pulmonary 
infections, with a minority of cases caused by aspiration, 
trauma, pancreatitis, and drug reactions (4). Linking these 
diverse infectious and non-infectious etiologies to a final 
common manifestation of ARDS has been the subject of 
intensive investigation over the past 50 years. 

ARDS affects 45,000 children in the United States 
annually (5), representing 10% of invasively ventilated 
children (6), with an associated 20% mortality rate (7-10). 
Until recently, ARDS had been defined exclusively by adult 
investigators predominantly for adult practitioners. To 
inform study design in children with ARDS, the Pediatric 
Acute Lung Injury Consensus Conference (PALICC) 
developed a specific definition for pediatric ARDS (PARDS) 
in 2015 (11). Notable differences in the PALICC definition 
include use of oxygenation index (rather than PaO2/FIO2) for 
severity stratification, explicit use of alternative stratification 
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using SpO2, and inclusion of unilateral or bilateral infiltrates 
on chest radiograph. Despite several trials, there are no 
targeted therapies for adult ARDS (12-23) or for PARDS 
(24-27) beyond supportive care (28,29). Although PARDS 
management is largely extrapolated from adults, PARDS 
possesses distinct epidemiology (11,30) and outcomes (31), 
making application of adult data challenging (30,32-34). 
While the etiologies of PARDS are similar to adult ARDS, 
consisting predominantly of pneumonia and non-pulmonary 
sepsis (35), there has been substantially less investigation into 
the immune dysregulation in PARDS, and whether or how it 
differs from adult ARDS. 

Innate immunity and neutrophilic lung infiltration are 
the focus of multiple pre-clinical and translational studies 
of ARDS, as they are thought to represent very upstream 
inciting events (4,36). Microbial particles and endogenous 
damage-associated molecular patterns (DAMPS), which 
are markers of host cellular injury, activate pulmonary 
epithelium and macrophages and initiate the inflammatory 
process (37). Pulmonary macrophage activation promotes 
neutrophil recruitment to the lung which leads to a host 
of downstream inflammatory cascades. This inflammatory 
milieu results in disruption of the alveolar-capillary 
barrier, causing accumulation of proteinaceous pulmonary 
edema, with resultant hypoxemia and reduced pulmonary 
compliance. In the following review, we will address several 
aspects of the immune dysregulation in adult ARDS 
and in PARDS (Table 1, Figure 1), including pre-clinical, 
translational, and clinical evidence to date, with a view 
towards future therapeutics. We present the following article 

in accordance with the Narrative Review reporting checklist 
(available at http://dx.doi.org/10.21037/tp-20-341).

Methods

We performed a semi-systematic review of the literature 
using PubMed from 1967 to October 2020, with a 
preference for articles published after 2000. Our aim 
was consistent with that of a narrative, not a systematic, 
review. Search terms included every iteration of ARDS and 
PARDS, including “acute respiratory failure,” paired with 
the terms “immune,” “innate immun#,” “adaptive immun#,” 
“damage-associated molecular patterns,” “neutrophils,” “B 
cells,” and “T cells.” We were interested in summarizing 
data about the potential druggable targets in the immune 
dysregulation of ARDS and PARDS, and so prioritized 
articles which specifically discussed immunomodulation.

Damage-associated molecular patterns

DAMPs have been invoked as major upstream mediators 
of lung injury. Released after cellular injury in response 
to an insult, DAMPs are endogenous moieties which 
are recognized by pattern recognition receptors (PRRs) 
as damaging. DAMPs include high mobility group box 
1 (HMGB1), histones, and cell-free DNA (cfDNA)—
primarily mitochondrial DNA (mtDNA) (38). PRRs, 
including Toll-like receptors (TLRs), nucleotide-binding 
oligomerization domain-like receptors (NLRs), and the 
receptor for advanced glycation end-products (RAGE), have 

Table 1 Specific elements of immune dysregulation and proposed therapies

Category Specific components Proposed therapies

DAMPs Histones Heparin

C1 esterase inhibitor

cfDNA/mtDNA RBC scavenging of mtDNA

Innate immunity NLRP3 inflammasome Caspase-1 inhibition

NETosis PAD4 inhibition

PF4-mediated NET stabilization

Pleiotropic anti-inflammatories Corticosteroids

IFN-β

Adaptive immunity Th17/Treg balance T cell re-programming

cffDNA, cell free DNA; DAMPs, damage-associated molecular patterns; IFN, interferon; mtDNA, mitochondrial DNA; PAD4, peptidylarginine 
deiminase 4; PF4, platelet factor 4; RBC, red blood cell.
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evolved alongside pathogens to recognize infectious entities 
as foreign and mount appropriate responses against them. 
However, endogenous DAMPs share sufficient structure 
with some infectious particles that they can activate these 
same inflammatory pathways via PRR signaling. Several 
of these molecules are released into the circulation after 
regulated or unregulated cell death after an inciting insult, 
exposing normally cytosolic and nuclear proteins to PRRs 
in the immune system and endothelial surface.

Nuclear proteins such as HMGB1 and histones are 
pathogenic in ARDS. HMGB1 can propagate inflammation 
via activating RAGE (39,40), while histones can amplify 
inflammation via both TLR-dependent and independent 
mechanisms (41). Histones are implicated in sepsis (42-45), 
aspiration (46), and trauma-related ARDS (47) in adults. 
Exogenous histone administration can also induce formation 
of bactericidal neutrophil extracellular traps (NETs) (45), 
creating a feedback loop wherein NETosis and tissue death 
during the initial response to an insult release additional 
histones into the circulation, which in turn induce further 
NET formation. A single study in children showed that 
nucleosomes, the histone/DNA complexes resulting from 
nuclear chromatin degradation released after cell death, 
were higher in PARDS non-survivors and correlated with 
organ failures (48). 

The precise mechanisms of histone-induced cytotoxicity 

are the focus of current investigations. Signaling through 
TLR2 and TLR4 have been implicated (42,49,50); however, 
direct binding of histones to the cell surface membrane 
causing calcium influx and subsequent cell lysis has also 
been described (47). Given the upstream position of 
histones and other DAMPs in the propagation of lung 
injury, they are attractive therapeutic targets. Treatment 
with low-dose, sub-anticoagulant doses of heparin 
attenuates the cytotoxicity of histones in pre-clinical models 
of sepsis. The highly negatively charged heparin mitigated 
cytotoxicity and improved survival by complexing and 
inactivating positively charged histones (51). In a separate 
study, the negatively charged carbohydrate moieties on 
C1 esterase inhibitor were able to neutralize circulating 
histones, thereby attenuating histone-induced cytotoxicity 
and lung injury (52). The availability and existing medical 
indications for heparin and C1 esterase inhibitor make these 
attractive options for future studies aimed at mitigating or 
preventing ARDS. 

Histones have also been implicated as  causing 
cytotoxicity via TLR9 (53),  which is a sensor for 
hypomethylated CpG DNA, a distinct type of DAMP. It is 
possible that histones increase availability and presentation 
of cfDNA, and so indirectly effect cytotoxicity via TLR9. 
However, it should be noted that nuclear DNA, the 
type most likely associated with histones, are not clearly 

Histones

Neutrophils

NETs NLRP3

Pathogens

Th17 Treg

cfDNA

Figure 1 Different elements of the immune system interact to contribute to acute lung injury. Damage-associated molecular patterns such 
as cell-free DNA (cfDNA), including mitochondrial DNA, and histones, are cytotoxic. Innate immune cells, such as neutrophils, activate 
inflammatory pathways via the NLRP3 inflammasome and via generation of neutrophil extracellular traps (NETs). The adaptive immune 
system also contributes to ongoing inflammation via regulation of the balance between Th17 and regulatory T cells.
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DAMPs. While plasma nuclear DNA levels are associated 
with degree of shock, organ failure, and inflammatory 
cytokine levels (54), it is not clear that they are themselves 
pathogenic. By contrast, methylation of the CpG regions 
in mtDNA differs from nuclear DNA, rendering mtDNA 
more similar to bacterial DNA and thus capable of 
activating TLR9 as a DAMP. In ARDS, mtDNA levels are 
associated with increased endothelial permeability (55) and 
lung injury (56). Pre-clinical studies using ex vivo rat lungs 
demonstrate that targeting mtDNA repair can attenuate 
pulmonary endothelial permeability (55). Circulating 
mtDNA has also been associated with mortality in critically 
ill adults (57,58). Recently, it has been demonstrated in a 
landmark translational study using mice and humans that 
under normal homeostatic conditions, red blood cells 
express TLR9 and clear endogenous mtDNA via direct 
binding (56). During periods of acute inflammation, this 
clearance is affected such that levels of circulating mtDNA 
rises, contributing to lung injury. Loss of TLR9 on red 
blood cells via knockout decreased mtDNA scavenging 
and increased lung injury. Harnessing known pathways of 
mtDNA repair or exploiting existing scavenging pathways 
may be potential therapeutic avenues for mitigating  
ARDS after acute inflammatory insults, such as sepsis and 
trauma.

Innate immunity

Neutrophils and the innate immune system have been 
implicated in ARDS since its initial description. In two 
separate trials, elevated plasma interleukin (IL)-6, IL-8, 
and tumor necrosis factor (TNF)-α, and elevated alveolar 
IL-6, TNF-α, and IL-1β, were associated with higher 
tidal volumes and pressure limits (59,60). Furthermore, 
re-analyses of multiple ARDSNetwork trials have 
demonstrated the likely presence of two distinct subtypes 
defined, in part, by inflammatory biomarkers, including 
IL-6, IL-8, and TNF-receptor 1 (61,62). These studies 
confirm the relevance of the innate immune system and 
its cytokines in the pathogenesis of ARDS. Whether these 
insights translate into therapeutic benefits remains to 
be seen. However, it is notable that re-analyses of trials 
show a differential response of positive end-expiratory 
pressure, fluid, and simvastatin dependent on inflammatory 
subtype (61-63), suggesting the possibility of predictive 
enrichment based on innate immune biomarkers in ARDS. 
The relevance of this paradigm in PARDS has yet to be 
demonstrated. 

Inflammasome 

Inflammasomes are intracellular protein complexes activated 
during infection or stress, including by DAMPs. The 
best studied is the NLRP3 inflammasome, which activate 
caspase-1, which in turn activates IL-1β and IL-18 (64). 
After demonstrating elevated IL-1β and IL-18 in ARDS, 
investigators assessed the relevance of the inflammasome in 
a mouse model of ventilator-induced lung injury (VILI) (65). 
VILI induced elevated inflammasome cytokines, with the 
alveolar macrophage as the likely origin. Genetic deletion 
of either IL-18 or caspase-1 conferred resistance to VILI, 
as did pharmacologic inhibition of IL-18. The relevance 
of the inflammasome was confirmed in a separate model of 
lipopolysaccharide (LPS) + VILI, in which genetic deletion 
of caspase-1 and pharmacologic inhibition of IL-1β protected 
mice from hypoxemia (66). Deletion of caspase-1 also 
protected mice subject to intratracheal LPS (67). Finally, 
pharmacologic IL-1β inhibition has been demonstrated to 
protect rats from VILI (68).

Importantly, all of the models described above implying 
benefit to neutralization of the inflammasome or its 
cytokines were sterile, and did not involve live bacteria. In 
a mouse pneumonia model using Pseudomonas aeruginosa, 
inflammasome induction was associated with impaired 
bacterial clearance and higher mortality (69). Depletion of 
alveolar macrophages, inhibition of caspase-1, or genetic 
deletion of IL-1β or IL-18 improved bacterial clearance and 
mortality, suggesting a therapeutic role for inflammasome 
inhibition even in an injury model with live bacteria. 

A separate investigation investigating the role of 
Staphylococcus aureus alpha toxin provides some additional 
nuance to these findings (70). In this mouse pneumonia 
model, administration of either Staphylococcus or alpha 
toxin was sufficient to activate the inflammasome, and 
inflammasome activation prevented bacterial clearance. In 
this model, inhibition of either or both of the downstream 
cytokines IL-1β and IL-18 failed to improve bacterial 
clearance or mortality. However, direct inhibition of 
the inflammasome itself or inhibition of caspase-1 
improved bacterial clearance and mortality. This was 
due to re-direction of cellular mitochondria away from 
inflammasomes and towards phagosomes containing 
bacteria, an effect which was mediated by alpha toxin. 
In other words, Staphylococcus aureus alpha toxin induces 
inflammasome activation, drawing mitochondria towards 
the inflammasome and away from bacteria-containing 
phagosomes, thereby preventing bacterial clearance. In 



2693Translational Pediatrics, Vol 10, No 10 October 2021

© Translational Pediatrics. All rights reserved.   Transl Pediatr 2021;10(10):2689-2699 | http://dx.doi.org/10.21037/tp-20-341

this model, inflammasome inhibition, but not cytokine 
inhibition, improved bacterial clearance and outcomes. As 
pneumonia is the most common cause of ARDS, premature 
trials of IL-1β or IL-18 inhibition in human ARDS may be 
doomed to failure, due to an imprecise appreciation of the 
underlying pathophysiology, despite promising pre-clinical 
data (71). These studies also highlight the importance of 
testing therapies in multiple lung injury models, some of 
which need to include live bacteria, given the prevalence of 
infection as an inciting etiology in human ARDS. 

Neutrophil extracellular traps (NETs)

The neutrophil influx in response to alveolar epithelial and 
macrophage signaling is proportional to the degree of lung 
injury (72). NETs are a form of programmed neutrophil 
cell death regulated by peptidylarginine deiminase 4 
(PAD4) citrullination of histones (73-78). NETosis can be 
initiated by TLR4-dependent signaling on platelets (74), 
and the resulting extracellular lattices of chromatin and 
antimicrobial factors capture pathogens, but also can cause 
pulmonary injury and release additional DAMPs (79). As 
PAD4 is essential for NETosis, it has emerged as a potential 
therapeutic target. Preventing histone citrullination improved 
survival in a mouse abdominal sepsis model (77). However, a 
more nuanced view of NETs requires an acknowledgement of 
their beneficial antimicrobial properties. Studies investigating 
NET stability offer insight into balancing the beneficial and 
toxic effects of NETs in vivo (80). Platelet factor 4 (PF4), a 
platelet-associated chemokine, binds, compacts, and stabilizes 
NETs in the microvasculature, increasing their resistance to 
DNase I. PF4 increased NET-mediated bacterial capture, 
reduced the release of NET degradation products, and 
improved outcomes in murine sepsis (80). These effects were 
further augmented by a modified monoclonal antibody which 
further stabilized PF4-NET complexes, supporting a NET-
targeted approach to improving inflammatory lung injury.

T cells and adaptive immunity

Inflammatory cells other than neutrophils have also been 
implicated in ARDS. Most recently, the involvement of 
CD4+ T-cells have been investigated (81-84). Several Th 
subsets within the T cell immune system are now well 
defined, including Th1, Th2, Th17, and regulatory T 
cells (Tregs). Tregs are a subtype of T cells required for 
maintaining immune homeostasis and maintaining self-
tolerance. A pivotal study showed that CD4+ CD25+ 

FOXp3+ Tregs were able to resolve experimental lung 
injury in a murine model (82), consistent with an anti-
inflammatory role. Tregs have also been detected in the 
alveolar fluid of adults with ARDS (82,84), suggesting 
a potentially modifiable cell-mediated immunotherapy 
option for ARDS. However, limiting this as an option is a 
lack of clarity regarding the precise mechanism of Tregs 
in ameliorating lung injury, as well as a lack of existing 
therapies. 

Th17 cells have also been implicated in ARDS. αβTh17 
cells are helper T cells that secrete a distinct subset of 
cytokines, including IL-17, IL-21, and IL-22 (85). In 
pre-clinical studies, mice either genetically modified or 
pharmacologically inhibited IL-17 signaling were protected 
from experimental lung injury (86), suggesting an antigen-
specific adaptive immune dysregulation component to 
ARDS. IL-17 has been found elevated in the alveolar 
fluid (86,87) and plasma (87), and correlated with higher 
pulmonary neutrophilia and with severity of organ failures, 
suggesting plausibility as a therapeutic target. Under certain 
inflammatory conditions, Tregs can be reprogrammed 
into Th17 cells (88). In a single study assessing the ratio of 
peripheral Th17/Treg cells in ARDS, a higher ratio in favor 
of Th17 was associated with more organ dysfunction, worse 
oxygenation, and worse survival (83). Further investigations 
into shifting the balance towards Tregs may offer a potential 
therapeutic avenue for ARDS.

Immunomodulation

The ear l i e s t  a t tempts  a t  immunomodula t ion  in 
ARDS, including in the initial report in 1967 (3), were 
corticosteroids. While Ashbaugh et al. listed corticosteroids 
under “Therapeutic Trials of Doubtful value,” the anti-
inflammatory effects of corticosteroids have long held appeal 
for the inflammation presumed to drive ARDS. A trial of 
brief high-dose (120 mg/kg in one day) methylprednisolone 
did not demonstrate benefit in ARDS (89), but interest 
was rekindled when a small subsequent trial in persistent 
(for at least 7 days) ARDS demonstrated possible efficacy 
of a lower but prolonged dose of methylprednisolone 
(starting at 2 mg/kg/day with subsequent weaning) (90). 
A subsequent larger trial failed to replicate these findings, 
with suggestion of harm if methylprednisolone was initiated 
>14 days after ARDS onset (14). In both trials, duration 
of ventilation improved, suggesting a consistent signal for 
methylprednisolone improving lung function. However, 
the larger trial demonstrated higher rates of neuromuscular 



2694 Yehya. Immunologic therapies for PARDS

© Translational Pediatrics. All rights reserved.   Transl Pediatr 2021;10(10):2689-2699 | http://dx.doi.org/10.21037/tp-20-341

weakness and re-intubations with methylprednisolone, with 
ultimately no beneficial effect relative to placebo by 60 
days. Most recently, an open-label trial of dexamethasone 
in acute ARDS showed improvement in both mortality and 
ventilator duration (91). 

Overall, the untargeted anti-inflammatory effect 
of corticosteroids appears to consistently reduce lung 
inflammation and shorten duration of ventilation in ARDS, 
with inconsistent effects on mortality. Future investigations 
should validate these findings, and also clarify issues 
regarding corticosteroid type, timing, and duration. It is 
notable that corticosteroid trials have not always improved 
mortality despite generally improving lung injury. Pre-
clinical models of lung injury suggest a hyperinflammatory 
s t a te  which  shou ld  be  improved  by  p le io t rop ic 
immunosuppression by corticosteroids. However, only a 
minority of deaths in either adult ARDS (92) or PARDS (93) 
are actually caused by refractory lung injury; multisystem 
organ failure and neurologic dysfunction contribute to 
more deaths than hypoxemia. Thus, it is possible that 
corticosteroids may fail to consistently improve mortality 
in trials despite improving lung injury because of the 
disassociation of lung injury from the multiple causes of 
mortality in ARDS. Alternatively, it is possible that the off-
target side effects of corticosteroids, such as neuromuscular 
weakness and increased risk of secondary infections, 
counteract any beneficial effects on lung injury. Balancing 
risks and benefits of untargeted immunomodulators like 
corticosteroids requires a better mechanistic understanding 
of ARDS, an appreciation of the causal links between lung 
inflammation and outcomes, and appropriate trial design.

There are few studies of targeted immunomodulation in 
ARDS. Cluster of differentiation 73 (CD73) is expressed 
on endothelium, epithelial cells, and leukocytes. CD73 
is anti-inflammatory, prevents vascular leakage (94), and 
is upregulated by interferon-β (IFN-β) (95). A phase 1-2 
trial tested different doses of exogenous IFN-β, and then 
assessed the effect of the optimal dose on mortality (96). 
IFN-β was associated with a dramatic reduction in mortality 
in this pilot. A follow-up multicenter phase 3 trial did not 
demonstrate any efficacy for IFN-β (97). The authors noted 
the high (> 50% in both arms) prevalence of corticosteroid 
use in the trial, with worse outcomes in the IFN-β arm 
in subjects concurrently receiving corticosteroids. This is 
relevant, as corticosteroids inhibit interferon signaling (98), 
and thus may have prevented the anti-inflammatory and 
vascular stabilizing effects of IFN-β. Given the ubiquitous 
use of corticosteroids in both adult ARDS (99) and 

PARDS (100,101), this trial also demonstrates the multiple 
considerations involved in designing a trial of a targeted 
immunomodulator.

Future directions

The  deve lopment  o f  deep  immunophenotyp ing 
techniques, which allow multiple cell surface markers to be 
simultaneously detected more efficiently than by traditional 
flow cytometry. This type of technology fills an important 
gap in our current understanding between transcriptomics 
and circulating biomarkers. Better characterization of the 
specific immune cell populations in both the alveolar space 
and in the circulation will improve our understanding of 
the nuanced balance between pro- and anti-inflammatory 
signaling in health and in ARDS. Immune cells can also be 
used to identify sub-phenotypes of ARDS, similar to how 
plasma biomarkers have been proposed for reducing ARDS 
heterogeneity (62,63,102). Immune-derived sub-phenotypes 
may be a more informative strategy for predictive 
enrichment for future immunomodulating therapies in 
ARDS, as the link between presumed pathophysiology and 
proposed therapy is more direct. Better characterization 
of the immune dysregulation of ARDS is essential to 
disentangling the complexity of ARDS which has plagued 
our field and contributed to over 50 years of near-universal 
negative trials.
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