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Background: Necrotizing pneumonia (NP) is an infrequent but severe complication of pneumonia in 
children. In the early stages of NP, CT imaging shows lung consolidation, which cannot be detected in time. 
This study aimed to explore the ability of non-contrast-enhanced CT radiomics features to recognize NP in 
early stage.
Methods: This was a retrospective study, and 250 patients who presented with lung consolidation on 
initial CT images were included in this study. After a follow-up period of 1–3 weeks, 116 patients developed 
NP, whose CT or X-ray shows cavitation or liquefied necrosis. Manual segmentation of lesion sites in the 
initial non-contrast-enhanced CT scans was performed with RadCloud (Huiying Medical Technology Co., 
Ltd., China), and 1,409 radiomics features were extracted. We used Variance threshold (0.8), SelectKBest, 
and the least absolute shrinkage and selection operator (LASSO) methods for feature dimension reduction. 
Three machine learning algorithms, k-nearest neighbor (KNN), support vector machine (SVM), and logistic 
regression (LR) models, were established to recognize NP early. To assess the recognition performance, the 
area under the receiver operating characteristic curve (AUC), sensitivity, specificity, and other indicators 
were used in the validation cohort.
Results: Radiomics features helped to recognize NP in early stage in both the training and validation 
cohorts. The AUC (sensitivity, specificity) for the training and validation cohorts were 0.81 (0.73, 0.68) and 
0.71 (0.61, 0.65) for KNN, respectively; 0.81 (0.72, 0.70) and 0.77 (0.66, 0.65) for SVM, respectively; and 0.82 
(0.73, 0.73) and 0.76 (0.63, 0.70) for LR, respectively. Recall and F1-scores determined that LR performed 
better at diagnosing early NP, with the values of the above two indexes being 0.70 and 0.67, respectively.
Conclusions: Non-contrast-enhanced CT-based radiomics models may be helpful for recognizing NP in 
early stage.
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Introduction

Necrotizing pneumonia (NP) is a serious complication of 
community-acquired pneumonia and may cause necrosis 
and destruction of the lung parenchyma in children (1). 
While NP in children is a rare complication, its incidence 
is increasing (2). In the United States, 0.8–7% of children 
develop NP in tertiary centers (3). Although the condition is 
serious, a full recovery and good prognosis can be achieved 
if NP is detected and treated early. As the clinical features 
of NP are similar to those of simple pneumonia (SP) (2), 
routine tests do not provide an accurate diagnosis. Currently, 
chest computed tomography (CT) is the most sensitive 
method for the diagnosis of NP, and is characterized by 
destruction of lung parenchyma, loss of parenchymal 
enhancement, and multiple thin-walled cavities (1,3). In the 
early stage of lung necrosis, the density shown in plain scan 
images is similar to the real lung lesions, so it cannot be 
detected in time (4). If the consolidation area of the lung is 
loss of parenchymal enhancement after injection of iodine in 
contrast-enhanced CT, which can help for recognizing NP in 
early stage, but this increases the radiation dose required (1).  
If plain CT data can be used to recognize lung necrosis in 
early stage in children, this will allow for timely clinical 
decisions to be made regarding therapeutic options without 
increasing a child’s exposure to radiation. 

Radiomics is a field of medicine that utilizes characterization 
algorithms to allow analysis of many quantitative image 
features from medical images (5). Radiomics signatures have 
been proven to reflect tissue heterogeneity (6-9). Radiology 
has been widely used in the diagnosis of tumors and the 
prediction of tumor grades, metastasis, and prognosis (10-13). 
CT-based radiomics have been used for predicting the spread 
through air spaces in lung adenocarcinoma and response 
to immunotherapy (14,15). Machine-learning radiomics 
have been used for predicting early recurrence in perihilar 
cholangiocarcinoma after curative resection (16). The 
purpose of this study was to recognize pulmonary necrosis in 
early stage in children with pulmonary consolidation based 
on radiographic features observed on non-enhanced CT 
scans. We present the following article in accordance with 
the TRIPOD reporting checklist (available at http://dx.doi.
org/10.21037/tp-20-241).

Methods

Patients 

The study was conducted in accordance with the Declaration 

of Helsinki (as revised in 2013). The study was approved by 
the Ethics Committee of the Children’s Hospital Affiliated 
with Chongqing Medical University (NO.: 20190218) and 
individual consent for this retrospective analysis was waived.

In total, 303 patients with histologically confirmed 
pneumonia consolidation between April 2009 and 
December 2019 were involved. 

Patients were deemed eligible for in this study if their 
initial CT scans showed consolidation range larger than 
1 pulmonary segment and if they were followed up over 
a 1–3-week period to monitor for necrosis with CT or 
X ray (Figure 1). The diagnosis of NP include the loss of 
normal parenchymal architecture, decreased parenchymal 
enhancement, air filled cavities (2). Patients who had 
incomplete CT scan data or poor-quality images were 
excluded from the study. Two hundred and fifty patients 
were finally enrolled in this study. There were 116 cases of 
NP and 134 cases of SP. The clinical and histopathological 
characteristics of the patients included are shown in Table 1.

CT acquisition 

The CT scan was performed using a 64-detector CT 
scanner (GE Lightspeed VCT 64, Philips Medical Systems, 
Amsterdam, the Netherlands) or a 128-detector CT scanner 
(Brilliance ICT, Philips Medical Systems). A tube voltage 
of 80–120 kV was applied with the tube current being 
automatically regulated. A collimation of 0.6 mm was used, 
and images with a slice thickness of 5 mm with a gap of 1 
mm were reconstructed using a standard reconstruction 
algorithm. Digital Imaging and Communications in 
Medicine (DICOME) images were downloaded from the 
picture archiving and communication system (PACS). Data 
were randomly divided into training and validation cohorts 
at a ratio of 3.3:6.7, and 74 random seeds were used.

Image pre-processing, segmentation, and extraction of 
radiomics features 

Radiomics was adopted to acquire knowledge from high-
dimensional data. Radiomics features of each patient were 
extracted from plain CT images using the Pyradiomics 
v.2.1.2 package. Preprocessing of the images before feature 
extraction by a radiologist. The normalization of the 
images was centered on the mean standard deviation. The 
radiomics workflow was presented in Figure 2. CT images 
were centrally managed in Radcloud software. A radiologist 
(with 9-year experience). The regions of interest (ROIs) 
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Figure 1 The flowchart of the inclusion of study subjects.

Table 1 The clinical and histopathological characteristics of the patients

Group Necrotizing pneumonia Simple pneumonia P value

Number 116 134

Age (mean ± SD) 1.47±0.50 1.46±0.50 0.83

Sex 0.86

M 61 72

F 55 62

SD, standard deviation.

for each slice, covering the whole lesion, were manually 
delineated by a radiologist (with 9-year experience in 
thoracic radiology), Which were supervised by a radiologist 
(with 23-year experience). A sample of the manual voxel of 
interest (VOI) drawing is presented in Figure 3.

Based on the delineated ROIs in CT images, 1,409 features  
were automatically extracted which could be divided 
into 4 categories: (I) first-order statistics, which mainly 
describe the distribution of voxel intensity in CT images; 
(II) shape-and size-based features; (III) texture features, 
which including gray-level dependence matrix (GLDM) 
features, gray-level run-length matrix (GLRLM) features, 
neighborhood gray difference matrix features, gray-level 
size zone matrix (GLSZM) features, and textural features 

that could quantify regional heterogeneity differences; 
(IV) higher-order statistics features, which were obtained 
by filter transformation of the original image. The filters 
used in this study include exponential, square, square root, 
logarithm, gradient, Ibp-2D, and wavelet. 

Feature selection

As described above, thousands of image features were 
obtained. However, the inclusion of too many features 
would have affected the recognition performance of the 
model, as the complexity of the model would be increased 
and multicollinearity would occur. Therefore, it was 
necessary to select the best feature set for the subsequent 

303 patients were collected from  April 2009 and December 2019

250 patients were enrolled in our study

Exclusion criteria[53]

(I) incomplete CT data

(II) poor image quality

(III) no follow-up data

Include criteria[303]

(I) CT showed lung 

consolidation 

(II) the lesion is larger than 

one lung segment 

(III) follow up for 1-3 weeks 

Necrotizing Pneumonia: 116
Male: Female=61:55

Simple Pneumonia: 134
Male: Female=72:62
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Figure 3 A sample of manually segmenting and contouring ROIs. (A) An original image showing lung consolidation. (B) The region of 
interest (ROI) of a manual sketch in the lung consolidation image.

data analysis process. In our study, using the variance 
threshold, SelectKBest, and the least absolute shrinkage 
and selection operator (LASSO) methods were used to 
reduce redundant features. The variance threshold method 
removed the feature of variances of less than 0.8, while 
SelectKBest retained the features with P values of less than 
0.05 in the univariate test. Finally, features with non-zero 
coefficients are selected using Lasso, which used an L1 
regularizer as the cost function, 10 cross-validations, and a 
maximum of 1,000 iterations. Finally, the 15 indicators most 
relevant to NP were selected as shown in Table 2.

Statistical analysis

Continuous variables (such as age) were compared by t-test, 
while qualitative variables (such as gender) were analyzed 
by Chi-square test. A P value less than 0.05 indicated 
statistical significance. In machine learning, the training 
cohort (67%) was used to develop the radiomics models 
[k-nearest neighbor (KNN), support vector machine (SVM), 
and logistic regression (LR)] to recognize NP in early 
stage and SP. The validation cohort (33%) was only used 
to evaluate the model’s generalization ability. To assess the 
diagnosis performance, the receiver operating characteristic 
(ROC) curve method, namely, the AUC, was used both 
in the training and validation cohorts. Five indicators 
including area under the ROC curve (AUC), recall, 
specificity, accuracy, and F1-score were used to evaluate 
the performance of the classifier in this study. Among 
them, with recall (R) = true positive / (true positive + false 

negative), precision (P) = true positive / (true positive + 
false positive), F1-score = P × R × 2 / (P + R). All statistical 
analyses were performed in software R (version 4.0.3).

Results

Clinical characteristics

The patient clinical characteristics are shown in Table 1. 
The NP and SP groups showed no significant differences in 
clinical characteristics (P>0.05).

Extraction and selection of features

For feature selection, 453 out of 1,409 features were initially 
selected using the variance threshold method. Subsequently 
297 features were identified with the SelectKBest method. 
Ultimately, 15 optimal features (Table 2) were selected with 
the LASSO algorithm (Figure 4).

Recognition performance of the 3 classification models

In the training cohort, the AUC (95% confidence interval 
[CI]), recall, and specificity of the KNN, SVM, and LR 
classifiers were 0.81 (0.74 to 0.88), 0.73, and 0.68; 0.81  
(0.74 to 0.88), 0.72, and 0.70; and 0.82 (0.75 to 0.89), 
0.73, and 0.73, respectively. Accordingly, in the validation 
cohort, the above evaluation indicators of these 3 classifiers 
were 0.71 (0.61 to 0.82), 0.61, and 0.65; 0.77 (0.67 to 
0.88), 0.66, and 0.65; and 0.76 (0.65 to 0.86), 0.63, and 
0.70, respectively. Combining the recall and F1-scores 

A B
ROI

Plainscan_1
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Table 2 Table of selected radiomics features, including feature name, feature category and filter

Radiomic feature Radiomic class Filter

DependenceEntropy GLDM Exponential

DependenceEntropy GLDM Gradient

DependenceEntropy GLDM lbp-2D

DependenceVariance GLDM Wavelet-HHL

LargeDependenceHighGrayLevelEmphasis GLDM Wavelet-LHL

Energy Firstorder Square

TotalEnergy Firstorder Square

ZoneEntropy GLSZM Wavelet-LLH

LongRunLowGrayLevelEmphasis GLRLM Wavelet-LLL

Energy Firstorder Wavelet-LLH

TotalEnergy Firstorder Wavelet-LLH

Range Firstorder Wavelet-LLL

SizeZoneNonUniformity GLSZM Wavelet-HHH

LargeDependenceHighGrayLevelEmphasis GLDM Wavelet-LHH

Skewness Firstorder Wavelet-LLH

GLDM, gray-level dependence matrix; GLSZM, gray-level size zone matrix; GLRLM, gray-level run-length matrix.

Figure 4 LASSO algorithm on feature selection. (A) The LASSO path describes the relationship between the regression coefficient of the 
independent variable and the LASSO penalty coefficient α. The best α value selected by model was 0.37. (B) The MSE path for LASSO 
training process. The dotted vertical line was plotted on the value selected in (A). (C) The optimal coefficients of 15 features selected by 
LASSO. LASSO parameters: cv [10] and max_iter [1000]. LASSO, least absolute shrinkage and selection operator.
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revealed that LR outperformed the other 2 classifiers in the 
recognition of NP in patients. Detailed evaluation indicator 
information is shown in Table 3, and the ROC curves of the 
3 classifiers are shown in Figure 5.

Discussion

NP has increasingly been identified as a complication 
of pediatric pneumonia (1). Staphylococcus aureus and 
Streptococcus pneumoniae are the most common biological 
factors contributing to the of emergence of NP (2). Due to 
the short-term severe morbidity of childhood NP, treatment 
usually involves pediatric intensive care unit hospitalization 
and a lengthy course of antibiotics. Severe cases may involve 
invasive surgery, including thoracic duct video-assisted 
thoracoscopic surgery or segmental pneumonectomy, or 
even the use of extracorporeal membrane oxygenation 
(ECMO) (1,17). Insufficient recognition of NP can lead to 
misdiagnosis and serious errors in clinical management (18).  
Thus, early identification is important for guiding 
appropriate clinical treatment and reducing the incidence 
and mortality rates associated with this disease (19). In the 
early stage of NP, diagnostic radiographs may show lung 
consolidation; However, chest CT scans are needed for a 
more definitive diagnosis (1). If the consolidation area of 
the lung shows decreased parenchymal enhancement after 
injection of iodine, the possibility of pulmonary necrosis is 
higher, but this results in exposure to an increased radiation 
dose (1,4). Enhanced CT is also associated with a higher 
radiation dose, and children are more sensitive to the risk 
of radiation-induced cancer than adults (20,21). Enhanced 
CT also increases the contrast agent load and increases the 
possibility of contrast agent-associated nephropathy (22). 
Therefore, if plain CT data can be used to recognize lung 

necrosis in early stage in children, this will allow for timely 
clinical decisions to be made regarding therapeutic options 
without increasing a child’s exposure to radiation. 

In this study, we described the recognition of NP in 
lung consolidation by using a CT-based radiomics machine 
learning model. Our preliminary results indicated that 
15 radiomics features were associated with NP. The 
AUC, recall, and f1-score values of the LR model in the 
validation cohort were 0.76, 0.70, and 0.67, respectively, 
outperforming both KNN and SVM. Therefore, this 
radiomics model has the potential to serve as a promising 
imaging biomarker for recognition NP, contributing to 
early detection, risk assessment, and treatment decisions. 

Radiomics is an emerging field of study that utilizes 
a series of qualitative and quantitative analyses of high-
throughput image features to obtain heterogeneity 
information from medical images. This method is different 
from the traditional method, which only interprets the 
image visually (23). Radiomics has been widely used in 
the diagnosis, prediction, and classification of cancers in 
many systems of the body (24-27). Several reports have 
described the use of radiomics for pulmonary infectious 
diseases. Some recent studies used this approach to 
distinguish pneumonia from paraquat poisoning, and to 
discriminate focal organizing pneumonia from peripheral 
lung adenocarcinoma (28,29). Kloth et al. noted differences 
in texture analysis parameters between active alveolitis 
and lung fibrosis in chest CT scans of patients with 
systemic sclerosis (30). Feng et al. reported that radiomics-
based predictive models reliably identified patients with 
glucocorticoid-sensitive connective tissue disease-associated 
interstitial lung disease (31). Another study showed that 
these models could be used to differentiate primary 
progressive pulmonary tuberculosis from community-

Table 3 The ROC results with KNN, SVM, and LR classifiers of the training and validation cohorts

Evaluation indicator
Training cohort Validation cohort

KNN SVM LR KNN SVM LR

AUC 0.81 0.81 0.82 0.71 0.77 0.76 

95% CI 0.74–0.88 0.74–0.88 0.75–0.89 0.61–0.82 0.67–0.88 0.65–0.86

Recall 0.73 0.72 0.73 0.61 0.66 0.63 

Specificity 0.68 0.70 0.73 0.65 0.65 0.70 

Precision 0.69 0.69 0.71 0.60 0.63 0.63 

F1-score 0.68 0.70 0.72 0.62 0.64 0.67 

ROC, receiver operating characteristics; KNN, k-nearest neighbour; SVM, support vector machine; LR, logistic regression.
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Figure 5 ROC curves of KNN (A-T), SVM (B-T), and LR (C-T) classifiers in the training cohort, with, A-V, B-V, and C-V being the 
respective ROC results in the validation cohort. ROC, receiver operating characteristics; KNN, k-nearest neighbor; SVM, support vector 
machine; LR, logistic regression.

acquired pneumonia in children (32).
This present study aimed to recognize the occurrence 

of NP by choosing an optimum machine learning model 
based on the Radiomics features of the lung consolidation. 
In comparison with the SVM and KNN classifiers, plain 
CT images based on the strongest LR results showed the 
best classification effect. The results demonstrated that LR 
and radiomics can be used as novel methods for recognition 
of lung necrosis in early stage and can guide the planning of 
further clinical treatments. This method avoids the use of 
excessive radiation and its related complications. Therefore, 
it can serve as a tool to assist clinicians in determining 
a suitable treatment method for patients and has wide 
applications in clinical practice.

Radiomics features can reveal subtle changes in lesions 
that are difficult to quantitatively recognize by the naked 
eye. The report used plain CT scan images to extract the 

radiomics features associated with lung necrosis and these 
features can be used to build artificial intelligence models. 
Fifteen radiomics features were extracted in this study, 
including first-order statistics, texture feature classes, and 
higher-order GLSZM, GLRLM, and other parameters. 
The texture features describe the texture characteristics 
of the image. Among the feature parameters selected in 
this study, ZoneEntropy measures the uncertainty or 
randomness in the area size and the gray-level distribution. 
The first-order characteristics GLDM and GLRLM were 
correlated with the intensity, gray-length, and distribution 
heterogeneity of the lesion voxel.

In summary, this study cited the performance of the 
VOIs on CT scan images of the lung to demonstrate the 
feasibility of combining artificial intelligence with CT 
scan radiomics to recognize lung necrosis in early stage. 
This method is a non-invasive, high-precision approach 
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0.306 (0.919, 0.439)

KNN SVM LR T: Train cohort V: Validation cohort

0.514 (0.622, 0.780)

0.710 (0.514, 0.951)

AUC: 0.810 (0.743−0.877) AUC: 0.812 (0.746−0.877) AUC: 0.822 (0.759−0.886)

AUC: 0.713 (0.599−0.827)
AUC: 0.772 (0.670−0.874) AUC: 0.757 (0.649−0.865)

A-T

A-V

B-T

B-V

C-T

C-V

Specificity

Specificity Specificity

Specificity Specificity

Specificity
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for diagnosing lung necrosis in early stage that allows for 
improved guidance in treatment planning, prevention of 
radiation-related complications, and avoidance of the high 
costs associated with enhanced scanning.

There are several limitations in the current study. First, 
due the retrospective design of the study, the quality of 
the images could not be strictly controlled. Second, the 
number of NP cases was limited, although the results are 
promising. Third, our research is single-centered and 
further verification from multi-center research is required. 
Therefore, we aim to conduct further studies to verify these 
results with larger, more comprehensive, and more uniform 
samples. Patients with NP can become seriously ill, and 
early recognition is vital for timely clinical management and 
the reduction of sequelae linked to this disease. 
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