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Postnatal age is strongly correlated with the early development of 
the gut microbiome in preterm infants
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Background: The gut microbiome plays a potential role in clinical events in preterm infants and may affect 
their lateral development. Understanding the initial colonization of microbes in the gut, their early dynamic 
changes, and the major factors correlated with these changes would provide crucial information about the 
developmental process in early life. 
Methods: The present study enrolled 151 preterm infants and examined the longitudinal dynamics of their 
fecal microbiome profiles during the period of hospitalization using 16S ribosomal RNA gene sequencing. 
Random forest modeling was used to predict postnatal age (Age), postmenstrual age (PMA), and gestational 
age (GA), using gut microbiome features.
Results: Principal coordinate analysis revealed that the gut microbiome of the preterm infants displayed an 
obvious time-dependent change pattern, which showed the strongest association with Age, followed by PMA, 
and a much weaker association with (GA). Random forest modeling further evidenced the time-dependent 
change pattern, with the Pearson’s correlation coefficients between the actual values and the gut microbiome-
predicted values being 0.68, 0.53, and 0.38 for postnatal, postmenstrual, and gestational age, respectively. 
The microbiome dynamism could be further divided into four Age stages, each with its own characteristic 
microbial taxa. The first 1–4 days (T1 stage) represented the meconium microbiome, with colonization of a 
high diversity of microbes before or during delivery. During 5–15 days (T2 stage), the gut microbiome of the 
preterm infants underwent a rapid turnover, in which microbial diversity declined, and stabilized afterward. 
Enterobacteriaceae, Enterococcaceae, Streptococcaceae, Staphylococcaceae, and Clostridiaceae were the major classes in 
the gut microbiome in the lateral stages of development (T3–T4 stage). 
Conclusions: Postnatal age, rather than the gestational age, is significantly correlated with the gut 
microbiome of preterm infants, suggesting that clinical interventions contribute more to the early dynamics 
of gut microbiome in preterm infants than the natural development of the gut.
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Introduction

Overwhelming evidence suggests that the gut microbiome 
plays an integral role in both maternal and newborn health 
(1,2). The composition of the maternal microbiome, from 
both human and mice models, is linked with an infant’s 
risk of developing adverse events such as autism, allergies, 
and autoimmune and metabolic diseases (3-5). The infant 
microbiome impacts neonatal development in multiple 
aspects, including the development of metabolism, nerve 
and immune responses (4,6). Further, disturbance of gut 
microbial composition in early life can elevate the risk of 
a variety of clinical events, including feeding intolerance, 
necrotizing enterocolitis, and sepsis (6-8). 

The early postpartum period, which refers to the 
period of early life in which breastfeeding predominates, 
is a critical period of time for the establishment of the gut 
microbiota (6,9). Studies have found the gut microbiome 
profile of infants to be time dependent, with specific 
types of microbes enriched at different stages of early-life 
development (6,10,11). Further, many events in early life, 
such as delivery by caesarean section, formula feeding, and 
exposure to antibiotics, can perturb the composition of the 
gut microbiota (12-15). For instance, Bifidobacterium and 
Lactobacillus are enriched in breast-fed infants compared 
to those who are fed exclusively with formula. However, 
at 1 week of age, the gut microbiota of neonates delivered 
by cesarean section is characterized by high levels of 
Clostridium, but not Bifidobacterium and Bacteroides, 
compared with that of infants delivered by spontaneous 
vaginal delivery (13,16). Meanwhile, antimicrobial agents 
often reduce gut bacterial diversity and disrupt the 
ecological balance of the neonatal microbiome (12,17-19).

Preterm infants have a distinct gut microbial community 
compared to full-term infants, due to their congenital 
developmental immaturity and exposure to complex 
clinical interventions. Multiple factors may influence the 
initial colonization, development, and function of preterm 
infants’ gut microbiota, review of the literature revealed 
that evidence converged on the effect of age, mode of 
delivery, use of antibiotics, and consumption of human milk 
in the composition of gut microbiota of preterm infants 
(6,17,20). The colonization and dynamic changes in the 
gut microbiome of preterm infants have attracted much 
attention (7,12,17,21-23). However, large-scale cross-
sectional and longitudinal studies yielded inconsistent 
results regarding the principle of the development of the gut 
microbiome in preterm infants. In particular, time-related 

factors including postnatal age (Age), gestational age (GA) 
at birth, and postmenstrual age (PMA; the combination of 
GA at birth and postnatal age), showed varied patterns in 
their relationships with gut microbiome development in 
preterm infants (24-28). These three different time scales 
reflect impacts either from the congenital development 
or from external interventions after birth. A clear 
understanding of the early-life developmental trajectories 
of the gut microbiome of premature infants has yet to be 
obtained. Therefore, in the present study, we examined the 
relationships of gut microbiome dynamics with Age, PMA, 
and GA in preterm infants utilizing dense sampling times in 
a relatively large-scale prospective cohort.

We present the following article in accordance with 
the MDAR reporting checklist (available at https://dx.doi.
org/10.21037/tp-21-367).

Methods

Study participants

A cohort of preterm infants was prospectively enrolled from 
Nanfang Hospital, Southern Medical University. The basic 
demographic information of the infants, including sex, GA, 
delivery method, and medication, was collected from the 
medical record system by trained researchers.

All participating infants included in this study had 
a GA of less than 37 weeks and their parents were 
willing to consent to all aspects of the study protocol. 
Participants were excluded if they had known chromosomal 
abnormalities or genetic metabolic diseases.

All samples were obtained from infants hospitalized 
in the neonatal intensive care unit (NICU) at Nanfang 
Hospital, Southern Medical University. The study was 
conducted in accordance with the Declaration of Helsinki (as 
revised in 2013). The study was approved from the Medical 
Ethics Committee of Nanfang Hospital (approval No. 
NFEC-2021-054) and informed consent was signed from 
the parents of all registered infants. The study was enrolled 
in the Chinese Clinical Trial Register (trial registration No. 
ChiCTR2100044469). 

Sample collection and processing

Fecal samples were collected from the infants from birth 
until discharge. After being collected from diapers, the 
fresh fecal samples were promptly stored at –40 ℃ and were 
transported to a laboratory within 3 days, where they were 
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stored at –80 ℃ until DNA extraction.

DNA extraction and 16S ribosomal RNA gene sequencing

The QIAamp Mini Kit was used for DNA extraction in line 
with the manufacturer’s instructions. The V4 hypervariable 
region of the 16S ribosomal RNA (rRNA) gene was amplified 
and sequenced using an Illumina ISEQ 100 platform.

Bioinformatics

Raw fastq files were split into single-sample paired-end fastq 
files according to their barcode sequences using laboratory-
developed scripts. Each sample sequencing read was denoised 
with DADA2 (version 1.6.0), to generate amplicon sequence 
variants (ASVs). The representative sequences were aligned 
using PyNAST algorithms and a phylogenetics tree was 
built with FastTree. Taxonomy was assigned to each ASV 
using the Ribosomal Database Project classifier with default 
parameters and the GreenGenes (version 13.8) database in 
QIIME (version 1.9.1). The ASVs from reagent controls 
were excluded from downstream analysis. To avoid possible 
bias caused by variation in different samples’ sequencing 
depth, each sample was rarefied to 3,180 sequences, and 
those with fewer than 3,180 sequences were excluded from 
downstream analysis. 

Statistical analysis

All subsequent biostatistical analyses were performed using 
QIIME (version 1.9.1) software or R language (version 
4.0.5). Alpha diversity [Shannon index and phylogenetic 
diversity (PD) whole-tree index] and beta diversity 
dissimilarity matrices (unweighted and weighted UniFrac 
distance) were calculated based on ASV level abundance. 
Principal coordinate analysis (PCoA) was used to display 
differences among samples based on beta diversity 
dissimilarity matrices, and permutational multivariate 
analysis of variance (PERMANOVA) with 999 permutations 
was used to estimate the statistical significance of group-
wise beta diversity. Linear discriminant analysis Effect Size 
(LEfSe) was applied to compare the discriminative data 
and to identify bacteria displaying alterations in abundance 
between different Age groups. Only bacteria with a linear 
discriminant analysis (LDA) value of >4 (representing the 
difference in the feature between groups) and those in the 
top 10 for abundances were displayed. 

Random forest modeling was adopted to regress the 

relative abundance of bacterial genus present in at least 
10% samples against Age, GA, and PMA, using the R 
packages ‘randomForest’ (version 4.6.12) and ‘caret’ (version 
6.0.68) to tune hyperparameters and perform 10-fold 
cross-validation. For each model trained, we evaluated the 
performance of the regression by calculating the Pearson 
correlation coefficient between the actual and predicted 
values. To explore the longitudinal change in each bacteria, 
using the R package ‘lmerTest’ (version 3.1.3), we used 
a linear mixed-effects (LME) model to fit the relative 
abundance of each bacteria at the genus level by taking the 
Age and GA as fixed effects and the participant as a random 
effect. 

Between-group comparisons were performed using the 
Wilcoxon’s rank-sum test for two groups and the Kruskal-
Wallis test for multiple groups. Benjamini-Hochberg’s 
false discovery rate (FDR) method was adopted to adjust 
for multiple comparisons. A P value or FDR <0.05 was 
considered statistically significant. 

Results

Characterization of the study participants and sequencing

The present study enrolled 151 preterm infants, with GAs 
ranging from 26 to 36 weeks (29.9±2.2 weeks) (Table 1). Fecal 
samples were collected from the infants from birth until 
discharge (Figure 1). A total of 604 samples were obtained 
for sequencing to obtain their microbiome profiles. The 
mean birth weight was 1.35±0.37 kg, suggesting that most 
of the infants had a low weight at birth. A total of 7,562,303 
high-quality sequences were obtained, and the median read 
count of each sample was 11,650 (range, 756–43,762). After 
denoising with DADA2, 9,596 ASVs were obtained. After 
rarefying the samples to 3,180 sequences, 604 samples and 
8,826 ASVs were retained for downstream analysis. 

The gut microbiome of preterm infants is most closely 
related to Age

According to the PCoA with unweighted UniFrac 
distance, Age showed the most obvious correlation with 
dynamic changes in the gut microbiome (Figure 2A-2C). 
In comparison, the microbiome was distributed evenly 
in relation to GA, with no obvious clustering patterns 
(Figure 2C). For PMA, a clustering pattern was also visible, 
although it was less obvious than that of Age (Figure 2B). 
Multivariate PERMANOVA analysis indicated Age to 
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be a significant contributor to microbiome variation; 
importantly, its influence was more significant than that of 
GA and PMA, and far more significant than that of delivery 

method and the duration of antibiotics.
According to the alterat ion pattern of  the gut 

microbiome, we divided Age into 4 subgroups (T1–T4), and 
PMA and GA into 5 subgroups (Table 1, Figure 2D-2F). We 
observed that the samples collected on day 1 to day 4 were 
clustered together, reflecting a unique composition of the 
meconium microbiome (T1, Figure 2D). The most drastic 
periods of change occurred between day 5 and day 15 (T2), 
followed by day 16 to day 22 (T3). The gut microbiome 
post day 23 (T4) was relatively stable compared to that 
during T2 and T3, and clustered together in the PCoA plot 
(Figure 2D). The ordination of the microbiome composition 
showed a clear Age-related pattern, with a negative 
correlation between Age and the PCo1 axis (Figure 2A,2G). 
The Shannon index, which represents the richness and 
evenness of microbiome composition, was highest during 
T1, decreased rapidly during T2, and stabilized at T3–T4 
(Figure 2H). The significant correlations of microbiome 
signatures with Age, PMA, and GA were also manifested in 
the Adonis analysis, with Age showing the highest R2 value 
and GA the lowest (Figure 2I). 

Signatures of the gut microbiome at each Age stage

Since the gut microbiome of the preterm infants changed 
throughout the T1 to T4 stages, we further analyzed the 
representative microbes in these different time windows. 
As shown by the class-level histogram in Figure 3A,  
Enterobacteriaceae ,  Enterococcaceae ,  Streptococcaceae , 
Staphylococcaceae ,  and  Clostridiaceae  were the major 
classes at the late stage of development (with increases 
from T2 to T4), while Moraxellaceae, Comamonadaceae, 
Xanthomonadaceae, Sphingomonadaceae, and Mycoplasmataceae 
were more abundant in the T1 samples. LEfSe analysis 
was performed to identify bacteria specifically enriched 
at each stage (Figure 3B). Many environmental and 
delivery-related microbes, including Sphingomonas , 
Burkholderia, Acinetobacter, and Stenotrophomonas, were 
enriched in the meconium stage. During the T2 stage, 
Bifidobacterium was slightly enriched. In comparison, 
Streptococcus and Enterococcus were elevated through the T2 
to T4 stages, being most abundant at the T3 stage, while 
Enterobacteriaceae was predominate in T4 samples. 

Machine learning model to predict Age, PMA, and GA 
based on the gut microbiome composition

We next sought to determine whether Age, PMA, and 

Table 1 Details of the preterm infant cohort analyzed in this study

Variables (n=604) Values [mean ± SD or n (%)]

Gestational age (weeks) 29.9±2.2

Postmenstrual age (weeks) 32.0±2.6

Birth weight (kg) 1.35±0.37

Sex, n (%)

Female 165 (27.32)

Male 439 (72.68)

Delivery mode, n (%)

Cesarean section 426 (70.53)

Vaginal delivery 178 (29.47)

Received antibiotics, n (%)

Yes 575 (95.20)

No 19 (3.15)

NA 10 (1.65)

Age† group, n (%)

T1 (days 1–4)‡ 158 (26.16)

T2 (days 5–15) 222 (36.75)

T3 (days 16–22) 92 (15.23)

T4 (after day 23) 132 (21.86)

PMA§ group, n (%)

26–27 weeks 20 (3.31)

28–29 weeks 81 (13.41)

30–31 weeks 140 (23.18)

32–33 weeks 209 (34.60)

After 34 weeks 154 (25.50)

GA¶ group, n (%)

26–27 weeks 105 (17.38)

28–29 weeks 152 (25.17)

30–31 weeks 202 (33.44)

32–33 weeks 108 (17.88)

After 34 weeks 37 (6.13)
†, Age, postnatal age; ‡, T1: the first group of Age is defined as 
D1 to D4 to include samples within 72 hours after birth; §, PMA: 
postmenstrual age; ¶, GA: gestational age.
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Figure 1 The sampling scheme for 604 samples from 151 preterm infants. The x axis represents Age and the y axis represents the 
participants. Each point represents a sample, and the color of the point represents different Age groups.

GA can be predicted based on the gut microbiome 
composition. The prediction may reflect both external and 
internal selective pressures on the gut microbiome. We 
established a random forest regression model to correlate 
the relative abundance of gut microbiota with Age, PMA, 
and GA in the preterm infants (Figure 4). The correlation 
coefficient between the predicted and actual Age was 
0.6837 (P<0.001, Figure 4A), while those for PMA and GA 
were 0.5282 (P<0.001) (Figure 4C) and 0.3810 (P<0.001)  
(Figure 4E), respectively. The top microbial contributors in 
the three time scales differed across their respective random 

forest models. Three taxa among the top 10 microbial 
contributors were shared between the models for Age and 
GA, namely Enterobacteriaceae, Klebsiella, and Streptococcus. 
Multiple taxa such as Enterococcus (100.00), Burkholderia 
(72.61), Clostridium (65.60), Stenotrophomonas (62.30), Delftia 
(50.81), Caulobacteraceae (46.49), and Staphylococcus (45.82), 
specifically contributed to Age but had no significant 
predictive value for GA (Figure 4B). However, Rothia 
(62.80), Sphingomonas (61.16), Sediminibacterium (53.12), 
Lactobacillales (46.96), Curvibacter (44.97), Lactobacillus 
(36.67), and Acinetobacter (36.41) specifically contributed to 
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Figure 2 Age-dependent gut microbiome changes in preterm infants. (A-C) PCoA plots of unweighted UniFrac dissimilarities between 
samples at the ASV level. Each point represents a sample, colored by Age (A), PMA (B), or GA (C). The strength of the color is proportional 
to the three time scales. (D-F) The same PCoA plots as in A, B and C, respectively, but colored according to different Age, PMA, or GA 
subgroups, illustrating gut microbiota composition changes between different groups. Size effect and statistical significance were calculated by 
PERMANOVA (Adonis). PC1 principal coordinate 1, PC2 principal coordinate 2. Percentage refers to percentage of variance explained by the 
principal coordinate. (G) Scatter plot showing the relationship between Age, PMA, GA, and PC1. Spearman correlation coefficient and P values 
are shown in the top left corner. (H) Boxplot showing the Shannon index among different Age groups. The body of the boxplots represents 
the median, first, and third quartiles of the distribution. The whiskers extend from the quartiles to the last data point within 1.5× IQR, with 
outliers beyond. The jitter scatter represents the alpha diversity index of each sample. (I) Bar plot illustrating Age, PMA, GA are significantly 
associated with gut microbial variations. The variations were derived from between-sample unweighted UniFrac distances. The bars are sorted 
and colored according to size effect. Size effect and statistical significance were calculated by PERMANOVA (Adonis). *, FDR <0.05; **, FDR 
<0.01; ***, FDR <0.001. PCoA, principal coordinate analysis; Age, postnatal age; PMA, postmenstrual age; GA, gestational age.
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Figure 3 Comparison of the gut microbiota of preterm infants between different Age stages. (A) Stacked barplot showing the relative 
abundances of microbiota in each Age group at the family level. The top 15 most dominant taxa are shown. LDA, linear discriminant 
analysis. (B) The top 10 most abundant bacteria are shown in a boxplot and lollipop plot (only bacteria with LDA >4 are displayed). The 
bodies of the boxplots are colored according to Age group. The color of the dots in the lollipop plot indicates the Age group in which the 
bacterial genus was enriched.

GA (Figure 4F). The model for PMA shared many taxa with 
both models, suggesting that the correlation of PMA with 
gut microbiome could be a combination of effects from Age 
and GA. Two taxa, Bifidobacterium (77.38) and Escherichia 
(68.76), specifically contributed to PMA (Figure 4D).

Based on our observation that Age had a remarkable 
influence on the microbiome, we further evaluated the 
correlation between the microbiome and GA using an LME 
model, with Age as a confounding factor (Figure 4G,4H). 
Streptococcus, the top microbial contributor to GA in the 
original model, remained significantly associated with GA 
after adjustment for Age (r=0.0026, P=0.0015), indicating 
that its association with GA was independent of Age. 

Discussion

The immaturity of the intestine and immune system is a 
physiological feature of preterm infants that has an innate 
influence on the development of their gut microbiome. 
Such immaturity is gradually ameliorated as the GA 
increases. Preterm infants experience many physiological, 
medical, dietary, and environmental challenges after birth. 

Meanwhile, both innate and acquired factors simultaneously 
affect gut microbial colonization in preterm infants (7,29), 
which is related to the occurrence and development of 
diseases (30,31). Therefore, understanding the dynamic 
pattern of the gut microbiome in early life, particularly in 
relation to different time scales, namely Age, GA, and PMA, 
can provide insights into the importance of internal and 
external factors to infants’ early development.

The present study suggests that among the three time 
scales, Age has the strongest influence on dynamic structural 
changes of the gut microbiome, while GA has the weakest. 
In their study of 82 preterm infants, Grier et al. found that 
the gut microbiome of the infants could be grouped into 
different community state types (32), which were correlated 
with different infant maturity measurement indicators (birth 
GA, week age, and PMA). Chernikova et al. analyzed the 
alpha diversity of the gut microbiome of 30 preterm infants 
from an NICU and concluded that there were significant 
associations between the microbiome and different GAs (26).  
Based on fecal samples, Yee et al. studied 83 preterm 
infants’ microbiota in the first 6 weeks after birth and 
found that the alpha diversity of the gut microbiome was 
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Figure 4 Random forest prediction of Age, PMA, and GA using gut microbiome features. (A,C,E) Scatter plots showing the correlations 
of Age (A), PMA (C), and GA (E), as predicted by random forest regression model and actual values. Pearson correlation coefficient and P 
values are shown in the top left corner. (B,D,F) The importance scores of the top 10 features contributing to Age (B), PMA (D), and GA 
(F) in the random forest regression models are shown in the lollipop plots. (G,H) Streptococcus was plotted against GA (G) and Age (H). P 
values were calculated by linear mixed-effects regression model. Age, postnatal age; PMA, postmenstrual age; GA, gestational age.
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positively correlated with PMA (33). In agreement with 
these findings, the present study demonstrated that GA and 
PMA were significantly correlated with the development 
of the gut microbiome in the early life of preterm infants  
(Figure 2B,2C). However, both GA and PMA exhibited 
a weaker association with the microbiome than did Age, 
and time-dependent changes in the gut microbiome were 
not affected by sex, delivery method, or even the course 
of antibiotic medication. Our results revealed a dynamic 
gut microbiome pattern that constantly changes with time 
after birth. The finding that the microbiome exhibited a 
much weaker correlation with GA than Age indicates that 
the various clinical interventions prescribed to preterm 
infants could predominate over the characteristics of innate 
development. Our results are consistent with the view of Rao 
et al. that the gut microbiota of preterm infants develops in a 
predicable manner (28), and provide further evidence for the 
time-dependent pattern of microbiome development. 

Based on the dynamic gut microbiome patterns, we 
further divided the early life of the preterm infants into 
four stages. Importantly, the microbiome showed distinct 
characteristics at each of the four stages. During the T1 
(meconium) stage, gut microbiome diversity was relatively 
high, with the community predominated by Proteobacteria. 
However, the alpha-diversity rapidly declined during the 
T2 stage (D5–D15), with taxa such as Enterococcus and 
Streptococcus significantly enriched. The microbial diversity 
was further reduced at the T3 (D16–D22) and T4 (D23 
and after) stages, with Streptococcus and Enterobacteriaceae 
becoming the signature taxa, respectively. This transition 
pattern is similar to several previous reports (25,28), 
and suggests that the gut microbiome follows certain 
development and evolutionary trajectories in the early life 
of preterm infants (25,28,34). Interestingly, in our cohort, 
the gut microbiome showed relatively high diversity 
throughout the entire T1 period, despite almost all of the 
infants commencing broad-spectrum antibiotics within 
one hour after birth. While looking into the details of 
the microbiome composition at the T1 stage, many of 
the microbes have been reported to be correlated with 
perinatal period events. For instance, elevated levels of 
Ureaplasma, Streptococcus, Proteus, or Stenotrophomonas are 
often associated with increased pregnancy risks (5,35). As 
nearly 25% of preterm infants are born to mothers with 
an intrauterine infection and occult microbial invasion 
of the amniotic cavity (36), the presence of these genera 
in infants’ microbiomes, as observed in our results, could 
possibly reflect intrauterine colonization from their 

mothers. Furthermore, most preterm infants delivered by 
cesarean section have a higher abundance of Proteobacteria 
than do full-term infants (12,17,25,34), which is consistent 
with our finding that Proteobacteria was predominant 
during the T1 stage. It should be noted that our results 
differ from previous reports that the gut microbiome of 
newborns during early life had low diversity or was sterile 
(12,27,37-39). Also, DNA extraction methods may affect 
the determination of microbiome diversity in low biomass 
samples, which should be further studied in future. A 
standardized protocol for DNA extraction from fecal 
samples may be ideal to decrease variability due to DNA 
extraction, but using standardized protocols will still not 
prevent other inter-laboratory differences. 

The T2 time window witnessed marked alterations of 
the gut microbiome. The α-diversity dropped significantly, 
and Bifidobacterium was slightly enriched, implying a trend 
of the natural development of the newborn gut microbiome 
being rapidly interrupted by environmental factors, 
including medical treatments. Importantly, clinically, this 
period is key for the development of many complications in 
preterm infants, such as infection, feeding intolerance, and 
white matter damage, suggesting that possible relationships 
exist between gut microbiome dysbiosis and health 
conditions and their prognosis. The dramatic alteration 
of the gut microbiome at the T2 stage supports the idea 
that this stage could be a crucial developmental window 
which likely has a long-term impact on an individual’s 
health. Microbial diversity continued to decrease during 
the T3 and T4 stages, with the replacement of commensal 
bacterial colonization by opportunistic pathogens such as 
Enterococcus, Streptococcus, and Enterobacteriaceae. 

The random forest regression models to predict Age, 
PMA, and GA using the microbiome further reinforced 
our finding that the development of preterm infants’ gut 
microbiome in early life may follow specific, Age-dependent 
trajectories. Our results are congruent with those of Hill  
et al., who found that the microbiome was similar at 1 week 
of age, regardless of GA (12). Innate development (which 
is related to GA) certainly affects the gut microbiome, 
but we found the influence of GA to be much weaker 
than that of Age. The finding that PMA has a far stronger 
association than GA with the microbiome is likely due to its 
incorporation of Age-related factors. Therefore, we reason 
that postnatal clinical interventions, rather than the natural 
development of the gut, has major impact on the early-stage 
development of the gut microbiome in preterm infants. 
In clinical practice, GA can be used to assess the maturity 
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of congenital development in preterm infants, which may 
impact prognosis (26,30). We found that Streptococcus was 
highly correlated with GA, and importantly, this correlation 
was independent of Age. The relative abundance of 
Streptococcus increased with the increase of GA at birth. The 
relationship between GA and microbiota could be helpful 
in evaluating the postnatal development of preterm infants 
after birth in clinic, and needs to be validated in a larger 
population cohort.

There are several limitations to this study. First, we 
divided Age into four stages according to the characteristics 
of the gut microbiome. Although signature taxa were 
detected for each stage, whether such division is optimal 
in our cohort, and in other independent cohorts of 
preterm infants, warrants further investigation. It is also be 
important to further explore the relevance of each of the 
four stages with key clinical events, such as development, 
disease, and prognosis. Second, due to the observational 
nature of this cohort study, almost all of the participants 
had used antibiotics for more than 7 days. Even though 
our study enrolled 151 preterm infants, we may still be 
underpowered to precisely assess the various confounding 
effects (such as antibiotic usage) on our observations due 
to the extreme complexity of the diseases and treatments of 
preterm infants. It should, however, be noted that Kim et al. 
found that the gut microbiome of preterm infants treated 
with antibiotics did not differ from that in the non-treated 
group (40). Larger longitudinal cohorts with a prospective, 
interventional study design are needed to better address 
these issues.

Conclusions

The present study showed that the composition of the 
gut microbiome in preterm infants in early life is Age 
dependent, with the microbiome-Age correlations being 
significantly greater than those between the microbiome 
and GA or PMA. The early-life development of the gut 
microbiome in preterm infants can be divided into four 
stages: the gut microbiome is highly diverse in the T1 stage, 
alters rapidly in the T2 stage as its diversity declines, and 
transits to dysbiotic states in the T3 and T4 stages, with 
opportunistic pathogens becoming predominate. Our results 
suggest that clinical interventions, rather than natural gut 
development, contributes most to the early development of 
the gut microbiome in preterm infants. Further large-scale 
cohort studies would be useful to clarifying the prognostic 
value of the early dynamics of the gut microbiome for 

clinical outcomes and lateral developments.
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