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Introduction

Hirschsprung’s disease (HSCR), also called congenital 
ganglioside disease, is a rare congenital intestinal disease. 
Clinical manifestations of constipation, intestinal obstruction, 
and enterocolitis symptom seriously affect the life and growth 

of children, even life-threatened. HSCR varies widely among 
races. The occurrence rate of HSCR is highest in the Asian 
population (2.8 in 10,000 infants), with a male/female ratio 
2:1 to 4:1. According to the absent length of the ganglion in 
the intestine, there are usually three types: short-segment 
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HSCR (S-HSCR), long-segment HSCR (L-HSCR), and 
total colonic aganglionosis (TCA) (1).

HSCR is characterized by absent ganglion cells in the 
intestine (2). The abnormal migration, proliferation and 
differentiation of the intestinal neural crest cells in the 
development process lead to the development and growth of 
the intestinal nervous system. So far, more than 24 HSCR-
associated genes were reported, for example ret proto-
oncogene (RET), endothelin receptor type B (EDNRB), glial 
cell-line derived neurotrophic factor (GDNF), and SRY-box 
transcription factor 10 (SOX10) (3-5). Most of these genes 
are essential for the development of intestinal ganglia. For 
example, RET variants (rs2506030 and rs2435357) were 
associated with HSCR through the GDNF-RET pathway 
(5,6). However, the genetic architecture of HSCR has 
not been fully explained, calling for further researches on 
detecting disease-contributed genes.

IKBKAP is also known as elongator complex protein 1 
(ELP1) (7). It has been reported that IKBKAP was the most 
common cause of familial autonomic dysfunction (FD) 
(8,9), and about 60% of FD patients had gastrointestinal 
dysfunction (10). It is of interest that the number of 
neurons in FD patients decreases with time after birth, 
which is to some extent similar to that observed in HSCR. 
In fact, the simultaneous occurrence of FD and HSCR has 
been reported in the literature (11), raising a question of 
partially shared etiology between HSCR and FD such as 
shared susceptible genes. It was shown that the expressions 
of several genes essential in the development of enteric 
nervous system (ENS), such as phox2bb, a homologous gene 
of PHOX2B (12), and ret were decreased in ikbkap-knocked 
out zebrafish (7). Previous genome-wide association 
study revealed association between six single nucleotide 
polymorphisms (SNPs) within or nearby IKBKAP and 
HSCR susceptibility in southern China population, 
including rs10979596, rs10979597, rs2230793, rs2275630, 
rs10979607, and rs4369056 (13). These associations, 
however, required further replication on a large-scale 
independent population with similar geographical regions 
and genetic backgrounds. In this study, two IKBKAP SNPs 
(rs2230793 and rs2275630) were genotyped in a large-
scale cohort representing the southern Chinese population 
to validate the relationship between the IKBKAP gene and 
HSCR. We present the following article in accordance 
with the MDAR reporting checklist (available at https://
tp.amegroups.com/article/view/10.21037/tp-21-550/rc).

Methods

Study subjects

A total of 2,943 samples (1,470 disease groups and  
1,473 healthy groups without a history of nervous system 
diseases) were recruited from Guangzhou Women and 
Children’s Medical Center. All recruited patients were 
confirmed as HSCR by tissue biopsy and had received surgical 
treatments. The relevant clinical data such as age, gender, 
and clinical types were recorded. Based on the length of the 
aganglionic segment, 1,470 disease groups were further divided 
into short-segment type (S-HSCR, 1,033 patients), long-
segment type (L-HSCR, 294 patients), total colon aganglionic 
type (TCA, 82 patients), total intestinal aganglionosis type 
(TIA, 3 patients) and unknown subtype (58 patients). The 
study was conducted in accordance with the Declaration of 
Helsinki (as revised in 2013). The study was approved by the 
Institutional Ethics Review Board of Guangzhou Women and 
Children’s Medical Center (No. 2016042036) and informed 
consent was taken from all the patients or their legal guardians.

SNP genotyping and quality control

The previously reported SNPs of IKBKAP included 
rs10979596, rs10979597, rs2230793, rs2275630, rs10979607, 
and rs4369056 (13). Among the six SNPs, rs10979596, 
rs10979597 and rs10979607 are highly correlated (i.e., 
high linkage disequilibrium). Hence, we randomly selected 
rs10979597, as well as rs2230793 and rs2275630, as tag-
SNPs for IKBKAP. However, rs10979597 was found non-
polymorphic in our cohort such that it was excluded from the 
subsequent analysis. SNPs were genotyped by the Mass ARRAY 
iPLEX Gold system (Sequenom, San Diego, CA, USA) on all 
samples. SNPs were excluded if they met any of the following 
quality control criteria: (I) genotyping call rate <90% in all 
samples; (II) significant departure from Hardy-Weinberg 
equilibrium expectation (P<0.05). Finally, all the two SNPs were 
kept for subsequent analyses using 1,470 disease groups and  
1,473 healthy groups. 

Association analysis and subgenotype analysis 

The associations between SNPs and HSCR or its clinical 
subtypes were assessed by comparing the allele frequency in 
cases and the controls. Different genetic models, including 
additive, recessive, and dominant models, were tested using 
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PLINK 1.9 software (14,15). Univariate and multivariate 
logistic regression analyses were applied to estimate the 
unadjusted and adjusted effect size in terms of the odds 
ratio (OR). Age and sex were adjusted in the multivariate 
logistic regression. The Hardy-Weinberg disequilibrium 
was assessed by the chi-squared test. P<0.05 is viewed as 
statistically significant.

Bioinformatic analysis

At NCBI, rs2275630 showed the presence of known 
enhancement markers in the human fetal intestine (https://
www.ncbi.nlm.nih.gov/geo/roadmap/epigenomics/). 
We used the web site (http://bioinfo.life.hust.edu.cn/
HumanTFDB/) to check whether polymorphism would 
destroy the putative transcription factor motif. Associations 
of rs2275630 genotypes with IKBKAP expression in colon 
tissues based on data from the GTEx portal database 
(https://www.gtexportal.org/home/). 

Statistical analysis 

The Hardy-Weinberg equilibrium for heterogeneity was 
calculated by the researchers using the chi-square test. 
The researchers estimated the risk of developing HSCR in 
children using the OR, and logistic regression calculated the 
OR. A P value <0.05 was considered statistically significant.

Results

Characteristics of study subjects 

The features of the subjects are summarized in Table 1. In our 
cohort of 1,470 patients with HSCR, the age of onset ranged 
from a few days after birth to a few years old, with an average 
age of 8.37±20.50 months. In total, 1,473 age-matched 
healthy controls from the study cohort were recruited from 
other pediatrics. HSCR was divided into: (I) S-HSCR: 1,033 
(70.27%); (II) L-HSCR: 294 (20.00%); (III) total colonic 
aganglionosis (TCA): 82 (5.58%). There was statistical 
significance in age and gender distribution between disease 
groups and healthy groups (P<0.05). Therefore, in the next 
multivariate analysis, gender and age were adjusted.

Association of IKBKAP gene SNPs with HSCR

In this article, two SNPs (rs2230793 and rs2275630) of 
IKBKAP were selected to test the association with HSCR. 
Four groups, including additive, dominant, recessive, 
and genotypic models, were tested in 1,470 cases and  
1,473 controls. We did not find significant association for the 
two SNPs in any model, with P values ranged from 0.48 to 1.00 
(Table 2). Next, meta-analyses for rs2230793 and rs2275630 
were performed to evaluate the association between IKBKAP 
SNPs and HSCR (Table 3). Compared with the published data 
of Tang et al. (13), considerable heterogeneity was observed in 
rs2230793 (Q=86.8%, Phet=0.006) and rs2275630 (Q=78.0%, 
Phet=0.033). A marginal significant meta-association was found 
for rs2230793 (P=0.08), but not for rs2275630 (P=0.16).

Associations between IKBKAP gene SNPs and the clinical 
subtypes of HSCR

Next, we further carried out subgroup analyses to assess the 
relationship between the two SNPs and clinical subtypes of 
HSCR. The results showed that rs2275630 was significantly 
associated with TCA (OR =1.81, 95% CI: 1.17–2.80, 
P=0.01) rather than that with S-HSCR (OR =1.01, 95% 
CI: 0.83–1.24, P=0.71) and L-HSCR (OR =1.03, 95% CI: 
0.76–1.40, P=0.98), respectively (Table 4). No significant 
associations were found between the other SNP rs2230793 
and any of the HSCR subtypes.

Bioinformatic analysis of rs2275630

For rs2275630, there are known enhancer marks like 
H3K4me1 in the human fetal gut present over the region 

Table 1 Sample characteristics of the study subjects

HSCR subphenotype
Cases 

(n=1,470)
Controls 
(n=1,473)

P

Gender, n (%)

Female 240 (16.33) 458 (31.09) <0.001

Male 1,230 (83.67) 1,015 (68.91) <0.001

Age (months), mean ± SD 8.37±20.5 18.61±19.75 <0.001

Clinical manifestation, n (%)

S-HSCR 1,033 (70.27) N/A –

L-HSCR 294 (20.00) N/A –

TCA 82 (5.58) N/A –

TIA 3 (0.20) N/A –

Unknown subtype 58 (0.70) N/A –

SD, standard deviation; S-HSCR, short-segment HSCR; L-HSCR, 
long-segment HSCR; HSCR, Hirschsprung’s disease; TCA, total 
colonic aganglionosis; TIA, total intestinal aganglionosis. 
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Table 2 Associations between selected polymorphism and Hirschsprung’s disease risk in southern Chinese children

Genotype Cases Controls Crude OR (95% CI) P Adjusted OR adj (95% CI) Padj

rs2230793 T>G n=1,442 n=1,455

TT, n (%) 828 (57.42) 836 (57.46) 1.00 1.00

TG, n (%) 538 (37.31) 546 (37.52) 1.00 (0.85–1.16) 0.95 0.96 (0.81–1.13) 0.60

GG, n (%) 76 (5.27) 73 (5.02) 1.05 (0.75–1.47) 0.76 1.10 (0.77–1.57) 0.59

Additive, G count/T count 690/2,194 692/2,218 1.01 (0.89–1.41) 0.89 1.00 (0.88–1.14) 1.00

Dominant, TG+GG/TT 614/828 619/836 1.00 (0.87–1.16) 0.98 0.98 (0.83–1.14) 0.76

Recessive, GG/TT+TG 76/1,366 73/1,382 1.06 (0.76–1.47) 0.75 1.14 (0.80–1.61) 0.48

rs2275630 A>G n=1,454 n=1,461

AA, n (%) 1,195 (82.19) 1,206 (82.55) 1.00 1.00

AG, n (%) 246 (16.92) 238 (16.29) 1.05 (0.86–1.27) 0.65 1.03 (0.84–1.27) 0.76

GG, n (%) 13 (0.89) 17 (1.16) 0.77 (0.37–1.60) 0.49 0.87 (0.40–1.87) 0.72

Additive, G count/A count 272/2,636 272/2,650 1.01 (0.85–1.20) 0.93 1.01 (0.84–1.22) 0.90

Dominant, AG+GG/AA 259/1,195 255/1,206 1.03 (0.85–1.24) 0.78 1.02 (0.84–1.25) 0.82

Recessive, GG/AA+AG 13/1,441 17/1,444 0.77 (0.37–1.59) 0.48 0.87 (0.40–1.88) 0.72

Additive, dominant, and recessive indicate the association test following dominant, recessive, and additive models, respectively. The P 
value indicates the significance based on different genetic models. The calculation of the OR is also based on the risk allele of each SNP. CI, 
confidence interval; OR, odds ratio; Padj, adjusted for age and gender; SNP, single nucleotide polymorphism; G, guanine; T, thymine; A, adenine.

Table 3 Meta-analysis results for SNPs reported in previous studies on Hirschsprung’s disease

SNP Gene BP Study Minor allele OR P Pmeta Q (%) Phet

rs2230793 IKBKAP 108897203 Our data G 1.03 (0.91–1.17) 0.900 0.08 86.8 0.006

110699304 Tang et al. G 1.58 (1.20–2.09) 0.024

rs2275630 IKBKAP 108900127 Our data G 1.04 (0.87–1.24) 0.950 0.16 78.0 0.033

110702228 Tang et al. G 1.68 (1.12–2.51) 0.021

SNP, single nucleotide polymorphism; BP, base-pair where the SNP is located; G, guanine; OR, odds ratio; Pmeta, P value for meta-analysis; 
Q, Q-test for heterogeneity; Phet, P value for heterogeneity.

Table 4 The association results of two independent SNPs with different subclinical features classified by aganglionosis length, including short-
length (S-HSCR), long-length (L-HSCR) and TCA

CHR SNP BP A1/A2 Gene Test
Patient, A1 count/

A2 count
Control, A1 count/

A2 count
OR P Padj

9 rs2230793 108897203 G/T IKBKAP S-HSCR 471/1,559 692/2,218 1.00 (0.87–1.15) 0.63 0.98 

L-HSCR 151/431 692/2,218 1.16 (0.94–1.42) 0.26 0.18 

TCA 47/117 692/2,218 1.33 (0.93–1.90) 0.15 0.12 

9 rs2275630 108900127 G/A IKBKAP S-HSCR 184/1,862 272/2,650 1.01 (0.83–1.24) 0.71 0.91 

L-HSCR 54/528 272/2,650 1.03 (0.76–1.40) 0.98 0.84 

TCA 26/142 272/2,650 1.81 (1.17–2.80) 0.01 7.30E–03

The P value indicates the significance based on different genetic models. The calculation of the OR is also based on the risk allele of each 
SNP. A1/A2 indicate the risk allele and protective allele to disease, respectively. CHR, chromosome; SNP, single nucleotide polymorphism; 
BP, base-pair where the SNP is located; G, guanine; T, thymine; A, adenine; OR, odds ratio; Padj, P value adjusted for age and gender; 
TCA, total colonic aganglionosis; S-HSCR, short-segment HSCR; L-HSCR, long-segment HSCR; HSCR, Hirschsprung’s disease.
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Figure 1 Analysis of enhancer markers of rs2275630 previously reported in human fetal intestine.

in NCBI (Figure 1). The polymorphism disrupts putative 
transcription factor motif (Table 5). In HumanTFDB, the 
genes predicted to bind transcription factor before mutation 
are ZNF92 (P=0.0000409), SRF (P=0.0000361), MEIS1 
(P=0.000021) and BCL6 (P=0.0000154), and the genes 
predicted to bind transcription factor before mutation are 
BCL6 (P=0.0000195), in which SRF, MEIS1 and BCL6 are 
related to nerves respectively. This point itself does not 
affect the expression on GTEx.

Discussion

As a disease of intestinal ganglion cell deficiency, HSCR can 
cause constipation and diarrhea (16,17), which may be life-
threatening in severe cases. The most common therapeutics 
is surgery, which resected the diseased intestinal tract 
and reconnected the normal intestinal tract to the anus. 
However, the late recovery of this operation is not ideal, 
and many patients may have gastrointestinal diseases in 
their whole life (18). Therefore, it is essential to study the 

pathogenesis of HSCR, which can better diagnose and treat 
HSCR patients. So far, a series of genes have been revealed 
to contribute to the etiology of HSCR, including RET, 
GDNF, EDNRB, EDN3, ECE1, SOX10, ZEB2, PHOX2B 
(19-25). However, there is still much work to unravel the 
mysteries in the etiology of HSCR. 

IKBKAP, with HGNC symbol ELP1, encodes the 
protein IkappaB kinase complex associated protein, 
also called ELP1. It is a scaffold protein that forms 
the elongator complex with ELP2, 3, 4, 5, and 6 (7). 
IKBKAP may be the best candidate to explain the risk of 
inflammatory bowel disease (IBD) in susceptibility loci 
9q31.2 (26). IKBKAP is widely expressed in the central 
nervous system and in the critical nuclei of the brain 
and brainstem that can regulate the autonomic nervous  
system (27). IKBKAP may be required in the developing 
and adult mouse central nervous system (27). Mutations in 
IKBKAP have been reported to cause familial dysautonomia 
(FD) (8,9) a neuronal abnormally developmental and 
progressively degenerative disease (28). Over 60% of FD 

Table 5 Changes of TF before and after mutation with rs2275630

TF Combined position Predicted target sequence (direction) Score P q

Pre-mutation prediction binding TF

ZNF92 −14 to +1 TTTCTGTTAGCTTTAT (–) 11.2143 0.0000409 0.0138

SRF −7 to +8 TAACAGAAAACTATCA (+) 11.1316 0.0000361 0.0115

MEIS1 −4 to +8 TGATAGTTTTCTG (–) 12.8333 0.000021 0.00761

BCL6 −13 to +2 GAAAACTATCAAGGAA (+) 12.6111 0.0000154 0.00509

Post-mutation prediction combined with TF

BCL6 −13 to +2 GAGAACTATCAAGGAA (+) 12.3556 0.0000195 0.0065

ZNF92, zinc finger protein 92; SRF, serum response factor; MEIS1, myeloid ecotropic viral insertion site 1; BCL6, B-cell lymphoma 6; q, 
false discovery rate; TF, transcription factor.
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patients also suffered from gastrointestinal dysfunction (10).  
Notably, decreased ganglion and neuron density in the 
ENS was found in FD patients (29), indicating that HSCR 
and FD share partial pathogenic mechanisms. Indeed, 
the concurrence of HSCR and FD had been discussed in 
works of literature (11). Knockout of IKBKAP in human 
neuroblastoma cells in vitro down-regulated RET expression, 
a well-known HSCR-pathogenic gene (30), suggesting the 
potential association of IKBKAP in developing the HSCR. 

Previous zebrafish experiments (7) and fine-mapping of 
the 9q31 susceptible locus (13) had revealed the involvement 
of IKBKAP in HSCR. Tang et al. conducted a genome-
wide association study in 173 Chinese HSCR patients [31 
of them with RET no coding sequence (CDS) mutation] 
and 436 controls (13). They found that the IKBKAP SNPs 
rs2230793 and rs2275630 were associated with HSCR. 
Furthermore, after stratifying patients using the RET CDS 
mutation status, rs2275630 tended to increase the risk of 
HSCR along with the RET CDS mutations. Besides, Cheng 
et al.’s zebrafish experiment found that ikbkap-knockout 
zebrafish presented down-regulated RET expressions (7).  
However, in our study, we only measured rs2230793 
and rs2275630, not RET coding variables, which will 
be considered later. Tang et.al conducted the research 
based on the background of RET coding variants. We 
do not have RET coding variants, so our results are not 
completely consistent. In this study, two previously reported 
IKBKAP SNPs, rs2230793 and rs2275630, were randomly 
selected to replicate in a large-scale cohort of the southern 
Chinese population, including 1,470 disease groups and  
1,473 healthy groups. Unluckily, we failed to find significant 
associations for both SNPs in the four models (additive 
model, dominant model, recessive model, and genotype 
model), with P values varying between 0.48 and 0.98. 
However, further subgroup analysis identified a significant 
association between rs2275630 and TCA (OR =1.81, 95% 
CI: 1.17–2.80, P=0.01), indicating that IKBKAP acted as a 
TCA-specific susceptibility loci.

In summary, this study replicated IKBKAP  as a 
susceptible gene for HSCR. More specifically, rs2275630 
of IKBKAP was a TCA-specific susceptibility variant. 
For rs2275630, the polymorphism disrupts putative 
transcription factor motif (Table 5). Like SRF (31,32), it 
mediates developmental neuronal migration, MEIS1 (33) 
is one of the decisive factors involved in differentiation 
during striatal development, BCL6 (34) is an adverse 
biological risk factor for lymphoma. And there are known 
enhancer marks like H3K4me1 in the human fetal gut 

present over the region in NCBI (Figure 1). Despite the 
large sample size setting, some limitations of this study 
should be noted. First, the sample size of TCA was limited, 
making our result at a risk of accidental finding. Hence, 
the explanation of the association between rs2275630 and 
TCA need to be cautious. A TCA-specific case-control 
study that utilize large TCA sample size would be helpful to 
validate our findings. Second, only two SNPs were selected 
to tag IKBKAP in this study, leaving the effect of other 
IKBKAP SNPs unexploited. In particular, the functional 
variant accounting for the gene effect is still hidden in the 
shadow. Third, our results can only be responsible for the 
southern Chinese population. Further studies incorporating 
multi-ethnic populations are essential to comprehensively 
investigate the genotype-phenotype relationship. 
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