

Uterine fibroids increase the risk of preterm birth and other adverse birth events: a systematic review and meta-analysis

Xiuling Wang^{1#}, Gui Wang^{2#}, Ru Han³, Mei Gao⁴, Fangmin Wang⁵, Yarong Hong², Qiuxia Chen⁶

¹Infection and Disease Control Section, Haikou Maternal and Child Health Hospital, Haikou, China; ²Department of Obstetrics and Gynecology, Tunchang People's Hospital, Tunchang, China; ³Department of Obstetrics and Gynecology, Haikou Maternal and Child Health Hospital, Haikou, China; ⁴Department of Obstetrics, Haikou Maternal and Child Health Hospital, Haikou, China; ⁵Department of Obstetrics and Gynecology, Haikou Hospital of Traditional Chinese Medicine, Haikou, China; ⁶Department of Obstetrics, Hainan Women and Children's Medical Center, Haikou, China

Contributions: (I) Conception and design: X Wang, G Wang, Q Chen; (II) Administrative support: R Han; (III) Provision of study materials or patients: X Wang, G Wang, Q Chen; (IV) Collection and assembly of data: All authors; (V) Data analysis and interpretation: X Wang, G Wang, Q Chen; (VI) Manuscript writing: All authors; (VII) Final approval of manuscript: All authors.

[#]These authors contributed equally to this work.

Correspondence to: Qiuxia Chen. Department of Obstetrics, Hainan Women and Children's Medical Center, 75 Longkun South Road, Qiongshan District, Haikou 570216, China. Email: chenqiuxai5033@163.com.

Background: Uterine fibroids may cause preterm birth. This meta-analysis evaluates the effect of uterine fibroids on the risk of preterm birth and other obstetric outcomes.

Methods: Using the literature review method, the databases PubMed, Medline, Embase and Central were retrieved to obtain relevant research literature. The selected studies were analyzed and evaluated. The literature was a cohort study or a case-control study of pregnant women as the research object and uterine fibroids as the exposure factor to observe adverse events during pregnancy. The chi-square test was used to test for heterogeneity. Subgroup analyses were used to explore sources of heterogeneity. Publication bias was assessed using Egger's test. Enumeration data were described by odds ratio (OR). Measurement data were described by mean difference (MD). Calculate the confidence interval (CI).

Results: A total of 11 studies were included in this study, including 7 cohort studies and 4 case-control studies, with a total of 313,913 women. The probability of uterine fibroids among women was 3.99%. The results of meta-analysis showed that women with uterine fibroids experienced preterm birth <37 weeks (OR =1.43, 95% CI: 1.25 to 1.64, P<0.00001), preterm birth <34 weeks (OR =1.73, 95% CI: 1.34 to 2.25, P<0.0001), premature rupture of membranes (OR =1.38, 95% CI: 1.08 to 1.75, P=0.009), placental abruption (OR =1.60, 95% CI: 1.20 to 2.14, P=0.001), cesarean section (OR =2.09, 95% CI: 1.69 to 2.58, P<0.00001), and postpartum hemorrhage (OR =2.95, 95% CI: 1.86 to 4.66, P<0.00001) were all at higher risk, and the mean gestational age at delivery [mean difference (MD) =-0.58, 95% CI: -0.66 to -0.51, P<0.00001] and birth weight (MD =-117.82, 95% CI: -155.19 to -80.45, P<0.00001) were lower. Egger's test indicated that there was no publication bias among the included studies (P>0.05).

Conclusions: Pregnant women with uterine fibroids are at higher risk for preterm birth and other adverse obstetric outcomes and require closer monitoring.

Keywords: Uterine fibroids (UF); premature birth; obstetrics; meta-analysis

Submitted Apr 20, 2022. Accepted for publication Jun 14, 2022. doi: 10.21037/tp-22-215 View this article at: https://dx.doi.org/10.21037/tp-22-215

Introduction

Uterine fibroids (UF) are benign tumors originating from a uterine muscle tissue chamber composed of smooth muscle cells and fibroblasts embedded in the extracellular matrix. Compared with normal myometrium, small myomas have a similar number of leukocytes and less proliferation, but large myomas contain more cell proliferation and fewer leukocytes (1). Age and race are the main risk factors for the development and growth of uterine leiomyoma. Asymptomatic women may find many leiomyomas by chance during clinical ultrasound or examination (2). During pregnancy, the prevalence of hysteromyoma is between 3% and 12% (3,4).

Controversy exists regarding whether uterine fibroids contribute to adverse events during pregnancy and childbirth. Some studies have pointed out that uterine fibroids may also lead to pregnancy-related complications, such as miscarriage, premature rupture of membranes, dysfunction, placental abruption, and higher rates of cesarean section and postpartum hemorrhage (5,6). A different study (7) showed that hysteromyoma increases the risk of cesarean section and preterm premature rupture of membranes. Still, it has no significant effect on preterm birth, postpartum hemorrhage, hip presentation, and low birth weight. Previous meta-analyses have illustrated that hysteromyoma will not lead to abortion but will present the risk of placental abruption, cesarean section, and congenital malformation of a full-term fetus (8-11). However, these previous meta-analyses only observed the incidence of one or a few adverse events, which has limitations. In addition, our analysis believes that advances in medical technology, nursing concepts, and detection methods will also have an impact on the incidence of adverse events during pregnancy. We believe that a meta-analysis to update previous findings is warranted. This study intends to review the latest published literature and conduct a meta-analysis to explore the impact of hysteromyoma on the risk of preterm birth and other obstetric-related outcomes. We present the following article in accordance with the MOOSE reporting checklist (available at https://tp.amegroups.com/article/ view/10.21037/tp-22-215/rc).

Methods

Bibliography retrieval

The English databases PubMed, Medline, Embase and Central were searched from the time of database establishment to April 2022. The retrieval method was medical subject words combined with free words. English search and subject words mainly included "UF OR uterine fibroid OR uterine myoma OR uterine leiomyoma" AND "preterm birth OR preterm delivery".

Literature screening

The inclusion criteria were as follows: (I) the participants were pregnant women diagnosed with hysteromyoma; (II) the literature type was an observational study, including cohort studies and case-control studies; types of literature were observational studies, including cohort studies and case-control studies; (III) the study set up a case group and a control group. In the cohort study, the case group was pregnant women with uterine fibroids, and the control group was pregnant women without uterine fibroids. In the case-control study, the case group consisted of women with adverse events, and the control group consisted of women without adverse events; and (IV) the study literature included at least one of the following outcome indicators: preterm birth, premature rupture of membranes, placental abruption, cesarean section rate, postpartum hemorrhage, gestational age at delivery, and birth weight.

The exclusion criteria were as follows: (I) news reports, expert opinions, critical literature, and abstracts; (II) republished literature; and III. Inability to obtain enough literature to analyze the data.

Document data extraction

The literatures were screened and the data was extracted by two researchers independently. The main extraction contents included: (I) title, publication date, author, and so on; (II) research type, interventions, outcomes, and so on; and (III) baseline information. Adverse events (preterm birth, premature rupture of membranes, placental abruption, cesarean section, postpartum hemorrhage) were described using incidence as the effect size. Gestational age and birth weight were described with measurement data (weeks and Kg) as effect sizes. If there were questions or differences of opinion in the process of literature screening and extraction, a third researcher assisted in resolving the differences and making a decision through joint discussion if necessary.

Literature quality evaluation

The quality of the observational study was evaluated by

Newcastle-Ottawa Scale (NOS). The NOS scale is divided into the NOS evaluation criteria for a cohort study and the NOS evaluation criteria for a case-control study. It is further divided into three blocks (population selection, comparability, exposure evaluation or result evaluation), including 8 items. It is scored by the star system. The full score available for a cohort study is 13 stars, and the full score available for a disease case-control study is 9 stars. Two researchers independently evaluated the quality of the included literature and then performed crosschecking. If there is any difference, the researchers engaged in discussion to reach an agreement, or a ruling was made by the third researcher.

Statistical method

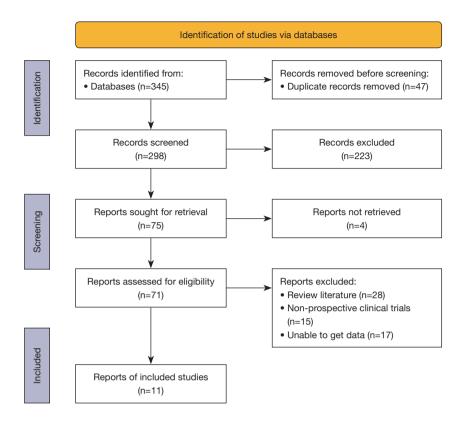
This study used the Cochrane software RevMan 5.4 [The Cochrane Collaboration, 2020) for statistical analysis of all data. Unadjusted odds ratio (OR) and 95% confidence interval (CI) were calculated from literature raw data. The risk factor ORs of cohort studies and controlled pathology studies could be pooled. The measurement data were statistically described by mean difference (MD) and 95% CI. Statistical significance was considered when P<0.05 in the fixed effects model or random effects model. The chi-square test was applied for heterogeneity test. When the I^2 >50%, the random effects model was used because of heterogeneous. When $I^2 \leq 50\%$, the fixed effects model was adopted because of no heterogeneous. Subgroup analyses were used to explore sources of heterogeneity. The potential publication bias was estimated by Egger test. Twoway P<0.05 indicated statistical significance.

Results

Literature search results

In this study, 345 relevant articles were obtained through database retrieval. After the retrieved and collected articles were deduplicated by EndNote X9 management software (Clarivate Analytics, Philadelphia, PA, USA), they were preliminarily screened through reading topics and abstracts according to the pre-determined inclusion and exclusion criteria and then further reading of the full text for rescreening. Finally, 11 articles meeting the criteria were included. The specific screening process and results are shown in *Figure 1*.

Basic characteristics and quality evaluation of literature


A total of 11 studies were included according to the screening criteria. The basic information of the included literature is shown in Table 1. The time of publication was from 2010 to 2021. The included literature was relatively new. The literature types were observational studies, including 7 retrospective cohort studies and 4 case-control studies. The study populations included the United States, France, Italy, Japan, Turkey, Cameroon, and China. The 11 studies included 12,522 pregnant women diagnosed with hysteromyoma and 301,391 pregnant women without hysteromyoma in the control group. There was no difference in maternal age between the hysteromyoma and control group, with an average of 28.6-36.1 years. All articles had studied the risk of uterine fibroids for preterm birth and explored other obstetric related outcome indicators, including <37 weeks of preterm birth, <34 weeks of preterm birth, premature rupture of membranes, placental abruption, cesarean section rate, postpartum hemorrhage, gestational age at delivery, and birth weight.

The NOS was used to evaluate the quality of 4 casecontrol studies and 7 cohort studies. All research scores were greater than 7 points, including 7 points for 1 article, 8 points for 5 articles, and 9 points for 5 articles. It was considered that the risk level of the included literature was low, and the quality of the literature was high.

Meta-analysis results

A total of 11 studies reported the risk of premature delivery <37 weeks in pregnant women with hysteromyoma. The results of meta-analysis were OR =1.43, 95% CI: 1.25 to 1.64, P<0.00001, and I^2 =64%. Five studies reported the risk of premature delivery <34 weeks in pregnant women with hysteromyoma. The results of meta-analysis were OR = 1.73, 95% CI: 1.34 to 2.25, P<0.0001, and I²=72%. Six studies reported the risk of uterine fibroids on premature rupture of membranes, OR =1.38, 95% CI: 1.08 to 1.75, P=0.009, and I^2 =58%. Three studies reported the risk of uterine fibroids for placental abruption, OR =1.60, 95% CI: 1.20 to 2.14, P=0.001, and I^2 =33%. Five studies reported the effect of hysteromyoma on cesarean section, OR =2.09, 95% CI: 1.69 to 2.58, P<0.00001, and $I^2=61\%$. Four studies reported the risk of uterine fibroids on postpartum hemorrhage, OR =2.95, 95% CI: 1.86 to 4.66, P<0.00001, and I²=82%. Five studies reported the effect of hysteromyoma on gestational

Translational Pediatrics, Vol 11, No 6 June 2022

Figure 1 Document screening process and results.

ID	Research type	Country	Sample size	Maternal age, years	Outcome indicators	Quality assessment
Blitz 2016 (12)	Retrospective cohort study	USA	522/9,792	33.3/30.9	1, 7, 8	9
Cagan 2020 (13)	Retrospective cohort study	Turkey	25/147	35.0/33.0	1, 6	7
Ciavattini 2015 (14)	Case control study	Italy	219/219	34.8/34.8	1, 3, 6	9
Egbe 2018 (15)	Case control study	Cameroon	38/188	31.4/27.4	1, 2, 3	8
Girault 2018 (16)	Retrospective cohort study	France	301/12,216	36.1/31.3	1, 2, 3, 4, 5, 7, 8	9
Kellal 2010 (17)	Case control study	France	117/234	NR	1	8
Lai 2012 (18)	Retrospective cohort study	USA	401/14,703	33.7/28.6	1, 2, 5, 7, 8	8
Murata 2021 (19)	Retrospective cohort study	Japan	5,354/81,016	35.1/31.1	1, 3, 4, 5, 7	9
Stout 2010 (20)	Retrospective cohort study	USA	2,058/61,989	35.1/30.0	1, 2, 3, 5, 6	8
Sundermann 2021 (21)	Prospective cohort study	USA	475/4,147	NR	1, 2	8
Zhao 2017 (22)	Case control study	China	3,012/109,931	32.0/29.5	1, 3, 4, 5, 6, 7	9

Table 1	Basic	characteristics	of included	literature
---------	-------	-----------------	-------------	------------

1, premature birth <37 weeks; 2, preterm birth <34 weeks; 3, premature rupture of membranes; 4, placental abruption; 5, Cesarean section rate; 6, postpartum hemorrhage; 7, Gestational age at delivery; 8, birth weight. NR, not reported.

	UF Control		Odds Ratio		Odds Ratio		
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% Cl	M-H, Random, 95% Cl
Blitz 2016	73	522	753	9792	11.5%	1.95 [1.51, 2.53]	-
Cagan 2020	5	25	32	147	1.5%	0.90 [0.31, 2.58]	
Ciavattini 2015	23	219	11	219	2.8%	2.22 [1.05, 4.67]	
Egbe 2018	5	38	17	188	1.5%	1.52 [0.53, 4.42]	
Girault 2018	36	301	1650	19565	8.4%	1.47 [1.04, 2.10]	
Kellal 2010	11	117	15	234	2.4%	1.52 [0.67, 3.41]	
Lai 2012	77	401	1867	14703	11.7%	1.63 [1.27, 2.10]	-
Murata 2021	333	5354	3568	81016	17.6%	1.44 [1.28, 1.62]	•
Stout 2010	311	2058	6509	61989	17.3%	1.52 [1.34, 1.72]	+
Sundermann 2021	36	475	316	4147	8.2%	0.99 [0.69, 1.42]	
Zhao 2017	274	3012	8970	109391	17.1%	1.12 [0.99, 1.27]	t t
Total (95% CI)		12522		301391	100.0%	1.43 [1.25, 1.64]	•
Total events	1184		23708				
Heterogeneity: Tau ² =	0.02; Chi	²= 27.5	D, df = 10	(P = 0.00	2); I ² = 64	%	1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -
Test for overall effect:	Z = 5.26 (P < 0.00	001)				Favours [experimental] Favours [control]

Figure 2 Forest map of premature birth <37 weeks. CI, confidence interval; UF, uterine fibroids.

	UF		Control		Odds Ratio		Odds Ratio		
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% Cl	M-H, Rand	om, 95% Cl	
Blitz 2016	31	522	247	9792	17.7%	2.44 [1.66, 3.58]			
Girault 2018	23	301	811	19565	16.1%	1.91 [1.24, 2.94]			
Lai 2012	35	401	735	14703	18.8%	1.82 [1.27, 2.59]			
Murata 2021	79	5354	673	81016	23.5%	1.79 [1.41, 2.26]		-	
Stout 2010	82	2508	1736	61989	23.8%	1.17 [0.94, 1.47]		-	
Total (95% CI)		9086		187065	100.0%	1.73 [1.34, 2.25]		•	
Total events	250		4202						
Heterogeneity: Tau ² = 0.06; Chi ² = 14.04, df = 4 (P = 0.007); I ² = 72%					7); l ² = 72	%	0.01 0.1	<u> </u> 1 10	100
Test for overall effect: Z = 4.15 (P < 0.0001)							Favours [experimental]		100

Figure 3 Forest map of premature birth <34 weeks. CI, confidence interval; UF, uterine fibroids.

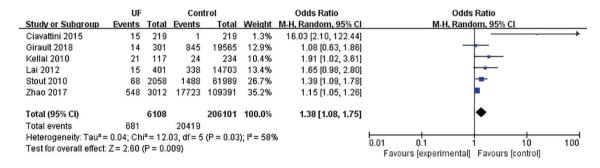


Figure 4 Forest map of premature rupture of membranes. CI, confidence interval; UF, uterine fibroids.

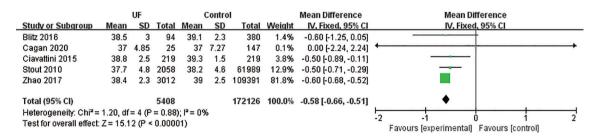
age at delivery, and the combined results were MD =–0.58, 95% CI: –0.66 to –0.51, P<0.00001, and I²=0%. Three studies reported the effect of uterine fibroids on birth weight, for which the combined results were MD =–117.82, 95% CI: –155.19 to –80.45, P<0.00001, and I²=0%. Uterine fibroids have a significant impact on all obstetric outcome indicators such as preterm birth, as shown in *Figures 2-9*.

Publication bias assessment

The outcome indicators with more than 10 articles need to be evaluated for publication bias. More than 10 articles of preterm birth <37 weeks reached the indicator. A funnel chart illustrated that most points were within the CI, showing an inverted funnel type. As shown in *Figure 10*, it was considered that there was no publication bias.

Translational Pediatrics, Vol 11, No 6 June 2022

	UF	IF Control		Odds Ratio		Odds Ratio	
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% Cl	M-H, Fixed, 95% Cl
Ciavattini 2015	5	219	3	219	4.9%	1.68 [0.40, 7.13]	
Stout 2010	29	2058	434	61989	46.2%	2.03 [1.39, 2.96]	
Zhao 2017	18	3012	547	109391	48.9%	1.20 [0.75, 1.92]	
Total (95% CI)		5289		171599	100.0%	1.60 [1.20, 2.14]	◆
Total events	52		984				
Heterogeneity: Chi ² = 2.96, df = 2 (P = 0.23); I ² = 33%							
Test for overall effect: Z = 3.21 (P = 0.001)							0.01 0.1 1 10 100 Favours (experimental) Favours (control)


Figure 5 Placental abruption forest map. CI, confidence interval; UF, uterine fibroids.

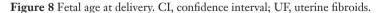

	UF		Control		Odds Ratio		Odds Ratio	
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% Cl	M-H, Random, 95% Cl	
Blitz 2016	21	522	208	9792	13.8%	1.93 [1.22, 3.05]		
Ciavattini 2015	8	219	6	219	3.5%	1.35 [0.46, 3.95]		
Girault 2018	46	301	1057	19565	20.6%	3.16 [2.29, 4.35]		
Stout 2010	109	2058	1922	61989	29.1%	1.75 [1.43, 2.13]	+	
Zhao 2017	208	3012	3829	109391	33.1%	2.05 [1.77, 2.36]	-	
Total (95% Cl)		6112		200956	100.0%	2.09 [1.69, 2.58]	•	
Total events	392		7022					
Heterogeneity: Tau ² = 0.03; Chi ² = 10.17, df = 4 (P = 0.04); l ² = 61%						6		0 100
Test for overall effect: Z = 6.84 (P < 0.00001)							0.01 0.1 1 1 Favours [experimental] Favours [con	0 100 htrol]

Figure 6 Cesarean section rate. CI, confidence interval; UF, uterine fibroids.

	UF	Control		Odds Ratio		Odds Ratio			
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% Cl	M-H, Rand	om, 95% Cl	
Egbe 2018	16	38	24	188	17.4%	4.97 [2.29, 10.77]			
Girault 2018	47	301	1077	19565	29.4%	3.18 [2.31, 4.36]			
Kellal 2010	26	117	17	234	20.1%	3.65 [1.89, 7.05]			
Zhao 2017	199	3012	4047	109391	33.1%	1.84 [1.59, 2.13]			
Total (95% CI)		3468		129378	100.0%	2.95 [1.86, 4.66]		•	
Total events	288		5165						
Heterogeneity: Tau ² = 0.16; Chi ² = 17.03, df = 3 (P = 0.0007); l ² = 82%						2%	0.01 0.1		100
Test for overall effect: Z = 4.62 (P < 0.00001)							0.01 0.1 Favours [experimental]	1 10 Favours [control]	100

Figure 7 Forest map of postpartum hemorrhage. CI, confidence interval; UF, uterine fibroids.

Discussion

Preterm delivery refers to the delivery after 28 weeks of pregnancy but before 37 weeks of gestation. The earlier the preterm baby is born, the lighter their weight will be, the more serious the immature development of various organs will be, and the probability of short- and long-term health problems will be greater. Hysteromyoma is a multiple benign tumor in women aged 30–50 years, affecting about

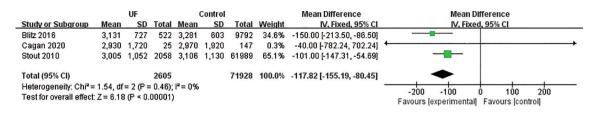
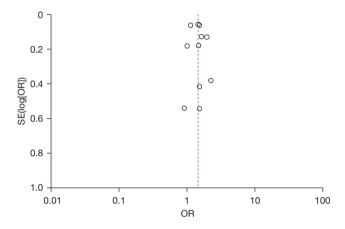



Figure 9 Birth weight forest chart. CI, confidence interval; UF, uterine fibroids.

Figure 10 Funnel diagram of preterm birth <37 weeks. OR, odds ratio.

70–80% of women throughout their life (3,23). Uterine fibroids are mostly asymptomatic, and asymptomatic uterine fibroids are commonly diagnosed through routine prenatal ultrasound, with up to 11% of pregnant women exhibiting uterine fibroids (24). However, the combined results of the literature included in this study showed that the probability of pregnant women experiencing uterine fibroids is about 4%. The reason for this analysis result may be related to the main population included in this study. Most of the people included in this study were from the United States, France, and other countries. Previous studies have shown that the probability of women experiencing hysteromyoma in African countries is 2–3 times that of those in other countries (3,24).

Due to the typical hormonal state and vascular changes throughout pregnancy, patients often worry about the accelerated growth and consequences of leiomyoma during pregnancy. In addition, it is generally believed that a hysteromyoma that distorts the endometrial cavity may impact fertility and lead to adverse reproductive outcomes, such as preterm birth and placental abruption. Many studies have investigated the relationship between hysteromyoma and obstetric outcomes, but the conclusions have remained controversial. This study conducted a meta-analysis of obstetric outcome indicators such as preterm delivery with hysteromyoma by searching the latest published literature. The heterogeneity test results showed no heterogeneity in gestational age, birth weight, and placental abruption at delivery. The fixed effects model was adopted, and other indicators such as preterm birth were heterogeneous. The random effects model was adopted. The results showed that hysteromyoma not only caused preterm birth of <37 weeks or <34 weeks but also had a significant impact on other obstetric outcomes. The rates of cesarean section and postpartum hemorrhage in pregnant women with hysteromyoma were higher, premature rupture of membranes and placental abruption were also caused, and the gestational age and birth weight at delivery were lower. The incidence of low birth weight is also related to premature birth. The birth weight of the group with hysteromyoma was about 118 grams lower than that of the control group.

All English articles included in this study were of high quality, and the sample size of combined patients was large, covering the population of various countries and regions. The results are representative. However, the included studies were retrospective studies, which are uneven in methodology and literature quality, and may have led to some bias in the results.

In conclusion, pregnant women with hysteromyoma will face an increased risk of preterm birth, premature rupture of membranes, placental abruption, cesarean section, postpartum hemorrhage, and delivering a low birth weight baby. However, the mechanism of hysteromyoma increasing the risk of preterm birth is not clear. The analysis of this study will contribute to clinical practice and better designrelated future research. Effective management of uterine fibroids during pregnancy requires a better understanding of their growth, differentiation, and cell renewal. We also look forward to more relevant mechanism research to fill the gap in pathophysiology to formulate better future intervention measures to prevent pregnancy complications in women with uterine fibroids.

Acknowledgments

Funding: The project was supported by Hainan Province Clinical Medical Center.

Footnote

Reporting Checklist: The authors have completed the MOOSE reporting checklist. Available at https://tp.amegroups.com/article/view/10.21037/tp-22-215/rc

Conflicts of Interest: All authors have completed the ICMJE uniform disclosure form (available at https://tp.amegroups.com/article/view/10.21037/tp-22-215/coif). The authors have no conflicts of interest to declare.

Ethical Statement: The authors are accountable for all aspects of the work in ensuring that questions related to the accuracy or integrity of any part of the work are appropriately investigated and resolved.

Open Access Statement: This is an Open Access article distributed in accordance with the Creative Commons Attribution-NonCommercial-NoDerivs 4.0 International License (CC BY-NC-ND 4.0), which permits the non-commercial replication and distribution of the article with the strict proviso that no changes or edits are made and the original work is properly cited (including links to both the formal publication through the relevant DOI and the license). See: https://creativecommons.org/licenses/by-nc-nd/4.0/.

References

- Holdsworth-Carson SJ, Zhao D, Cann L, et al. Differences in the cellular composition of small versus large uterine fibroids. Reproduction 2016;152:467-80.
- Jayes FL, Liu B, Feng L, et al. Evidence of biomechanical and collagen heterogeneity in uterine fibroids. PLoS One 2019;14:e0215646.
- Baird DD, Dunson DB, Hill MC, et al. High cumulative incidence of uterine leiomyoma in black and white women: ultrasound evidence. Am J Obstet Gynecol 2003;188:100-7.
- 4. Parazzini F, Tozzi L, Bianchi S. Pregnancy outcome and

uterine fibroids. Best Pract Res Clin Obstet Gynaecol 2016;34:74-84.

- Martin J, Ulrich ND, Duplantis S, et al. Obstetrical Outcomes of Ultrasound Identified Uterine Fibroids in Pregnancy. Am J Perinatol 2016;33:1218-22.
- Hartmann KE, Velez Edwards DR, Savitz DA, et al. Prospective Cohort Study of Uterine Fibroids and Miscarriage Risk. Am J Epidemiol 2017;186:1140-8.
- Chen R, Liu F. Analysis of adverse effects of uterine fibroids on pregnancy outcomes. Nongken Medical 2021;43:103-8.
- Jenabi E, Ebrahimzadeh Zagami S. The association between uterine leiomyoma and placenta abruption: A meta-analysis. J Matern Fetal Neonatal Med 2017;30:2742-6.
- Jenabi E, Fereidooni B. The uterine leiomyoma and placenta previa: a meta-analysis. J Matern Fetal Neonatal Med 2019;32:1200-4.
- Sundermann AC, Velez Edwards DR, Bray MJ, et al. Leiomyomas in Pregnancy and Spontaneous Abortion: A Systematic Review and Meta-analysis. Obstet Gynecol 2017;130:1065-72.
- Jenabi E, Khazaei S. The effect of uterine leiomyoma on the risk of malpresentation and cesarean: a meta-analysis. J Matern Fetal Neonatal Med 2018;31:87-92.
- Blitz MJ, Rochelson B, Augustine S, et al. Uterine fibroids at routine second-trimester ultrasound survey and risk of sonographic short cervix. J Matern Fetal Neonatal Med 2016;29:3454-60.
- Cagan M, Tanacan A, Donmez HG, et al. The Effect of Small Size Uterine Fibroids on Pregnancy Outcomes in High-risk Pregnancies. Rev Bras Ginecol Obstet 2020;42:535-9.
- Ciavattini A, Clemente N, Delli Carpini G, et al. Number and size of uterine fibroids and obstetric outcomes. J Matern Fetal Neonatal Med 2015;28:484-8.
- Egbe TO, Badjang TG, Tchounzou R, et al. Uterine fibroids in pregnancy: prevalence, clinical presentation, associated factors and outcomes at the Limbe and Buea Regional Hospitals, Cameroon: a cross-sectional study. BMC Res Notes 2018;11:889.
- Girault A, Le Ray C, Chapron C, et al. Leiomyomatous uterus and preterm birth: an exposed/unexposed monocentric cohort study. Am J Obstet Gynecol 2018;219:410.e1-7.
- Kellal I, Haddouchi NE, Lecuyer AI, et al. Leiomyoma during pregnancy: which complications?. Gynecol Obstet Fertil 2010;38:569-75.

Wang et al. UF on the risk of preterm birth

- Lai J, Caughey AB, Qidwai GI, et al. Neonatal outcomes in women with sonographically identified uterine leiomyomata. J Matern Fetal Neonatal Med 2012;25:710-3.
- Murata T, Kyozuka H, Endo Y, et al. Preterm Deliveries in Women with Uterine Myomas: The Japan Environment and Children's Study. Int J Environ Res Public Health 2021;18:2246.
- Stout MJ, Odibo AO, Graseck AS, et al. Leiomyomas at routine second-trimester ultrasound examination and adverse obstetric outcomes. Obstet Gynecol 2010;116:1056-63.
- 21. Sundermann AC, Aldridge TD, Hartmann KE, et al. Uterine fibroids and risk of preterm birth by clinical

Cite this article as: Wang X, Wang G, Han R, Gao M, Wang F, Hong Y, Chen Q. Uterine fibroids increase the risk of preterm birth and other adverse birth events: a systematic review and meta-analysis. Transl Pediatr 2022;11(6):978-986. doi: 10.21037/tp-22-215

subtypes: a prospective cohort study. BMC Pregnancy Childbirth 2021;21:560.

- 22. Zhao R, Wang X, Zou L, et al. Adverse obstetric outcomes in pregnant women with uterine fibroids in China: A multicenter survey involving 112,403 deliveries. PLoS One 2017;12:e0187821.
- Grube M, Neis F, Brucker SY, et al. Uterine Fibroids

 Current Trends and Strategies. Surg Technol Int 2019;34:257-63.
- Laughlin SK, Baird DD, Savitz DA, et al. Prevalence of uterine leiomyomas in the first trimester of pregnancy: an ultrasound-screening study. Obstet Gynecol 2009;113:630-5.

986