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An intelligent prediagnosis system for disease prediction and 
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Background: Due to the phenotypic similarities among different pediatric respiratory diseases with chronic 
cough, primary doctors often misdiagnose and the misuse of examinations is prevalent. In the pre-diagnosis 
stage, the patients' chief complaints and other information in the electronic medical record (EMR) provide 
a powerful reference for respiratory experts to make preliminary disease judgment and examination plan. 
In this paper, we proposed an intelligent prediagnosis system to predict disease diagnosis and recommend 
examinations based on EMR text.
Methods: We examined the clinical notes of 178,293 children with chronic cough symptoms from 
retrospective EMR data. The dataset is split into 7:3 for training and testing. From the testing set, we also 
extract 5% of samples for validation. We proposed a medical-semantic-aware convolution neural network 
(MSCNN) framework that can accomplish two downstream tasks from the same medical language model 
through transfer learning. First, a medical language model based on the word2vec algorithm was built to 
generate embeddings for the text data. Then, text convolutional neural network (TextCNN) was used to 
build models for disease prediction and examination recommendation.
Results: We implemented 5 algorithms for disease prediction. In the disease prediction task, our algorithm 
outperformed the baseline methods on all metrics, with a top-1 accuracy (AC) of 0.68 and a top-3 AC of 
0.923 on the testing set. By adding data enhancement, the top-3 AC reached 0.926. In the examination 
recommendation task, the overall AC on the testing set was 0.93 and the macro average (MA) F1-score was 
0.88. The average area under the curve (AUC) on the training set was 0.97 while on the testing set it was 0.86.
Conclusions: We constructed an intelligent prediagnosis system with an MSCNN framework that can 
predict diseases and make examination recommendations based on EMR data. Our approach achieved 
good results on a retrospective clinical dataset and thus has great potential for the application of automated 
diagnosis assist in clinical practice during pre-diagnosis stage, which will provide help for primary level 
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Introduction

Cough is the most common symptom leading to pediatric 
medical treatment (1). In nonspecialized pediatric medical 
institutions, the proportion of children with cough as 
the first chief complaint is more than 35% (2). Cough 
is considered chronic in children when it is present for 
longer than 4 weeks (3). Etiologies of pediatric chronic 
cough include asthma, bacterial pharyngitis, influenza 
(FLU), acute upper respiratory tract infection, suppurative 
tonsillitis, and bacterial bronchitis. The high phenotypic 
similarities between pediatric respiratory diseases make it 
challenging to accurately diagnose chronic cough.

Recent research on this subject has focused on the use of 
artificial intelligence (AI) to aid the diagnosis of respiratory 
diseases (4-8), especially the diagnosis of coronavirus disease 
2019 (COVID-19). However, most studies investigated 
intelligent diagnosis assistance during the formal diagnostic 
phase when medical examinations have been performed. 
In the early stage of medical treatment (referred to as the 
“prediagnosis stage” in this paper), many challenges exist 
that have not yet been addressed by researchers.

In the prediagnosis stage, the doctor must conduct a 
detailed interview with the patient, make a preliminary 
judgment of the disease based on the chief complaints 
described by the patient, and determine a succeeding 
examination plan for accurate diagnosis and treatment. 
Imaging examinations like chest X-ray (CXR) or chest 
computed tomography (CT) and physical examinations 
like lung auscultation are common ways for diagnosis of 
respiratory disease. Nevertheless, the misuse of imaging 
examination is very common in the pediatric respiratory 
clinic, especially in primary-level hospitals (9). According to 
the guidelines of pediatric chronic cough (2), mild cases of 
pneumonia do not require imaging examination, and strict 
criteria are used to determine which patients require a CT 
scan. However, in practice, many doctors do not strictly 
follow the guidelines for examination, especially in countries 

with insufficient medical human resources. Some health 
workers who have not been rigorously trained in clinical 
diagnosis lack knowledge about the guidelines. The excessive 
use of imaging examinations may cause negative effects 
to children’s health (10). The incidence of cancer caused 
by ionizing radiation in people aged 0–19 years is 3 times 
higher than that in adults over 20 years of age (11). On the 
other side, inaccurate prediagnosis of disease and inadequate 
examinations are also harmful as they may prolong the 
disease, leading to disruptive symptoms and a greater 
economic burden to patients and their families. Hence, 
there is an urgent need for methods that can assist doctors 
in the prediagnosis stage to accurately predict diseases and 
recommend appropriate examinations to patients in pediatric 
respiratory clinics.

In this paper, we designed an intelligent method to 
assist doctors in disease prediction and examination 
recommendation based on the clinical information 
in electronic medical record (EMR) text during the 
prediagnosis stage. EMR clinical notes contain rich 
information gained in doctor-patient interview process, 
such as the patient’s age, chief complaint, present disease 
history, past history, family history, history of allergy, and 
medication history, etc. These information are essential 
and useful for disease identification and examination 
determination in prediagnosis stage. Usually, an experienced 
and senior physician can make an accurate preliminary 
disease prediction by looking at the details in the chief 
complaint description, such as sputum and nasal mucus, 
cough sound, fever condition, panting, lung auscultation, 
etc., which are lacked in low-level hospitals. So in this 
paper, we chose to leverage the diagnostic experience 
of advanced children's hospitals. We constructed a pre-
diagnostic framework based on the retrospective EMR data 
to help physicians judge diseases and make examination 
plans.

Recently, as the progress of natural language processing 

doctors or doctors in basic-level hospitals. Due to the generality of the proposed framework, it can be 
straight forwardly extended to prediagnosis for other diseases.
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(NLP) techniques and deep learning algorithm, more 
and more researchers started to use EMR data for disease 
diagnose. For example, Kam et al. (12) extracted EMR data 
of multiple biological signal variables from the MIMIC II 
database and built a prediction network using a DNN model 
to facilitate the early detection of sepsis. Chao et al. (13) 
also used EMR data combined with time-series data and 
a recurrent neural network (RNN) to predict Parkinson’s 
disease. Wang et al. (14) constructed a prediction model 
using EHRs and a knowledge-based CNN to estimate the 
distant recurrence probability of patients with breast cancer. 
However, there is still no research leveraging EMR data 
in prediagnosis stage. Accurately predicting disease in the 
prediagnosis stage is not easy, as there are limited modes 
of evidence. Besides, to accurately understand the medical 
semantics from unstructured chief complaint text is also a 
challenge problem. To the best of our knowledge, this is 
the first study to use AI methods to assist doctors in the 
prediagnosis stage.

To achieve our goal, we developed a MSCNN framework 
for disease prediction and examination recommendation. 
This framework consisted of a pretrained medical language 
model and 2 TextCNN-based models. We trained the 
medical language model with a medical literature corpus 
to achieve better semantic representation of medical 
textual contents. For disease prediction and examination 
recommendation, we used NLP technologies to process 
patient information in EMR text. Our system learned to 
predict disease and recommend examinations through 
2 respective TextCNN networks derived from transfer 
learning from the pretrained language models. To evaluate 
our method, we compared its performance with 4 other 
methods and designed an AC indication for the examination 
recommendation task. Experimental results showed that our 
method achieved a better performance in disease prediction 
than the 4 other models and obtained a good performance 
in examination recommendation.

The main contribution of this work lies in the following 
three aspects. First, we addressed diagnostic challenges 
in the prediagnosis stage of medical treatment, which has 
been ignored in previous studies of AI diagnosis assistance. 
Second, we developed an intelligent system to help doctors 
predict diagnoses and make appropriate examination plans 
for respiratory diseases with chronic cough as the chief 
complaint. Third, we designed a MSCNN framework that 
generates a more accurate semantic representation for 
medical text and can be rapidly transferred to downstream 
AI tasks.

This paper is organized as follows. Section 2 reviews 
relevant literature. Section 3 presents our method in detail, 
including the problem definition, system framework, and 
models. Section 4 reports on the experiments for the 2 AI 
tasks (disease prediction and examination recommendation) 
and their results, including the experimental set, evaluation 
metrics, experimental results, and discussion. Finally, 
Section 5 discusses this research further and concludes 
the paper. We present the following article in accordance 
with the STARD reporting checklist (available at https://
tp.amegroups.com/article/view/10.21037/tp-22-275/rc).

Methods

In this section, we first describe the overall framework of 
our method. Then, we introduce the formal definitions 
of prediagnostic disease prediction and examination 
recommendation. Last, we present the two models by 
describing their dataset, algorithm, and the statistical 
methods for their performance assessment.

Overall framework

In this paper, we developed a medical-semantic-aware 
framework (MSCNN) to predict diseases and recommend 
examinations in the prediagnosis stage. As shown in Figure 1,  
the overall framework consisted of 3 main parts: a pre-
trained language model based on word2vec (15) algorithms 
that improves awareness of medical semantics in downstream 
tasks, a TextCNN-based disease prediction model, and a 
TextCNN-based examination recommendation model whose 
parameters were obtained from transfer learning from the 
pretrained language model. The pretrained language model 
generated vector representations with a deeper awareness 
of medical content to improve the semantic foundation of 
the downstream tasks. The word embeddings output of the 
pretrained language model was taken as the input for the 
succeeding tasks. For disease prediction and examination 
recommendation, we built 2 TextCNN models with EMR 
data. The configuration of the 2 models was acquired from 
the pretrained language model through fine-tuning.

Problem definition

We formally define an EMR dataset with R medical records 
as X = {r1, r2, ..., rR}. Each record r in set R can be seen as 
a sequence containing n words, denoted as r = {W1, W2, 
..., Wn}, among which each word w is associated with a 

https://tp.amegroups.com/article/view/10.21037/tp-22-275/rc
https://tp.amegroups.com/article/view/10.21037/tp-22-275/rc
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feature vector v according to the vocabulary. This vector 
corresponds to the word-embedding in the matrix V n L∈ × ,  
in which L denotes the scale of the embedding.

Definition for disease prediction 
Assuming a collection D = {d1, d2, ..., dm} of m different 
types of diseases that has the phenotype of chronic 
cough, given an EMR dataset X, the goal of the disease 
prediction task was as follows: for a chronic cough case, 
our prediagnostic prediction model will learn through 
the feature vectors extracted from EMR data and output 
the probability distribution of diseases for the case. Thus, 
the model will output a disease probability distribution 
vector ( )1 2, , ...,i i i

i my y y y= ,  in which ( )0 1, 1, 2, ...,i
jy j k< < ∈  

and 1i
j

j
y =∑ . The higher the value of i

jy , the greater the 

incidence probability of the disease.

Definition for examination recommendation
Assuming a set composed of k types of examinations, denoted 

as E = {e1, e2, ..., ek} , given an EMR dataset X, the goal of 
the examination recommendation task was as follows: for 
a chronic cough case and its disease prediction result d, 
the model will output an examination plan formatted as an 

examination distribution vector ( )1 2, , ...,i i i
i kZ Z Z Z= , in which 

}{ { }0,1 , 1, 2, ...,i
jZ j k∈ ∈ . When i

jZ  equals 1, the model 
recommends taking a certain examination; when i

jZ  equals 0, 
the model does not recommend taking a certain examination.

Pretrained medical language model

Word embedding models based on a general corpus 
are insensitive in medical semantic contexts (16). In this 
work, we trained a medical language model using the  
word2vec (15) algorithm to obtain better semantic 
representations for medical-related content. Word2vec is a 
widely adopted model in NLP that maps high-dimensional 
one-hot word vectors to a low-dimensional dense word 
vector space for feature representation. Word2vec can be 

Pre-trained language model

Parameter configuration

Feature representation

Disease prediction Examination recommendation

TextCNN based model TextCNN based model

Fine tune

EMR data EMR data
r v

w1 v1wn vnwk vk

Medical 
literature corpus

Word2Vec

Figure 1 Diagram of the workflow of the entire framework. A medical language model was trained with a medical literature corpus and 
word2vec algorithms. This model generated word embeddings for text data used in downstream tasks. TextCNN models based on EMR data 
were built with word embeddings as input for disease prediction and examination recommendation tasks. EMR, electronic medical record; 
TextCNN, text convolutional neural network.
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specifically divided into Skip-gram and continuous bag of 
words (CBOW) models (15). We applied the Skip-gram 
model to train the medical literature corpus, since the 
frequency of medical words is less than that of common 
words. By using central words to predict context words and 
making adjustments (17), Skip-gram is able to improve the 
accuracy of a semantic vector.

Given the text sequence [W1, W2, …, WT] and the word 
Wt as the center word, the probability of the context word 
will be maximized ( )|t j tP W W+  in the fixed window. With 
c denoting the size of the context window, the objective 
function of the algorithm is:

( )
1 , 0

1 log |
T

t j t
t c j c j

objective P W W
T +

= − ≤ ≤ ≠

= ∑ ∑
  

[1]

We calculated the probability ( )|t j tP W W+  in the 
objective function through the softmax function as follows:

( ) ( )
( )

0 1
0

1 1

exp '
|

exp '

T
W W

I W T
W W W

V V
P W W

V V=

=
∑

  [2]

Here WI represents the central word, W0 represents 
the context word, and VW and V’W represent the vectors of 
the input and output words, respectively. Each node of the 
softmax function outputs a value between 0 and 1, and the 
probability of all neuron nodes in the output layer sums 
to 1. To simplify the calculation of the softmax function, 
we leveraged the Negative Sampling (18) algorithm to 
selectively update part of the weights of the training sample 
to accelerate the gradient descent.

Disease prediction model

Dataset
For disease prediction, we extracted retrospective EMR 
data from the respiratory outpatient department of 
The Children’s Hospital of Zhejiang University School 
of Medicine. Filtering the data by ICD-10 disease 
diagnosis code, we retrieved 181,229 medical records of  
107,840 patients who were diagnosed with chronic cough in 
the hospital from August 2019 to November 2020. A total 
of 2,936 cases didn’t meet the requirements of our training 
task due to a lack of information and were excluded. The 
remaining 178,293 records were divided into a training set 
and a testing set at a ratio of 7:3, with 133,719 records in 
the model training set and 44,574 in the testing set. We 
also extracted 5% (6,686 records) of the 133,719 records in 

the model training set as the validation set for parameter 
tuning.

Algorithm
The golden standard for the diagnosis of respiratory 
diseases caused by chronic cough is based on imaging 
and blood gas test results. However, for the pre-diagnosis 
stage, since the doctor only conducts inquiry and physical 
examination, there is no golden standard for prediagnosis. 
Senior physician can make accurate preliminary disease 
prediction by considering the details in the chief complaint, 
such as sputum and nasal mucus, cough sound, fever 
condition, panting, lung auscultation, etc. Thus we leverage 
the diagnostic experience of advanced children’s hospitals to 
provide prediagnosis assist for low-level hospitals.

According to the problem definition, disease prediction 
is essentially a text classification problem. Since examination 
data are not available in the prediagnosis stage, the only 
information available for prediction is that gained from 
doctor-patient interviews, which can be acquired from EMR 
text. We designed a system to predict disease type using 
7 types of information: age, the patient’s chief complaint, 
present disease history, past history, family history, history 
of allergy, and medication history. Considering the 
excellent performance of the TextCNN (19) model in text 
classification, we used this model for disease prediction in 
the prediagnosis stage.

We first input the EMR records into the pretrained 
language model to obtain embedding vectors to be used as 
the input of the convolutional layer of our disease prediction 
model. A 100-dimensional lookup table was then generated 
in the convolutional layer, which can be denoted as:

1: 1 2 ...n nX X X X= ⊕ ⊕ ⊕   [3]
Here ⊕  denotes the cascading operator, and Xi:i+j denotes 

a sequence of words (Xi, Xi+1, ..., Xi+j). The convolution 
operation involves a filter w Rhk∈  that is applied to a 
window containing h words to generate features. Feature ci 
is generated from the window of word Xi to word Xi+h−1:

( ): 1i i i hc f W X b+ −= ⋅ +   [4]

Here f is the activation function, W is the weight of the 
sequence, and b is the offset. The convolution kernel is then 
applied to generate feature map c = [c1, c2, ..., cn−h+1] for the 
sentence {X1:h, X2:h+1, ..., Xn−h+1:n}, and the maximum value 

}{ˆ maxc c=  of feature map c is taken as the feature of that 
particular filter. Each kernel has 128 filters, which forms an 
eigenmatrix of 1*128.
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In the convolution stage (Figure 2), the parameters of the 
pretrained language model were transferred to the disease 
prediction model through fine-tuning. We set the kernel 
size as [3, 4, 5] for the disease prediction model. To avoid 
information loss, the width of the convolution kernel was 
set as the same as the dimension of the word vector, and 
each kernel had 128 output channels.

Since the sentences were vectorized by word embedding, 
we could carry out a convolution scan at character level, 
which needs to contain all the feature vectors of the 
characters. Therefore, the width of the convolution kernel 
should be consistent with the width of embedding vector. 
Each convolution kernel had 128 filters, and the stride was 
set to [1, 1]. The rectfier linear unit (ReLU) function was 
used as the activation function. For network initialization, 
the Glorot normal distribution initialization method was 
used. To adjust data distribution, we also added batch 
normalization (BN) to the network (20). 1-max pooling was 
used to improve the stability of model. We generated three 
128-length feature vectors and concatenated them into a 
384-dimensional vector before dropout. Finally, we used a 
fully connected structure and softmax as the output layer. 
The formula of the softmax function was as follows:

( )| i
X j

j

eP y j V
e

= =
∑  

 [5]

Here VX denotes the features formed by feature tiling 
after convolution and pooling, and y denotes the output of 

disease prediction. i and j denote a certain disease type in 
the disease set.

Cross entropy was adopted as the loss function of the 
disease prediction model:

( )
1 1

log
R m

ki ki
k i

L t y
= =

= −∑∑   [6]

Here tki is the probability that sample k belongs to 
category i, and yki is the probability that sample k is 
predicted as category i. m is the size of disease set, and R is 
the size of the EMR training set.

Model optimization
To tackle the problem of uneven distribution of the 
training data among different categories of diseases, we 
used focal loss (21) instead of cross entropy loss for the 
disease prediction task. The focal loss function improved 
the accuracy of the model by introducing the parameter αt 
and the modulation coefficient γ and adjusting the shared 
weight of positive and negative samples while controlling 
the weight of difficult and easy samples. The loss function 
of focal loss is represented as follows:

( ) ( ) ( )1 logy
t t t tFL P P Pα= − −   [7]

Here Pt represents the probability of model prediction in 
the classification task:

{ 1
1
P if y

t P otherwiseP =
−   [8]

Word2vec 
embedding input

Embedding 
matrix

Embedding lookup

Convolution kernal Active Fn: reLU BN + MaxPool

Vector size =128

K=(3, 100)

K=(4, 100)

K=(4, 100)

Concated 
vector Output

Size =128 N-class

BN + MaxPool

SoftmaxConcat

(sentence length, 100)

Filter size [3,4,5]
Num filter =128

Stride =1
W−F+1

S

Figure 2 Diagram of the workflow of the TextCNN disease prediction model. TextCNN, text convolutional neural network. BN, batch 
normalization; Fn, function; reLU, rectfier linear unit.
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Statistical analysis
We used precision, recall, and F1-score to measure the 
performance of algorithms for each disease type in the 
target category (Table 1). As disease prediagnosis is a 
multiclassification task, evaluation indexes were calculated 
separately for each category. The evaluation measurements 
used for the prediagnosis disease prediction and examination 
recommendation tasks were both based on a confusion 
matrix (Table 2). The formula definition of precision, recall, 
and F1-score was as follows: 

Precision: 100%TPP
TP FP

= ×
+

  [9]

Recall: 100%TPR
TP FN

= ×
+

  [10]

F1-score: 1
2 100%P RF

P R
× ×

= ×
+

  [11]

For each type of disease in the target category, we 
respectively calculated the precision, recall, and F1-score 
metrics for our method and the baseline methods. We 
then calculated AC, macro average (MA), and weighted 
average (WA) of precision, recall and F1-score to evaluate 
the overall effect of the algorithm on the test dataset. The 
formulas of AC, MA, and WA were as below:

Accuracy: 
( )

100%TP TNAC
TP TN FP FN

+
= ×

+ + +
  [12]

Macro average: 
1

1 n

i
i

MA S
n =

= ∑   [13]

Weighted average: sup

1

1 ,
n

port
i i i

Totali

CWA W S W Cn =

= =∑  
[14]

Here n denotes the number of disease categories, Si 
denotes the score (precision/recall/F1-score) of each 
category, and Wi denotes the weight of each category, which 
was calculated by dividing the number of instances of each 
category Csup port by the total number of test sets CTotal.

Experiment setup
We counted common diseases with cough as the chief 
complaint in children and reclassified the diseases according 
to similarity of symptoms as suggested by respiratory 
experts in our hospital. After incorporating similar 
subcategories, 12 disease types were finally included as the 
prediction target categories (Table 1). 

For data processing, we extracted the patient’s medical 
records, including age, chief complaint, present disease 

history, past history, family history, history of allergy, 
and medication history. After removing stop words, we 
concatenated different attributes into a combined text snippet 
as the patient’s context snippet. Our model then learned 
through these patient context snippets from the training set.

The entire pipeline was built using a bag of words model 
in Python version 3.6.2 (Python Software Foundation, 
Wilmington, DE, USA) with the gensim 3.8.3 package. 
Machine learning (ML) classifiers and model evaluation 
were implemented using the scikit-learn version 0.23.2 
package (22). Tensorflow version 2.1.0 was used to construct 
the TextCNN architecture (23).

Examination recommendation model

Dataset
For examination recommendation, we also extracted 
181,229 retrospective medical records from the EMR 
data as the disease prediction dataset. We counted all the 
examination items for the different disease types. The 
items with too few cases were filtered out, and those with 
a total number of more than 500 cases were selected and 
ranked as the label column. Finally, we choose the top  
10 most frequent examination items in pediatric respiratory 
clinics as the recommended items. These included blood 
routine examination (blood RT), abnormal lymphocyte 
detection (AL), hypersensitive C-reactive protein (hs-
CRP), CAP allergen test (CAP), immunoglobulin (IGG), 
complement (alexin), chest normal position piece (chest 
PA), renal function, stool, and respiratory virus detection. 
We excluded EMR records without any examinations in the 
10 categories and formed a dataset of 42,967 cases. Then, 
we divided the training set and the test set at a ratio of 3:1 (3 
for the model training set and 1 for the testing set). Among 
the 32,225 cases in the model training set, we extracted 5% 
(1,611 cases) as the validation set for parameter tuning.

Algorithm
Examination recommendation is essentially a multilabel 
classification problem. Our model recommends examination 
items according to the clinical information of patients, 
such as age, chief complaint, history of present disease, 
past history, history of allergy, and the diagnosis given 
by doctors. For training, we concatenate the information 
in diagnosis and in clinical notes. The model also learns 
through a TextCNN framework to generate examination 
recommendation results. Our prediagnosis system can 
achieve two tasks: first generating the disease prediction 
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Table 1 The 12 target categories in the prediagnosis disease prediction task

Class label Class name Records Disease names ICD-10 code

0 AURI 57318 Acute upper respiratory infection J06.900

Upper respiratory infection J06.900x003

1 Bronchitis 38502 Acute bronchitis J20.900

Bronchitis J40.x00

Asthmatic bronchitis J45.901

Chronic asthmatic bronchitis J44.804

2 Asthma 15002 Noncritical bronchial asthma J45.903

Asthma J45.900

Bronchial asthma J45.900x001

Cough variant asthma J45.005

3 Pharyngitis 12374 Acute pharyngitis J02.900

Acute nasopharyngitis J00.x00

Herpangina B08.501

Infective nasopharyngitis J00.x00x007

Pharyngitis J02.900x004

4 Pneumonia 4465 Bronchopneumonia J18.000

Acute bronchopneumonia J18.000a

Pneumonia J18.900

Acute pneumonia J18.900a

5 Rhinitis 4285 Anaphylactic rhinitis J30.400

Acute rhinitis J00.x00

Allergic Rhinitis with Asthma J45.004

Allergic rhinitis J30.400

Rhinitis J31.000x001

6 Tonsillitis 2992 Acute tonsillitis J03.900

Acute suppurative tonsillitis J03.901

7 Laryngitis 2850 Acute laryngitis J04.000

Acute laryngotracheitis J04.200

8 Nasosinusitis 2490 Nasosinusitis J32.900, J32.900x001

Acute nasosinusitis J01.900

Chronic nasosinusitis J32.900

9 FLU 2430 Influenza J11.101

10 FBAO 2327 Upper airway cough syndrome R05.x00

Acute tracheitis J04.100

11 Others 1795 – –

Disease abbreviation: AURI, acute upper respiratory infection; FLU, influenza; FBAO, foreign body airway obstruction.



Zhu et al. Intelligent prediagnosis service for pediatric chronic cough1224

© Translational Pediatrics. All rights reserved.   Transl Pediatr 2022;11(7):1216-1233 | https://dx.doi.org/10.21037/tp-22-275

result from the disease prediction model; then the predicted 
disease with the highest probability is taken as part of the 
input for the examination recommendation model; finally 
the system will generate examination recommendation 
results based on the examination recommendation model.

T h e  Te x t C N N  m o d e l  w a s  a l s o  u s e d  i n  o u r 
recommendation model, but with binary cross entropy loss 
as the loss function, since examination recommendation 
becomes a binary classification problem for every given 
examination item. The predicted average probability error 
of each examination category was taken as the overall error 
of the model, and the parameters were updated using the 
back propagation algorithm. The formation of our loss 
function is represented as follows:

( ) ( ) ( )( )ˆ ˆlog 1 log 1Loss y y y y= − ⋅ + − ⋅ −   [15]

Here y is the ground truth status that a certain 
examination is taken or not taken (1 represents taken, 0 
otherwise) of the sample, and ŷ  denotes the probability 
that the model predicts the sample as a positive case.

Statistical analysis
We selected 10 common examination items in pediatric 
chronic cough as the recommended items, and the 
prediction of each category was binary with a value 0 or 1 
(0 meaning that the examination was not recommended, 
and 1 meaning that it was recommended). For evaluation, 
we calculated precision, recall, and F1-score for the 
0 and 1category (examination undertaken or not 
undertaken) respectively by integrating the examination 
recommendation results of different examine items under 0 
and 1categories. The calculation method of the precision, 
recall and F1-score metrics was similar to that of disease 
prediction. We calculated AC, MA precision, WA precision, 
MA recall, and WA recall to assess the performance of our 
examination recommendation method. The formula of AC 
was different from that of disease prediction:

( )
1

1 n

i
A F n

n =

= ∑   [16]

( ) ( ){1
0

i i iif H x Y Y
otherwiseF n ⋅ ==  [17]

We designed this metric specially for the examination 
recommendation task. Here n denotes the number of 
samples in the EMR dataset. F (n) calculates the prediction 
AC of each examination category through matching between 
the predicted result vector and the ground-truth vector. In 
F (n), the element-wise product of 2 vectors H (Xi) and Xi 
is calculated. H (Xi) represents the model output vector for 
sample Xi, while Yi represents the ground-truth examination 
vector of each sample. Both are one-dimensional arrays 
whose element is a binary value to show whether the 
examination is recommended (1 for true and 0 for false). 
In addition, we also calculated the receiver operating 
characteristic (ROC) and the area under the curve (AUC) to 
evaluate the sensitivity and specificity of the algorithm.

Ethical statement

The study was conducted in accordance with the 
Declaration of Helsinki (as revised in 2013). The study was 
approved by the Academic Ethics Committee of Children's 
Hospital Affiliated to Zhejiang University School of 
Medicine (No. 2020-RIB-058). Individual consent for this 
retrospective analysis was waived.

Results

Disease prediction results

Comparison with state-of-the-art methods
Baseline methods 
We compared our method with 4 state-of-the-art baselines 
that were suitable for text classification on our dataset, 
including the logistic regression (LR) algorithm (24), the 
gradient-boosted decision tree (GBDT) algorithm (24), the 
hierarchical attention networks (HAN) model (25), and the 
bidirectional encoder representations from transformers 
(BERT) model (26). The former two are ML methods, 
while the latter two are DL algorithms widely adopted 
in NLP tasks. For our method, we used our MSCNN 
framework, which contained a preliminary embedding 
process and a TextCNN-based disease prediction process. 
Training data were divided into 5 folds for cross-validation, 

Table 2 The confusion matrix for evaluation of prediagnosis disease 
prediction tasks

Category True value =1 True value =0

Prediction value =1 TP FP

Prediction value =0 FN TN

Value of the confusion matrix elements: TP, true positive; FP, 
false positive; FN, false negative; TN, true negative.
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and the results are shown in the figures below.
Top-1 result comparison 
The output of the prediagnosis disease prediction task was 
a 12-dimensional vector. Each dimension represented the 
probability of a certain disease occurring. The component 
with the maximum value was the top-1 result. Figure 3 shows 
the AC, recall, and F1-score of top-1 results predicted by the 
5 algorithms for the 12 disease categories.
Results of ML methods 
The model performance of the 5 algorithms was basically 
proportional to their feature extraction ability. LR and 
GBDT ML models showed weak prediction ability. The 
highest precision values of LR and GBDT for the 12 disease 
categories were 0.6 and 0.63, respectively, both occurring 
in the acute upper respiratory infection (AURI) class. The 

highest recall values of LR and GDBT were 0.73 and 
0.77, respectively, both occurring in the bronchitis class. 
However, for some disease categories, such as pharyngitis, 
tonsillitis, and FLU, the precision, recall, and F1-score of 
the LR and GBDT algorithms was below 0.1.
Results of DL methods 
Judging from the top-1 result, the prediction effect of the 
DL methods was obviously better than that of the ML 
methods. Compared with HAN and BERT, our method 
(MSCNN) had the strongest prediction ability in this task in 
terms of the performance on precision, recall, and F1-score 
metrics. BERT generally performed better than HAN in all 
categories. The highest precision values of HAN, BERT, 
and our method in the 12 disease categories were 0.7, 0.71, 
and 0.75, respectively, all occurring in the AURI class. Our 
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Figure 3 Diagram of the performance comparison of our method (MSCNN) against 4 other algorithms (including LR, GDBT, HAN, 
and BERT) on the top-1 result in the disease prediction task. Figures (A-C) show the performance on precision, recall, and F1-score, 
respectively. The results showed that our method had the best performance on all 3 metrics. MSCNN, medical-semantic-aware convolution 
neural network; LR, logistic regression; GBDT, gradient-boosted decision tree; HAN, hierarchical attention networks; BERT, bidirectional 
encoder representations from transformers; AURI, acute upper respiratory infection; FLU, influenza; FBAO, foreign body airway 
obstruction.
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method performed approximately 5% to 10% better than the 
other 2 DL algorithms on precision. For recall, the highest 
values of HAN, BERT, and our method were 0.76, 0.79, and 
0.82, respectively, all occurring in the bronchitis category. Our 
method performed approximately 3% to 11% better than the 
other 2 DL algorithms on recall. For F1-score, the highest 
values of HAN, BERT, and our method were 0.71, 0.72, and 
0.76, respectively, all occurring in the AURI class. The best-
performing disease classes for the DL methods appeared to 
be similar to that for the ML approaches, possibly due to 
differences in data quality for the different disease categories. 
In addition, for categories whose data volumes were small [e.g., 
tonsillitis, FLU, and foreign body airway obstruction (FBAO)], 
the performance of all DL methods was low.

Comparison of methods with and without data 
enhancement
In the prediagnosis stage, patients have not yet undergone 
any examinations, so the information available for disease 
prediction consists of the patient’s chief complaint, age, and 
other textual information in EMR notes. The precision 
value for the top-1 result in our method was 0.6–0.8 in most 
disease categories. Thus, we added a data enhancement 
process through the embedding replace method to promote 
performance. We calculated the term frequency-inverse 
document frequency (TF-IDF) features of words, and 
the 5 words with the largest TF-IDF feature values were 

sorted out as salient words (27). For salient words, we used a 
pretrained word2vec model to calculate the similarity with 
words in the lookup table of word2vec and replaced the 
original words with the words with the highest similarity to 
generate new enhanced samples.

Table 3 compares the AC, MA precision, WA precision, 
MA recall, WA recall, MA F1-score, and WA F1-score for 
the 5 algorithms with and without data enhancement. Since 
we needed to measure the performance of different methods 
at the dataset level, we took the MA and WA values of 
multiple disease classes on precision, recall, and F1-score 
for the different methods. After data enhancement, the 
performance of the 4 algorithms was slightly improved, 
excepting that of the LR algorithm. This may be because 
the LR algorithm is prone to underfitting, and the 
enhanced data lead to more serious underfitting problems. 
However, in general, data enhancement is able to improve 
performance.

Table 4 presents the top-3 AC results (the 3 highest-
scored components) of different methods. It also shows 
clearly that the data enhancement can help to promote 
prediction AC for both ML and DL methods.

Ablation study for the pretrained medical language 
model
To demonstrate the role of the pretrained language 
model in the whole framework, we conducted an ablation 

Table 3 The measurement of our method against 4 baseline methods and their data enhanced version for prediagnosis disease prediction

Methods AC MA precision WA precision MA recall WA recall MA F1-score WA F1-score

LR 0.52 0.35 0.51 0.18 0.52 0.21 0.48

LR + data enhancement 0.47 0.34 0.48 0.31 0.47 0.31 0.47

GBDT 0.54 0.38 0.53 0.18 0.54 0.21 0.5

GBDT + data enhancement 0.54 0.44 0.54 0.32 0.53 0.34 0.53

HAN 0.62 0.51 0.61 0.42 0.62 0.45 0.61

HAN + data enhancement 0.63 0.54 0.62 0.42 0.63 0.46 0.62

BERT 0.64 0.54 0.61 0.44 0.65 0.48 0.65

BERT + data enhancement 0.64 0.55 0.62 0.44 0.67 0.47 0.65

Ours (MSCNN) 0.68 0.56 0.67 0.45 0.68 0.5 0.67

Ours (MSCNN) + data 
enhancement

0.68 0.59 0.67 0.49 0.68 0.51 0.67

Metrics included AC, MA precision, WA precision, MA recall, WA recall, MA F1-score, and WA F1-score. AC, accuracy; MA, macro 
average; WA, weighted average. Methods include: LR, logistic regression; GBDT, gradient-boosted decision tree; HAN, hierarchical 
attention networks; BERT, bidirectional encoder representations from transformers; MSCNN, medical-semantic-aware convolution neural 
network.
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experiment. We compared the performance changes 
in precision, recall, and F1-score of disease prediction 
tasks by using the TextCNN model before and after 
the pretrained medical language model was adopted. As 
can be seen in Table 5, when we didn’t use the medical-
semantic-aware pretrained language model to generate 
embedding vectors as input for the TextCNN model, the 
performance of the framework was lower than that of the 
MSCNN framework under 3 indicators (precision/recall/
F1-score) in the 12 disease categories. In most disease 
categories, the performance improvement achieved using 
the MSCNN framework was around 20%. The reason for 
the improvement was that the pretrained language model 
was trained with medical literature resources; therefore, it 
had a good semantic awareness of medical-related textual 
content and was able to generate more accurate semantic 
representations for the EMR text.

Examination recommendation results

Results of the dataset
Table 6 shows the results of the MSCNN examination 
recommendation approach for the 10 selected examination 
categories. As examination recommendation also used the 
TextCNN model, we did not compare its performance 
with other algorithms. For each examination item, we 

first calculated the precision, recall, and F1-score values 
for positive and negative cases. That is, when a given 
examination item was undertaken (positive, status =1) or 
not undertaken (negative, status =0) in the ground-truth 
data, we calculated its precision, recall, and F1-score. Then, 
for each examination item, we integrated the positive 
and negative measures with the MA and WA values on 
the 3 indicators. The calculation of the indicator AC was 
demonstrated in the Evaluation Protocol section above.

In Table 6, we can see that the examination items with the 
highest AC were not normal examination items like blood 
RT (AC =0.88) and chest PA (AC =0.63) but uncommon 
examination items like stool (AC =0.99), IGG (AC =0.98), 
renal function (AC =0.98) and alexin (AC =0.98). The 
effectiveness of our inspection recommendation method 
is reflected in the following two points. (I) Routine 
examinations like blood RT and chest PA, which doctors 
often overuse in the treatment of respiratory diseases, do 
not gain the highest score in our algorithm. Therefore, 
our method does not recommend frequent items for every 
patient. (II) For items infrequently used by doctors, our 
algorithm achieved a very high AC (e.g., stool and alexin). 
This indicates the effectiveness of our algorithm in helping 
doctors determine examination plans, as our approach is 
able to accurately predict the use of infrequent examination 
items.

Table 7 shows the AC of the entire dataset, as well as the 
precision, recall, and F1-score values for the 0 and 1 statuses 
of our prediction results. The total prediction AC for the 
entire dataset was 93%. The performance was better for 
negative status than for positive status; thus, our approach is 
also able to exclude inappropriate examination items.

Figure 4 shows the ROC and AUC curves for the 10 
examination categories. The prediction performance of 
the algorithm in the different examination categories was 
generally even, except that the stool and renal function 
examination categories were much better. The examination 
class with the lowest ROC value was chest PA (AUC =0.81). 
The high performance on AUC reflects the strong sorting 
ability of our model. The model also showed good ability in 
the division of positive and negative categories.

Discussion

Related work

As DL methods have developed, more research has 
investigated intelligent diagnosis methods for respiratory 

Table 4 The top-3 AC results of the 4 methods and their data-
enhanced versions

Methods AC

LR 0.759

LR + Data Enhancement 0.822

GBDT 0.789

GBDT + Data Enhancement 0.821

HAN 0.907

HAN + Data Enhancement 0.911

BERT 0.901

BERT + Data Enhancement 0.905

Ours (MSCNN) 0.923

Ours (MSCNN) +Data Enhancement 0.926

Methods include: LR, logistic regression; GBDT, gradient-
boosted decision tree; HAN, hierarchical attention networks; 
BERT, bidirectional encoder representations from transformers; 
MSCNN, medical-semantic-aware convolution neural network; 
AC, accuracy.
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diseases such as pneumonia, COVID-19, and lung cancer. 
Most of the work in this field has focused on diagnosis in the 
formal diagnosis stage when medical inspections have been 
performed. For example, Umar Ibrahim et al. (4) proposed a 

bidirectional adversarial network-based framework to develop 
models predictive of COVID-19 versus non-COVID-19 
viral pneumonia using CT images. Wang et al. (5) developed 
a fully automated DL pipeline for the visualization of lesions 

Table 5 The measurements of the method that used the TextCNN model only and the method that used our MSCNN for the 12 disease 
categories

Disease
Precision Recall F1-score

TextCNN MSCNN TextCNN MSCNN TextCNN MSCNN

AURI 0.56 0.75 0.59 0.77 0.58 0.76

Bronchitis 0.49 0.68 0.68 0.82 0.55 0.74

Asthma 0.48 0.68 0.26 0.45 0.32 0.5

Pharyngitis 0.41 0.58 0.25 0.42 0.29 0.48

Pneumonia 0.46 0.65 0.23 0.45 0.26 0.53

Rhinitis 0.37 0.58 0.23 0.43 0.33 0.49

Tonsillitis 0.27 0.45 0.11 0.29 0.17 0.35

Laryngitis 0.50 0.68 0.38 0.57 0.38 0.6

Nasosinusitis 0.49 0.68 0.28 0.45 0.34 0.51

FLU 0.19 0.36 0.05 0.19 0.07 0.26

FBAO 0.53 0.72 0.16 0.33 0.27 0.4

Others 0.39 0.56 0.22 0.48 0.30 0.48

Metrics included precision, recall, and F1-score. TextCNN, text convolutional neural network; MSCNN, medical-semantic-aware 
convolution neural network; AURI, acute upper respiratory infection; FLU, influenza; FBAO, foreign body airway obstruction.

Table 6 Measurements of the 10 examination categories in the MSCNN examination recommendation approach

Examination AC MA precision WA precision MA recall WA recall MA F1-score WA F1-score

Blood RT 0.88 0.84 0.87 0.55 0.88 0.56 0.83

AL 0.89 0.79 0.88 0.64 0.89 0.67 0.88

hs-CRP 0.87 0.84 0.87 0.56 0.87 0.57 0.83

CAP 0.98 0.7 0.97 0.62 0.98 0.65 0.97

IGG 0.98 0.72 0.97 0.62 0.98 0.65 0.97

Alexin 0.98 0.72 0.97 0.62 0.98 0.65 0.97

chest PA 0.63 0.7 0.78 0.71 0.63 0.63 0.64

Renal function 0.98 0.87 0.98 0.8 0.98 0.83 0.98

Stool 0.99 0.91 0.99 0.59 0.99 0.65 0.99

Respiratory virus detection 0.89 0.54 0.96 0.65 0.89 0.55 0.92

Metrics included AC, MA precision, WA precision, MA recall, WA recall, MA F1-score, and WA F1-score. MSCNN, medical-semantic-
aware convolution neural network; AC, accuracy; MA, macro average; WA, weighted average; blood RT, routine examination; AL, 
abnormal lymphocyte detection; hs-CRP, hypersensitive C-reactive protein; CAP, CAP allergen test; IGG, immunoglobulin; chest PA, chest 
posteroanterior.
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and the diagnosis of pneumonia caused by COVID-19 
on CXR images that was able to discriminate between 
viral pneumonia caused by COVID-19 and other types 
of pneumonia. Another study proposed a fully automated 
DL system (6) for COVID-19 diagnostic and prognostic 
analysis by routinely used CT images. Yu et al. proposed a 
DL framework CGNet (28) for classifying CXR images into 
normal and pneumonia categories. Their model includes 
feature extraction, graph-based feature reconstruction, and 
classification. All the above works relied on image data for 

learning.
To the best of our knowledge, research on intelligent 

diagnosis assistance in the prediagnosis stage has not yet 
been undertaken, and this is the first study to investigate 
intelligent prediagnosis for pediatric chronic cough. Wagner 
et al. (29) developed an intelligent data enhancing platform 

for the diagnosis of COVID-19. The platform applied 
data enhancement algorithms and deep neural networks 
(DNNs) to analyze the comparison of disease symptoms 
between COVID-19 patients and healthy patients in EMR 
records in the week prior to polymerase chain reaction 
(PCR) testing to discover derivative features of COVID-19 
in early stage of the disease. Kam et al. (12) extracted EMR 
data of multiple biological signal variables from the MIMIC 
II database and built a prediction network using a DNN 
model to facilitate the early detection of sepsis. Since these 
variables were updated every few hours, the authors added 
a long short-term memory (LSTM) neural network for the 
learning of time-series data. Kam et al. (12) also used EMR 
data combined with time-series data and a recurrent neural 
network (RNN) to predict Parkinson’s disease. Using RNN 
architecture, their algorithm encoded the similarity between 
the patterns of 2 sequences in patient treatment records 
to predict disease risk. Mullenbach et al. (30) proposed an 
approach using a CNN to automatically assign specific 
ICD-9 codes to discharge summaries of intensive care unit 
(ICU) inpatients. The authors used a per-tag attention 
mechanism to learn document representations for each 
tag. Their convolution attention multiple label (CAML) 
model interpreted the classification of diseases from clinical 
records to produce diagnostic codes and obtained good 
results on the MIMIC-II and MIMIC-III datasets. Wang  
et al. (14) constructed a prediction model using EHRs and a 
knowledge-based CNN to estimate the distant recurrence 
probability of patients with breast cancer. By mapping the 
documents to a concept space, they generated embeddings 
with concept unified identifiers (CUI) tags and transmitted 
the embeddings to a knowledge-guided CNN (K-CNN) for 
prediction. Qiu et al. (31) applied DNN and CNN networks 
to free text pathological reports to automatically analyze the 
primary cancer and lateral positions of breast cancer and 
lung cancer. Irvin et al. (32) developed an automatic labeling 
NLP tool that was able to identify radiological reports of  
14 different varieties of thoracic diseases with greater 
accuracy than human annotators. Although there are many 
diagnosis assistance studies using EMR data, there is still 
no research leveraging doctor-patient interviews and EMR 
data for diagnosis assistance in the prediagnosis stage.
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Figure 4 Diagram of the ROC and AUC curves for the 10 
examination categories in the examination recommendation 
task. The model showed superior classification ability in the 
renal function and stool examinations. ROC, receiver operating 
characteristic; AUC, area under the curve.

Table 7 The measurement metrics for the entire dataset in the 
examination recommendation task

Status Precision Recall F1-score

0 0.98 0.94 0.96

1 0.74 0.89 0.81

AC 0.93

MA 0.86 0.91 0.88

WA 0.94 0.93 0.93

We conducted precision, recall, and F1-score measurements in 
positive (status =1, examination undertaken) and negative (status 
=0, examination not undertaken) cases. AC was calculated 
for the overall dataset. MA precision/recall/F1-score and WA 
precision/recall/F1-score were calculated through weighted and 
macro averages of the 10 examination categories. AC, accuracy; 
MA, macro average; WA, weighted average.
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In this paper, we conducted research on intelligent 
prediagnosis for pediatric chronic cough using textual 
EMR data and an NLP convolution neural network. CNN 
algorithms have been successfully applied to a variety of NLP 
tasks, such as text classification (33), sentiment analysis (34),  
and language modeling (35). Other recent work has 
combined convolution and attention mechanisms (36,37). 
Our work differs to these studies in that we take the specialty 
of medical data into account. We combined convolution 
with a language model that was pretrained on a medical 
literature corpus for more accurate semantic representation 
of medical-related content. This model could then be rapidly 
transferred to different downstream AI tasks for learning.

Discussion of approach

We compared our method with two ML methods (LR and 
GBDT) and two DL methods (BERT and HAN). The 
ML models showed weak prediction ability compared 
to the DL methods. The reasons for this may arise from 
three factors. First, ML algorithms are prone to deviation 
due to unbalanced sample distribution. In our dataset, the 
number of cases in the different disease categories was not 
even. AURI and bronchitis had more than 10,000 cases, 
while the case numbers of 4 categories (asthma, pharyngitis, 
pneumonia, and rhinitis) were between 300 and 1,000 cases, 
and those of 5 categories (tonsillitis, laryngitis, lasosinusitis, 
FLU, and FBAO) were lower than 1,000. In addition, the 
top-1 AC result of the intelligent prediagnosis task was 
strongly related to the number of the training cases. Second, 
ML methods do not learn features deeply enough and often 
encounter overfitting and underfitting problems. This is a 
common problem with ML approaches. Third, data quality 
unevenness also contributed to the differences in the results. 
Since our learning methods were based on information 
from real historical EMR records, the information in the 
EMR text was not always of a high quality. In some cases, 
the description of the chief complaint was very simple, 
with much information missing. Therefore, the quality 
of the textual data was uneven, and this lead to the poor 
performance of the ML algorithms in text classification.

BERT and HAN models are common DL models in text 
classification prediction. Generally speaking, the BERT 
model performs better, since the HAN model is not able 
to find minority groups in the data, and its performance is 
biased by the majority class. In our task, the performance of 
BERT was inferior to our method, which may be attributed 
to two causes. First, BERT has too many parameters and 

is more suitable for a refined classification task with more 
detailed data content. TextCNN performs better with 
coarse-grained classification problems and is thus more 
suitable for EMR text, which usually lacks detail. Second, 
BERT does not use embedding vectors that are aware of 
medical content. In contrast, our MSCNN framework used 
a pretrained language model to generate medical-semantic-
aware representations, which greatly improved classification. 
This was confirmed in the subsequent ablation experiments.

To promote diagnostic accuracy, we also added a 
pretrained medical language model and a data enhancement 
process before disease prediction. We used a medical 
literature corpus to train a model that could generate 
word embeddings for input text. The ablation studies 
of the pretrained medical language model showed an 
approximately 20% promotion in performance, as the 
awareness of medical semantic content was elevated 
through the pretrained medical language model. For data 
enhancement, we calculated TF-IDF features of words and 
generated salient words as input. However, this did not lead 
to an obvious improvement in performance.

Limitations of our method

This work had several limitations. First, the approach 
applied embedding of concatenated EMR text as input to 
the disease prediction model by relying on the pretrained 
medical language model. One limitation is that we might 
carry along modeling errors that exist in the pretrained 
language model. Another limitation of the disease prediction 
model is that it does not use attention mechanisms for 
medical entities. In the future, to improve the prediction 
AC, we could leverage an external knowledge database 
to realize the medical-related entities and add attention 
mechanism for those terms. Another issue is related to 
the data quality. In EMR records, the chief complaint 
information is often incomplete, which obviously affects 
the prediction AC. Including information from the physical 
examination performed by doctors in the prediagnosis 
stage may improve the effect of the intelligent prediagnosis 
model. Another limitation is that the proposed MSCNN 
framework is restricted to solving prediction problems using 
textual data.

Conclusions

We constructed an intelligent prediagnosis system for 
chronic cough in children to facilitate disease prediction and 
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examination recommendation using clinical information 
in EMR records. We proposed an MSCNN framework 
for the overall system. We first trained a medical language 
model using a medical literature corpus to generate more 
accurate semantic representations for downstream AI tasks. 
This language model benefitted succeeding tasks through 
transfer learning. We then built a neural network based 
on the TextCNN model to achieve disease prediction and 
examination recommendation. The ablation study showed 
that a pretrained language model plays a large role in 
promoting the semantic understanding of medical content 
in EMR data. Our approach showed good results on real 
clinical datasets both in disease prediction and examination 
recommendation tasks. For disease prediction, our approach 
outperformed the 4 baseline methods (including two ML 
methods and two DL methods) on all the metrics. For 
examination recommendation, our MSCNN framework 
also achieved high AC in recommending examination items. 
However, for datasets with small volume, the precision 
and recall performance of our method was not as good. 
Improving the prediction AC for small-volume datasets 
will be the focus of future research. More sophisticated 
attention mechanisms and deeper expertise knowledge 
could be added to our neural network in the future. Further 
development of the model with advanced NLP and DL 
techniques will enable the model to achieve a more accurate 
performance. Further investigation is needed to validate the 
clinical application of our model.
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