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Introduction

Modern societies are challenged by dramatic changes in 
the epidemiology of diseases. Scientific and technological 
advances have resulted in more efficient treatment of acute 
diseases and changes in human habits contributing to a 
high increase in the prevalence of chronic inflammatory 
conditions. In this context, obesity and cancer have emerged 
as two of the greatest threats to global human health. Here 
we will examine the evidence that links inflammation as a 
key mechanism to promote both obesity and cancer. We 
will extend the discussion to present the pathophysiological 
mechanisms that implicate obesity-associated inflammation 
in the development of colorectal cancer, with a special 
emphasis on the role of TNF-α.

Inflammation: basis for modern diseases

Inflammation is canonically defined as an essential biological 
response which promotes host repairs of tissue injury and 
infection (1). In the last decades, striking advances were 
made in our understanding of the biochemical and cellular 
mechanisms induced by acute inflammation, whilst the 
knowledge of the intracellular programs regulated by 
chronic inflammation advanced at a much slower rate (2). 
Nevertheless, the spectrum of prevailing inflammatory 

conditions has shifted from acute to chronic inflammatory 
states since the end of 20th century, significantly contributing 
to the pathogenesis of modern diseases such as obesity, 
type 2 diabetes (3,4), atherosclerosis (5), neurodegenerative 
diseases (6), and certain cancers (7).

The most obvious signs of inflammation are heat, pain, 
swelling, and redness, described by Celsius during the time 
of the Roman Empire. Initially, this inflammatory response 
was deemed as a biological reaction without deleterious 
effects, evoked just to protect from infection and normalize 
homeostasis. This theory influenced the understanding 
of the field until the 1970s, when it was recognized that 
inflammation not only preserves the integrity of the body 
but might also harm host tissues itself (8). Interestingly, 
recent research brought to light the fact that inflammation-
mediated deleterious effects are closely linked to the 
pathophysiology of chronic multifactorial diseases (9-12). 
Accordingly, there is increasing interest in the mechanisms 
involved in the resolution of inflammatory response as 
much evidence links nonresolving inflammation to the 
pathophysiology of the ever-growing modern diseases of 
industrialized societies (10).

There is intense debate about the regulatory mechanisms 
that control inflammatory response, in part due to its 
complexity and also because of the multitude of agents 
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involved in its induction and resolution. However, it is 
now well recognized that there are two major stimuli that 
promote acute inflammation: infection and host cell necrosis 
from sterile tissue injury (13). Intriguingly, the products 
generated by both processes are recognizable by the 
same cluster of host molecules, which activate a common 
inflammatory pathway that eliminates triggering stimuli 
and repairs the damaged tissue (2). As a result, inflammation 
is often interrupted by an active and highly regulated 
process that restores the homeostatic state (2,14,15). One 
key regulating mechanism of inflammation resolution is 
the switch from pro-inflammatory prostaglandins and 
leukotrienes to anti-inflammatory resolution-inducing 
lipids, such as lipoxins and resolvins (14,16). Specifically, 
these anti-inflammatory mediators promote the transition 
from neutrophil to monocyte recruitment (17-19). The 
subsequent uptake of apoptotic neutrophils orchestrates the 
production of anti-inflammatory cytokines by monocytes 
and recruited macrophages, which are responsible for the 
clearance of dead cells and other debris and initiation of 
tissue repair at the damaged site (15,20,21). However, if 
the inflammatory trigger is not eliminated, a chronic state 
of inflammation is sustained for an undetermined period 
of time, although signs of acute phase may reappear 
throughout the course of the disease. This type of chronic 
inflammation is detected in a myriad of conditions 
including tuberculosis,  unrepaired tissue damage, 
persistent allergens and undigestible foreign particles and 
endogenous crystals (10).

Chronic inflammation may also occur in diseases where 
the initiating trigger is not well defined and does not seem to 
be related to infection or tissue damage, therefore, without 
a physiological counterpart (2,9). In these conditions, 
inflammation appears to be chronic from the outset with 
infiltration of monocytes, dendritic cells and macrophages 
into the target tissue. Examples include obesity (22), 
atherosclerosis (5) and some cancers (23). Notably, in these 
cases of chronic inflammation there appears to be vicious 
cycles connecting inflammation and the pathological 
process it accompanies. Indeed, this reciprocal relationship 
may be responsible, at least in part, for the chronic nature 
of these inflammatory conditions and distinguishes them 
from the first type of chronic inflammation, which is caused 
by the persistence of the inflammatory inducer.

A causal relationship between chronic inflammation and 
cancer has long been suspected. It was first detected by 
Galen and later established in the 19th century by Rudolf 
Virchow who discovered leukocyte infiltration in malignant 

tissues. Interestingly, the inflammatory response is similar 
in many aspects to a wound-healing process and tumors 
have been considered as wounds that do not heal (24). 
Research over the last decade in the field of inflammation 
and cancer pathogenesis has produced abundant evidence 
of the functionally important tumor-promoting effects 
that immune cell have on neoplastic progression (7,23,25). 
Inflammation can contribute to multiple hallmark 
capabilities by supplying bioactive molecules to the tumor 
microenvironment, including growth factors that sustain 
proliferative signaling, survival factors that limit cell death, 
proangiogenic factors, extracellular matrix-modifying 
enzymes while enhancing cell proliferation, cell survival, 
cell migration and angiogenesis (7,23,25). Accordingly, the 
importance of inflammation for production of the “tumor 
microenvironment” is now widely recognized as an enabling 
characteristic of cancer (26).

As a modern epidemic disease, the concept of obesity-
induced adipose tissue inflammation is much more recent, 
about 20 years old (27). Corresponding to Virchow’s findings 
related to cancer tissue, large numbers of macrophages have 
been observed infiltrating adipose tissue from obese mice and 
humans (28,29). In obesity, the proinflammatory pathways 
in adipose tissue macrophages (ATM) are highly activated, 
leading to the secretion of a variety of cytokines such as 
TNF-α and interleukin-6 (IL-6) (3,30).

Inflammation is conspicuously associated with certain 
colon cancers. For instance, colitis-associated cancer (CAC) 
often arises in patients diagnosed with inflammatory bowel 
disease (IBD) including Crohn’s disease and ulcerative 
colitis (31). Moreover, the cumulative incidence of CAC 
among patients with ulcerative colitis 25 years after 
diagnosis ranges from 8% to 32%, accounting for one 
sixth of all deaths in this group (31). Furthermore, Crohn’s 
disease is associated with a pooled estimated relative risk of 
2.4 (32). The physiopathology of IBD is multifactorial and 
involves genetic, mucosal, microbiota and immune system 
abnormalities (for review see Xavier et al. and Danese et al.) 
(33,34). Interestingly, the disrupted communication between 
the epithelium and the intestinal flora has an important 
role in activating the immune system and maintaining 
the inflammatory response (35-40). Therefore, ulcerative 
colitis and CAC are mainly mediated by the first mentioned 
mechanism of nonresolving inflammation, whereby the 
inflammatory trigger is not eliminated and causes an acute 
inflammatory response to persist for a long period of time.

In addition to IBD, other well-known risk factors for 
colon cancer are obesity, diets low in fruits and vegetables, 
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and physical inactivity (41,42). As these habits were 
initially more prevalent in developed nations, obesity-
associated cancer was once a disease primarily observed in 
longstanding industrialized societies; however nowadays 
it is a worldwide health burden (43). Specifically, the 
association between being overweight or obese with colon 
cancer are positive for both men (RR =1.24) and women  
(RR =1.09) at an elevation of 5 kg/m2 in BMI (42). 
Intriguingly, obesity-associated colon cancer is, at least in 
part, mediated by the second mentioned mechanism of 
nonresolving inflammation, in which chronic low-grade 
inflammation arises without a clear trigger. In the next 
topics we will further explore these inflammatory features 
of obesity-associated colon cancer. 

Obesity-associated inflammation

In the 1980s and 1990s, the world saw a striking increase 
in the prevalence of obesity and in the most recent years 
it trended to levelling out (44). This epidemic had begun 
in developed countries, but nowadays it is also common in 
many other regions over the world, such as Asia and Latin 
America (43,45-47). In conjunction with this epidemic, we 
faced a dramatic increase in the prevalence of diseases, such 
as hypertension, dyslipidemia, cardiovascular disease, type 
2 diabetes mellitus and certain cancers, making obesity a 
worldwide public health concern (48).

Obesity-associated tissue inflammation is now recognized 
as a major driver in the pathogenesis of metabolic diseases 
(3,4,49,50). Activation of inflammatory pathways has since 
been observed in classical metabolic tissues, including 
fat, liver and muscle (27,51,52). At the molecular level, 
chronic low-grade inflammation induced by obesity leads 
to activation of protein kinases, such as Jun N-terminal 
kinase (JNKs) (53) and inhibitor of nuclear factor B kinaseβ 
(IKKβ) (51,54,55), which phosphorylates serine 307 (Ser307) 
of IRS-1 (56,57). As a result, the interaction of the PTB 
domain of IR with the phosphorylated NPEY motif of  
IRS-1 is inhibited, impairing the interaction of IRS-1 with 
the insulin receptor and causing insulin resistance (56). 
Obesity associated inflammation is also associated with 
increased activity of iNOS, which S-nitrosates insulin 
signaling pathway and promotes insulin resistance (58-61).

A pivotal event in the pathophysiology of obesity-
induced inflammation is the recruitment of macrophages 
into adipose tissue (62). The large accumulation of adipose 
tissue macrophages (ATMs), representing up to 40% of the 
cells in obese adipose tissue, determines locally increased 

levels of pro-inflammatory cytokines, such as TNF-α 
and IL-6, which sustain insulin resistance in a paracrine 
manner (28,29,55). In addition, these cytokines may also 
leak out the adipose tissue and exert systemic effects (28). 
Congruent with this data, macrophages are recruited to 
adipose tissue by chemokines secreted by adipocytes, which 
provide a chemotactic gradient that attracts Ly6Chi monocytes 
into the adipose tissue, where they differentiate into ATMs 
(63-66). Once pro-inflammatory ATMs migrate into adipose 
tissue, they also secrete their own chemokines, attracting 
additional macrophages and establishing a vicious cycle that 
stimulates the inflammatory process (55).

Macrophages are dynamic cells that acquire different 
phenotypes in accordance with the microenvironment that 
they reside (62). These cells are often classified by their 
functional inflammatory state and the polarized states 
are often referred to as classically activated macrophages 
(CAMs), known as M1, and alternatively activated 
macrophages (AAMs), known as M2 (67). In adipose tissue 
these two subpopulations exert opposite immune actions: 
M1 inflammatory macrophages secrete proinflammatory 
cytokines whereas AAMs secrete anti-inflammatory 
ones (22). The majority of ATMs in obesity are M1-like, 
identified by the specific expression of CD11c, typically 
negative in M2-like macrophages that reside in lean 
adipose tissue (55,68). Along this line, macrophage specific 
JNK deficient mice are protected from insulin resistance 
induced by high fat diet (69). In contrast, repression of 
programs that control alternative activation of macrophages 
is associated with obesity and insulin resistance (70,71). 
Furthermore, obese animals exposed to a switch from a 
high-fat diet (HFD) to a chow diet or treated with omega-
3-fatty acids or thiazolinediones have macrophages 
converted from an M1 to M2 phenotype, coincident with 
increased insulin sensitivity (72,73).

After the observation of the striking switch from AAM 
to inflammatory macrophages in obese adipose tissue, it 
was progressively described that not only are macrophages 
actively mobilized by the obese adipose tissue but also 
by other innate and adaptive immune cells (22,74). In 
a simplified way, there is an increase in inflammatory 
immune cells such as Th1 cells (75), CD8+ T cells (76) and 
B cells (77), which promote insulin resistance by further 
activating inflammatory macrophages or directly secreting 
pro-inflammatory cytokines or antibodies. Meanwhile, 
this pool of inflammatory cells takes place with resident 
tolerogenic immune cells, including eosinophils (68), innate 
lymphoid type 2 cells (ILC2s) (78), regulatory T cells 
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(Tregs) (79), invariant natural killer (iNKT) cells (80,81) 
and Th2 cells (75), which secrete IL-4, IL-5 and/or IL-10 
and, therefore, promote direct anti-inflammatory effects or 
activate the alternative program of resident macrophages to 
sustain metabolic homeostasis. Despite the debate about the 
sequence of cells that infiltrate the adipose tissue, obesity 
assembles a large number of immune cells that promote and 
amplify the inflammatory response in the adipose tissue.

Another critical mechanism that mediates inflammation 
in obesity is the interaction with the host-microbiota 
(82,83). The gut microbiota contains expressive amounts 
of lipopolysaccharides (LPS) derived from Gram-negative 
bacteria, which can leak into circulation and may cause 
inflammation and macrophage recruitment into adipose 
tissue (84,85). Interestingly, recent studies revealed that 
obesity changes in microbiota are associated with increased 
circulating LPS levels (86,87). Accordingly, exercise-
induced decreases in LPS circulating levels parallels the 
increase in insulin sensitivity (88). Mechanistically, LPS 
binds to TLR-4 Toll-like receptors (TLRs), which exert 
a central role as a major regulator in microbe-associated 
molecules recognition and free fatty acids (89). Importantly, 
TLR4 activation promotes increased JNK and IKK activity 

and insulin resistance in obesity (76). In addition, TLR4 
genetically deficient animals were protected from free 
fatty acids- and obesity-induced insulin resistance (89,90). 
Interestingly, gut microbiota modulation by antibiotic 
treatment decreases LPS and TLR4 activation sustains 
insulin sensitivity in different animal models (85,87,91).

In aggregate, the studies discussed in this section suggest 
that obesity is a unique systemic chronic inflammatory 
disease. Importantly, the interplay between cytokines 
secreted by inflammatory cells, free fatty acids and gut 
microbiota products signal through the two prototypical 
pro-inflammatory receptors, TNF-α and TLR-4 promoting 
the activation of specific intracellular cascades that include 
IKK-β, NF-κB and JNK and resulting in the inhibition 
of insulin signaling and deregulation of metabolic 
homeostasis. Interestingly, insulin resistance has been 
suggested to be an adaptive and protective response that 
properly balances the metabolic homeostasis during the 
noxious stimulus of overnutrition (3). Since the protective 
effects of inflammation cannot be dissociated from a cost 
to homeostasis (92), it is important to better understand 
how obesity-associated inflammation also promotes human 
modern diseases including cancer (Figure 1).

Figure 1 Adipose tissue of obese individuals is highly infiltrated by machophages and other active inflammatory cells. These cells present a 
pro-inflammatory phenotype characterized by increased levels of tumor necrosis factor-alpha (TNF-α) and interleukin-6 (IL-6) secretion, 
which promote obesity-associated colon cancer by acting through both endocrine and paracrine ways.
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Obesity-associated inflammation and colon 
cancer

Besides type 2 diabetes, hyperlipidemia and hypertension, 
which are classically linked to obesity, other diseases, 
including cancer, were recently associated with obesity (93). 
Obesity not only promotes colorectal cancer (CRC) but it is 
also specifically associated with esophageal, pancreatic, post-
menopausal breast, endometrial, thyroid, gallbladder and 
renal cancers (42). Notably, a meta-analysis of 56 studies, 
where more than 7 million individuals were evaluated, 
demonstrated that for each 5 kg/m2 increment in body 
mass index BMI there was an increase of 18% in the risk of 
developing colon cancer (94).

In spite of the prominent epidemiological importance of 
obesity as a risk factor for colon cancer, the initial evidence 
that implicates inflammation as a promoter of colon cancer 
comes from CAC studies. Remarkably, TNF-α production 
is increased in ulcerative colitis and has been implicated in 
its pathogenesis (95,96). Although, it is long recognized 
that TNF-α  activates the oncogenic transcription 
factors NF-κB and AP-1 only recently the importance of 
inflammatory cytokines in CAC became better understood 
(97,98). In an elegant study by Greten et al., the conditional 
ablation of IKKβ in epithelial cells resulted in a marked 
reduction in the development of colonic adenomas, but had 
little effect on adenoma size (99). Otherwise, lack of NF-κB 
in myeloid cells, principally lamina propria macrophages, 
led to a significant reduction in both colonic tumor quantity 
and size (99). Although IKKβ ablation did not resulted in 
decreased TNF-α production, it is not clear whether the 
LysM-Cre deleter used in this study is non-functional in a 
specific subset of colonic macrophage, or whether TNF-α 
may be produced by other cell types in CAC, including T 
cells and epithelial cells (99). Additionally, a very interesting 
study demonstrated that TNF-α expression is elevated in 
CAC carcinogenesis and genetic inactivation of the type 1 
TNF receptor (TNFR1) or TNF signaling inhibition with 
a soluble decoy receptor reduced CAC promotion (100). 
Moreover, the dependence of TNF-α to carcinogenesis 
in a distinct model of CAC than AOM + DSS, as T-bet 
deficiency was observed in dendritic cells, reinforces 
its importance in CAC tumorigenesis (101). Thus, the 
same prototypical cytokines, TNF-α and IL-6, which are 
increased in obesity-associated inflammation, have been 
found to be crucial in promoting colitis induced cancer.

Obesity-associated inflammation is clearly not restricted 
to adipocytes but disseminated in all metabolic tissues 

(51,52,102-104). Furthermore, it was recently observed 
that non-metabolic glandular organs, including colon, 
also present signs of low-grade inflammation in obesity 
(105-109). Importantly, TNF-α overexpression was 
consistently elevated in colons of genetically- or diet-
induced obesity rodents (106-109). Congruent with an 
increased inflammatory response IL-6 and other cytokines 
are also upregulated in the colons of obese animals (110,111) 
suggesting that the obese colonic tissue recapitulates the 
inflammatory timbre constantly observed in metabolic 
tissues of obese individuals. Accordingly, obese Zucker 
rats treated with azoxymethane (AOM) manifested higher 
incidence of tubular adenomas and TNF-α than their 
lean matched controls (112). Recently, it was observed 
that leptin deficient and high fat diet fed mice exposed to 
a combination of AOM + DSS developed higher colonic 
inflammation than their lean counterparts and increased 
colonic adenoma numbers in a TNF-α  dependent 
manner (109). Importantly, treatment with infliximab, a 
monoclonal antibody that neutralizes TNF-α, inhibited 
the activation of colonic JNK and IKK resulting in the 
decreased quantity of colonic adenoma and the growth 
of colon cancer xenografts (109). Interestingly, enhanced 
production of IL-6 and TNF-α was also observed in a 
hepatocarcinoma (HCC) mouse model (113). In these 
animals HFD induced increased expression of TNF-α and 
ablation of TNFR1 significantly reduced obesity-enhanced 
HCC development (113). Altogether, these studies suggest 
that the inflammatory milieu instigated by obesity may be 
a general mechanism that links obesity to gastrointestinal 
cancers.

Activation of IKK/NF-κB pathway is consistently 
associated with both colitis- and obesity-associated 
carcinogenesis (99,109,113,114). Interestingly, the outcome 
of TNF mediated NF-κB activation, considering target 
gene expression, may alternate, depending on the tissue 
or cell type stimulated. In this context, NF-κB exerts not 
only intrinsic effects within pre-malignant epithelial cells, 
but also modulates actions of infiltrating lymphocytes and 
macrophages (115,116). In normal physiology, NF-κB response 
is self-limited by the induction of negative feedback loops 
(117,118). However in chronic inflammation induced by 
obesity, continuous cytokine release by immune cells of the 
stromal vascular fraction results in sustained IKK activation, 
which deregulates NF-κB activity (109).

The pro-oncogenic effects of NF-κB involve other 
intracellular mechanisms, besides continuous activation 
of IKK. Transcription factors, including STAT3, may 
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play a role in NF-κB dependent tumorigenesis (7). In 
tumors, accumulation of the prototypical NF-κB complex 
(p50/RelA) in the cellular nucleus is regulated through 
acetylation by p300 (119,120). It is relevant that STAT3 
though p300 mediates RelA acetylation to promote and 
sustain NF-κB activity (121). Importantly, cytokines 
and growth factors encoded by NF-κB target genes, 
especially IL-6, are critical STAT3 activators (122-124). 
Interestingly, other inflammatory cytokines, such as IL-17, 
promotes STAT3 activation through NF-κB mediated IL-6 
expression (125,126). Congruent with this data, expression 
of several inflammatory mediators, such as IL-6, COX2, 
IL-17 and IL-23, is also dependent of STAT3 as a RelA co-
transcriptional factor (127-130).

Investigations on the influence of IL-6 in CAC showed that 
knockout mice for this cytokine developed less and smaller 
colonic adenomas than controls in a CAC model (123). 
Moreover, pharmacological inhibition of the common 
signaling receptor gp130 by a soluble gp130-Fc fusion 
protein also resulted in decreased tumor number and size 
in animals exposed to a CAC model (131). In consonance, 
genetic activation of gp130 in enterocytes of mice in a CAC 
model promoted increased tumor number and growth (132) 
whereas STAT3 deletion in intestinal epithelial cells 
markedly decreased the incidence and volume of AOM + 
DSS induced tumors (123). IL-6 is mostly produced by 
myeloid cells, primarily by lamina propria macrophages 
and dendritic cells during tumor initiation and by T cells 
during tumor progression, in CAC models (123,131,133). 
This is probably a consequence of the high inflammatory 
activity of CAC tumors and the continuous injury and 
death of enterocytes during tumor development (123). 
In other words, epithelial cells and cancer cells, as well as 
tumor-associated fibroblasts can also produce IL-6 and may 
contribute to the total amount of this cytokine, particularly 
in sporadic colorectal and obesity-associated colorectal 
cancers.

Taken together, these data provide strike evidence for 
the involvement of TNF-α by promoting continuous 
stimulation of IKK/NF-κB pathway in the pathogenesis of 
obesity-associated colon cancers. Furthermore, interactions 
between IL-6, STAT3 and NF-κB may have a role in this 
phenomenon.

TNF-α influence on obesity-associated colon 
carcinogenesis phases

Carcinogenesis can be didactically divided into three 

mechanistic phases: initiation (which involves stable 
genomic alterations), promotion (which involves the 
proliferation of genetically altered cells) and progression 
(which involves an increase in tumor size, its spreading 
and acquisition of additional genetic changes) (134). 
Notably, TNF-α may influence all those stages of tumor 
development (Figure 2).

Initiation

More than six decades ago, Peyton Rous defined initiation 
phase as a “subthreshold neoplastic state”, in which “latent 
tumor cells” wait for the promotion stimuli to proliferate 
(134-136). Since the majority of cancers need at least 4-5 
mutations to acquire a neoplastic phenotype (26,137) 
the initiation phase in current words corresponds to the 
early mutations observed in premalignant cells. TNF-α 
modulates the initiation phase by at least three mechanisms. 
First, TNF-α released by inflammatory cells in the 
tumor microenvironment may induce reactive oxygen 
and nitrogen species (RNOS) in adjacent epithelial cells, 
inducing DNA damage and genomic instability (138,139). 
Second, colorectal tumors may be initiated by increased 
activity of Wnt/β-catenin signaling in colon progenitor 
cells (140-142). Importantly, TNF-α through activation of 
NF-κB or repression of GSK3β promotes Wnt/β-catenin 
signaling in gastrointestinal mucosa (143,144). Finally, NF-κB 
regulates several tumor suppressor pathways; specifically it 
inhibits p53 activity through competition for the p300 and 
CBP co-activator proteins (145,146).

In spite of the effects of TNF-α in a number of important 
molecules involved in tumoral initiation, experimental 
evidence from obese Zucker rats and high fatty diet fed 
mice demonstrate that treatment with AOM does not 
changed the total number of aberrant crypt foci (147,148). 
Furthermore, recent data showed that obese individuals 
have an increased risk to develop β-catenin negative colon 
cancer, but not β-catenin positive (149). Overall, these 
findings are consistent with minor effects of obesity low-
grade inflammation on the colonic tumor initiation.

Promotion

Initiation is an irreversible process, whereas promotion may 
be modulated by the stimuli intensity and even reversible 
if the stimuli are removed (134-136). The promotion 
phase is characterized by increased cell proliferation and 
reduced cell death. It may be an early or late event in tumor 
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development, as late proliferation of dormant malignant 
lesions may also occur (150). Evidence for TNF-α-mediated 
colonic adenoma promotion in obesity came from observing 
elevated numbers and larger tumors size in obese animals 
compared to their lean controls, which was associated to 
IKK overexpression in these tumors (109). Accordingly, 
neutralization of TNF-α reverted the growth rate of colon 
cancer xenograft implanted in high fat diet fed animals to 
lean settings (109). Furthermore, obese animals switched 
from a HFD to regular chow after carcinogen exposure 
developed more tumors than lean controls, but similar 
number of aberrant crypt foci, the colonic pre-neoplastic 
lesion (148).

During tumor promotion, it is necessary to increase 

tumoral blood supply, mainly by angiogenesis triggered by 
tumor hypoxia (151). Interestingly, activation of NF-κB, 
STAT3 and AP-1 in tumoral microenvironment cells, such 
as tumor-associated macrophages (TAMs) and fibroblasts 
directly regulate important pro-angiogenic genes, including 
IL-8, CXCL1, CXCL8, VEGF, and hypoxia inducible 
factor 1 alpha (HIF1α) (152-154). Inactivation of NF-κB 
or STAT3, neutralization of CCL2 or CXCL12, or TAM 
depletion leads to ineffective angiogenesis and reduced 
tumor growth. Interestingly, the visceral adipose tissue 
of patients with colon cancer presents concomitantly 
increases in TNF-α and the pro-angiogenic factors, such 
as HIF1α and VEGF (155). Altogether, these data indicate 
that obesity-associated inflammation strongly affects colon 

Figure 2 Tumor necrosis factor alpha (TNF-α) sensed by TNF-receptor 1 (TNFR1) phosphorylates inhibitor of nuclear factor kappa B 
(IKKβ) leading to degradation of inhibitor of kappa B (IκB) and nuclear migration of nuclear factor kappa B (NF-κB). TNF-α also promotes 
phosphoryation of mitogen-activated protein kinases (MAPK) pathway, resulting in Jun N-terminal kinase (JNK) and the activator protein 1 
(AP-1) activity. Sustained activity of both NF-κB and AP-1 mediate important processes in distinct phases of colon carcinogenesis.
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cancer promotion phase.

Progression

Metastatic disease is the most critical feature of cancer in a 
clinical setting as it is responsible for over 90% of disease 
mortality (156). The process of invasion and metastasis 
can be schematically divided into four major steps. First, 
epithelial-mesenchimal transition (EMT) is required for 
acquisition of a fibroblastoid phenotype by an epithelial 
malignant cell, resulting in increased motility and capacity 
to invade basal membranes and reach blood vessels or 
lymphatics (157). Second, cancer cells intravasate into 
blood vessels and lymphatics, with possible involvement 
of cytokines and inflammatory effectors by promoting 
increased vascular permeability (158,159). Third, metastatic 
cells should survive and travel in circulation (158,159). 
Fourth, circulating cancer cells should adhere and 
extravasate in a distant site, in which they need to interact 
with immune, inflammatory, and stromal cells to proliferate 
(158,159). Some of these cells may already be targeted to 
a pre-metastatic niche, in which soluble growth factors 
secreted by the primary tumor prime certain tissues for 
tumor cell engraftment, known as ‘metastatic niche’ theory 
(160-162). Obesity is associated not only with an increased 
incidence of colon cancer, but also with a more aggressive 
natural history; the patients are younger, present more 
metastasis to lymph nodes and the disease free and overall 
survival are reduced (163). In spite of the lack of direct 
evidence that obesity-associated inflammation interferes in 
these endpoints, TNF-α may exert effects in all metastatic 
phases.

TNF-α may contribute to cell migration-promoting 
EMT through stabilization of Snail, an inhibitor of 
E-cadherin expression, a key event in EMT (164-166). 
Interestingly, TNF-α, through NF-κB signaling, can 
also induce overexpression of other important regulators 
of EMT such as Twist, ZEB1 and SLUG, contributing 
to its induction (165,167-169). Another mechanism by 
which TNF-α can induce EMT is through synergistic 
action with transforming growth factor β1 (TGFβ) 
(170,171). Importantly, in a model of colon cancer, 
cancer cell invasiveness was associated to extracellular 
matrix proteolysis, a process that is dependent of matrix 
metalloproteinases (MMP) release, which may also be 
regulated by TNF-α induced activation of NF-κB (172,173).

After intravasation in circulation, metastatic cells need to 
survive in suspension and resist detachment-induced death, 

named anoikis (174). Notably, TNF-α, and other cytokines 
can promote survival of circulating metastatic cells, through 
activation of NF-κB in either inflammatory and cancer cells 
or by promoting a physical link between cancer cells and 
TAMs, allowing them to travel together throughout the 
circulation and evading immunological attacks (175,176). 
Furthermore, migration of metastatic cells is directed by 
chemokine gradients that are sensed by many receptors, 
including CXCR4, which expression is upregulated by 
TNF-α (177).

In a distant site, circulating metastatic cells are arrested 
on the endothelium in an integrin-dependent process. 
Therefore, adhesion between malignant and endothelial 
cells are important mediators of this process (175). 
Importantly, bone marrow-derived haematopoietic cells that 
express vascular endothelial growth factor (VEGF) receptor 
1 (VEGFR) migrate and determine the metastatic sites 
before the arrival of neoplastic cells (160). Interestingly, 
the pre-metastatic niche is also defined by the tumor-
secreted matrix protein versican, which activates TLR2 on 
host macrophages and promotes release of TNF-α (178). 
Accordingly, metastasis formation was dramatically reduced, 
by TLR2 or TNF-α suppression (178). Furthermore, 
VEGFA, TGFβ, and TNF-α secreted by the primary tumor 
promoted the expression of inflammatory proteins S100A8 
and S100A9, leading to infiltration of lungs, the target 
site of metastasis, by myeloid cells expressing the cell 
surface antigens integrin αM (also known as MAC1) or 
CD11b (161). As a result, treatment with S100A8 and 
S100A9 antibodies diminished infiltration of MAC1 
myeloid cells, resulting in a remarkable reduction in 
metastasis incidence (161). Specifically in regard to colon 
cancer, it was observed that targeting VEGF2 and other 
cytokines involved in the pre-metastatic niche formation 
reduced liver metastasis formation (179).

Conclusions

Recent clinical and experimental data provide support 
for the involvement of TNF-α in the pathogenesis 
of obesity-associated colon cancer. TNF-α promotes 
colon cancer in obese states through direct effects on 
premalignant cells and by orchestrating a tumor-promoting 
microenvironment through actions on several distinct 
cell types. However, how the cellular component of obese 
adipose tissue microenvironment promotes a “fertile 
soil” to carcinogenesis and whether interactions between 
inflammatory cells and adipocytes contribute to promotion 
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and progression of cancer is still largely unknown. Since 
these studies may contribute to a better understanding of 
carcinogenesis in general and give clues to cancer treatment, 
it will be critical in the future to systematically evaluate 
how an obesity-associated inflammatory microenvironment 
contributes to colon carcinogenesis.
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