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Gastric cancer (GC): general aspects

GC remains an aggressive disease that has a huge impact on 
global health. In the last few decades, the overall incidence 
of GC has been decreasing, but it still remains the fourth 
most common type of cancer and is the second leading 
cause of cancer-related death worldwide. The decline in 
its incidence is due to the use of antibiotics, changes in the 
consumption of chilled foods, increased use of preventive 
examinations and the eradication of H. pylori (1,2).

The incidence rates can vary by up to ten times around 
the world. Although Japan and Korea have the highest GC 
rates in the world, nearly two-thirds of stomach cancers 
occur in developing countries. High incidence areas include 
East Asia, Eastern Europe and South and Central America. 
Low incidence areas are found in South Asia, North 
America, East Africa, Australia and New Zealand (3).

One reason for this variation is the complex etiology 
dependent on a combination of environmental, host and 
genetic factors (4,5). One should emphasize the production 

of reactive oxygen species that leads to oxidative damage to 
DNA, mutations and aberrant DNA methylation (mainly 
hypermethylation of CpG islands in the promoter regions 
of certain genes), which results in the silencing of the tumor 
suppressor gene. In general, the prognosis for patients with 
gastric adenocarcinoma remains poor, and little progress has 
been made in improving the long-term survival rate (6,7).

Lauren (8) proposed the most used and widespread GC 
classification. He distinguishes between two main types of 
gastric carcinoma based on histological features: intestinal 
(well differentiated) and diffuse (poorly differentiated). 
Depending on the classification criteria and population 
studied, the proportion of intestinal and diffuse cancer 
varies (9-12). This classification is widely and routinely 
used by pathologists, epidemiologists and clinicians for 
the evaluation of gastric adenocarcinoma, particularly with 
respect to their incidence and etiology, although this is with 
limited value in relation to therapeutic decisions (13).

The intestinal form is composed of malignant cells that 
are bound to form structures similar to functional glands 
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of the gastrointestinal tract. Its development has been 
characterized by a series of sequential steps that begin with 
gastritis, which ultimately leads to mucosal atrophy (atrophic 
gastritis) followed by intestinal metaplasia, dysplasia, 
carcinoma, and subsequent metastatic spread (14). This 
pattern reflects a more differentiated cancer, and is the most 
common type in high-risk populations (15,16).

The diffuse subtype of GC is considered more aggressive 
than the intestinal type, is originated from native cells of the 
gastric mucosa and tends to be poorly differentiated (17). 
Despite being associated with an H. pylori infection, it is more 
associated with the loss of E-cadherin expression and, unlike 
the intestinal type, is not associated with any pre-neoplastic 
lesions. Due to its aggressive characteristics, the diffuse type 
can invade surrounding tissues and organs, for example, the 
duodenum and esophagus (2).

Genetic abnormalities involved in the pathogenesis and 
progression of gastric carcinoma were identified, and several 
alterations were correlated with the prognosis. Molecular 
mechanisms, such as changes in oncogenes, tumor suppressor 
genes, and cell adhesion molecules, are involved in gastric 
carcinogenesis. Moreover, genetic instability and changes in 
cytokines and growth factors contribute to the complexity of 
pathways involved in gastric carcinogenesis (14,18).

Among these genetic abnormalities, the loss of the 
functions of genes encoded by the INK4-ARF locus occurs 
frequently in cancers, which raises questions about the 
alterations in biochemical pathways of these proteins when 
transformed into cancer cells (19,20).

INK4/ARF locus

The INK4/ARF locus is located on the human chromosome 
9p21, spans approximately 35 kilobases and encodes five types 
of tumor suppressor genes: p16INK4A, p15INK4B, p14ARF (P19ARF 
in the mouse), p16INK4Aγ and P12 (21-25): the physiological 
functions of some of these remain unknown (26). Additionally, 
it is known that this locus has the CDKN2BAS gene (also 
known as CDKN2b anti-sense), which is responsible for 
producing a noncoding antisense RNA named ANRIL, 
which plays a regulatory function on CDKN2A and CDKN2B 
expression (27,28).

The most studied proteins produced by this locus (p16INK4A, 
p15INK4B and p14ARF) interact with other proteins that 
activate two critical anti-proliferative pathways (Rb and p53 
pathways) which play important roles in cell cycle inhibition, 
senescence, and stress-induced apoptosis (29). Functionally, 
both p16INK4A and p15INK4B bind specifically to CDK4 and 

CDK6, inhibiting the activity of cyclin D-dependent kinases, 
consequently blocking the cell proliferation by preventing 
phosphorylation of Rb, resulting in a G1 arrest (30,31). 
p14ARF, encoded in part by an alternative reading frame 
within the second of three exons that comprise the INK4A 
gene, acts primarily by inhibiting murine double minute 2 
(MDM 2)-mediated ubiquitination and degradation of p53, 
triggering p53-dependent cell cycle arrest and apoptosis (30).

Given the central role in tumor suppression of INK4-ARF 
in modulating activities of Rb and p53 pathways, it is not 
surprising that genetic and epigenetic changes in this locus 
are frequently detected in the majority of tumor types (29,32).

Some studies have shown that the INK4/ARF locus 
is tightly controlled, and polycomb group complexes 
are required to initiate and maintain the silenced state 
(29,33,34). The polycomb repressive complex 1 (PRC1) 
proteins (BMI1, PCGF1, PCGF2/MEL18, CBX2, CBX7, 
CBX8, and RING1B), and the PRC2 proteins (EED, 
SUZ12, and EZH2) have been shown to directly bind to 
and repress the locus (33,35-37).

Genetic alterations in INK4/ARF in gastric 
carcinoma

Genomic instability

Genomic instability is considered a hallmark of human 
cancers (38), which results in several genetic aberrations, 
from gene (changes in a single nucleotide) to structural 
levels (structural changes, losses and gains of entire 
chromosomes) (38,39). Therefore, these aberrations can 
affect the expression of tumor suppressor genes, oncogenes, 
DNA repair genes (genome stability genes), growth 
regulators, and cell cycle checkpoint control genes (40). 
Currently, the genomic instability can be classified into two 
types: chromosomal instability (CIN) and microsatellite 
instability (MSI) (39).

CIN and MSI

CIN is characteristic of various tumors, including GCs, 
which commonly are associated with chromosomal 
aberrations responsible for major modifications of DNA 
content, i.e., changes in chromosome copy numbers, high-
level loss of heterozygosity (LOH), and gene deletions and/
or amplifications (41). Most GCs exhibit significant CIN 
at several chromosome arms, including 9p (41-44); these 
instabilities have been associated with a shorter survival in 
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GC patients (45).
Array-based comparative genomic hybridization (aCGH) 

is a powerful method used to identify alterations of DNA 
copy number changes on a genome-wide scale (46). This 
method has been applied to a number of solid tumors, 
including GCs (47,48), revealing several regions of consensus 
change in DNA copy numbers, indicating the possible 
location of candidate oncogenes or tumor suppressor genes 
involved in gastric tumorigenesis (49). In particular, the 
chromosome 9p21.3, which has the tumor suppressor genes 
p16INK4A and p15INK4B, is known to be deleted frequently in 
GCs, particularly in undifferentiated GC (50-52).

Fan et al. (52) explored aCGH profiles of 64 human GC 
samples and eight GC cell lines using bacterial artificial 
chromosomes (BAC). They found out that the most 
frequent homozygous deleted region was 9p21 (8/72), and 
that homozygous deleted regions were higher in the cell 
lines than in the primary GC tumor samples. Weiss et al. (48)  
similarly observed that the loss of 9p21.3 was present in 
29% of gastric adenocarcinoma.

Although many studies have investigated mutations 
or deletions of genes in 9p21, there has been no precise 
characterization of the break-points. Lee et al. (50) analyzed the 
entire set of large homozygous deletions in six human GC cell 
lines (SNU-1, SNU-5, SNU-16, SNU-520, SNU-638, and 
SNU-668) through genome and transcriptome approaches, and 
defined 9p21.3 homozygous deletions precisely. Moreover, they 
investigated the effect of the 9p21.3 deletions on gene expression 
by transcriptome sequencing, finding that no genes within 
the 9p21.3 deletion region were expressed in SNU-16 and  
SNU-668 compared to other GC cell lines analyzed. 

Some studies recognize that the loss of chromosome 9p 
has been reported to occur more frequently in cases of GCs 
that are relapsed or histologically malignant (53,54). 

In the literature, there are few studies reporting 
alterations in the p14ARF gene. Tang et al. (55) showed that 
homozygous deletion of p16INK4A and p14ARF was present 
in 35.4% of the GC cases analyzed, and the loss rate of 
p14ARF mRNA was 45.8% (22/48) in GC. When analyzing 
11 cell lines for mRNA expression, homozygous deletion, 
mutation, and promoter methylation, Iida et al. (56) did 
not find any mutation in the whole coding region, but 
demonstrated that the p14ARF gene was more frequently 
inactivated by homozygous deletion or methylation in 
diffuse-type GC cell lines (5/7, 71.4%) than in intestinal 
ones; thus suggesting that p14ARF may be involved in the 
tumorigenic process in diffuse-type GCs.

Another type of genomic instability, commonly 

recognized in GC, is MSI. In GC tissues, MSI was a 
frequent event, with an average frequency varying from 
25% to 33.9% (57-59). Zhang et al. (60) showed that the 
LOH frequencies of D9S171 and D9S1604 microsatellite 
loci in GC, located upstream of the p16INK4A gene, were 
15% and 50%, respectively. Moreover, the LOH frequency 
in well-differentiated GC tissue was lower than in the 
moderately and poorly differentiated GC tissue without any 
significant difference (P>0.05). 

Mutations and polymorphisms

The number of studies linking genetic polymorphisms and 
GC has increased exponentially over the past decades, in 
parallel with major advances in sequencing and genotyping, 
resulting in the identification of polymorphisms that may 
be useful indicators for assessing the risk of GC (39,61). 
However, it is worth noting that the results derived from 
polymorphism studies still need to be carefully interpreted, 
as these biomarkers are generally population dependent, 
with a strong ethnic influence (39).

Li e t  a l .  (62) ,  studying 9p21 s ingle nucleotide 
polymorphisms (SNPs) from eight genome-wide association 
studies (GWAS), including studies of esophageal squamous 
cell carcinoma (ESCC), GC, pancreatic cancer, renal 
cell carcinoma (RCC), lung cancer (LC), breast cancer 
(BrC), bladder cancer (BC) and prostate cancer (PrC), 
identified that the SNP on rs3731239 (p16INK4A intronic) was 
significantly associated with an increased risk of GC, and 
that it overlapped with weak but potential enhancers, leading 
them to suggest that SNPs in the CDKN2A/2B-AS1/2B 
cluster may modulate disease susceptibility, primarily through 
regulating expression levels of genes in the cluster.

Kim et al. (63) investigated the importance of p16INK4A 
and p15INK4B mutations in four stomach cancer cell lines and 
14 stomach adenocarcinomas. They detected mutations in 
both genes only in stomach cancer cell lines; however, in 
the SNU5 cell line, they discovered a nonsense mutation 
(CGATGA/ArgStop) at codon 72 of the CDKN2 gene. 
The absence of mutations in the p16INK4A and p15INK4B genes 
in stomach cancer tissues suggests that mutations in both 
genes may not be a critical genetic change in GC pathways.

INK4/ARF methylation and GC

Methylation is an important characteristic of DNA 
and is responsible for events such as gene regulation, X 
chromosome inactivation, aging and cancer. Several studies 
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have identified methylation contribution to both oncogene 
activation and silencing of tumor suppressor genes in the 
development of cancers (64).

The inactivation of the p16INK4A gene by hypermethylation 
has been regarded as an important mechanism for initiation 
and development of GC (65). It is widely accepted that gene 
promoter methylation can repress gene expression at the 
transcriptional level, promoting the inactivation of tumor 
suppressor genes, leading to the development of malignant 
tumors (66).

The hypermethylation of p16INK4A may also be an important 
biomarker for identifying the possible malignant potential of 
precancerous lesions. In a study by Sun et al. (65), for the first 
time, a positive correlation between the aberrant methylation 
of the p16INK4A gene with the malignant transformation of 
gastric dysplasia was observed. This methylation pattern was 
also present in all of the GC samples that progressed from 
methylated gastric dysplasia lesions.

Iida et al. (56), using cell lines of the Human Science 
Research bank (Osaka, Japan), 7 (21.7%) of 32 samples of 
diffuse type, and 6 (21.4%) of 28 samples of intestinal type 
GC showed methylation of the p16INK4A gene, showing 
the lack of correlation between the methylation of this gene 
and the histological type. 

In their experiment, Song et al. (64) analyzed the 
methylation profile of the p16INK4A gene in 322 samples 
from patients diagnosed with GC in Huizhou Municipal 
Central Hospital of Guangdong (China) and reported that 
75% (242/322) were hypermethylated. Unfortunately, 
no comparison with the histological type was performed; 
however, it is important to highlight the association between 
DNA hypermethylation with MTHRF polymorphisms 
C677T and C1298A evidenced in this study.

Mino et al .  (67) studied 35 patients with GC at 
Osaka City University Hospital, and observed the 
hypermethylation of the p16INK4A gene in 12/35 (34.3%) 
cancerous tissues: a frequency significantly higher than that 
of non-cancerous tissues. Although no relationship was 
observed between p16INK4A promoter hypermethylation and 
clinicopathologic characteristics, it seems that this event 
must be considered a biomarker of gastric carcinogenesis. 
This was also observed by do Nascimento Borges et al. (18) 
in a Brazilian population.

Finally, in a meta-analysis performed by Peng et al. (68), 
nine clinical trials with 487 GC patients and 271 healthy 
controls showed that the methylation rate of the p16INK4A 
gene in GC was significantly higher than in the healthy 
control, showing that the p16INK4A gene promoter array is a 

useful method for the diagnosis of GC.
The loss of function of p16 protein results in increasing 

activity in the corresponding kinase, leading to the 
phosphorylation of the pRb protein and resulting in the loss 
of cell cycle control. The transcriptional inactivation due to 
methylation of the promoter may also be linked to tumor 
cell proliferation and neovascularization (69).

Some evidence points to a close relationship between 
MSI and the aberrant promoter methylation of the p16INK4A 
gene (70,71). Shim et al. (70) found that 13/21 (61.9%) 
tumors that were MSI positive had the p16INK4A promoter 
methylation, as opposed to 24/67 (35.8%) MSI negative 
tumors. These results suggest that MSI was associated not 
with a p16 protein loss, but rather with the methylation 
status of the gene.

There are few reports in the literature regarding the 
p15INK4B gene methylation profile in GC. do Nascimento 
Borges et al. (18) analyzed 35 tumoral and 37 non-tumoral 
samples from a Brazilian population and found a high 
methylation frequency in the promoter region (25.9% 
and 27.3%, respectively). Interestingly, a correlation was 
noticed between patients under 60 years old and p15INK4B 
hypermethylation, suggesting a relationship between 
p15INK4B hypermethylation and the aging process.

Lee et al. (72) analyzed the p15 methylation pattern in  
54 patients with gastric adenocarcinoma and observed 
68.5% with promoter methylation, which is a frequency 
similar to that obtained from a patient’s serum (55.65%).

Promoter methylation of the p14ARF gene has been found 
in a great number of cancers including GCs (56,73-75).

Tsujimoto et al. (76) found a positive correlation between 
p14ARF promoter methylation and GC. Regarding the 
difference between histological types, p14ARF methylation 
was more frequently found in the early stages of intestinal 
type cancers and in the advanced stages of cancers of the 
diffuse type. These results are in agreement with those 
found by Iida et al. (56), who investigated the methylation 
status of p14ARF in 11 GC cell lines and 62 primary 
GCs, and found hypermethylation patterns in 9% and 
35%, respectively, leading to the hypothesis that p14ARF 
methylation might also occur as an early event in a fraction 
of intestinal type cancers.

Concluding remarks

INK4/ARF, especially 9p21 deletion and p16INK4A promoter 
hypermethylation, may be used as a marker of gastric 
carcinogenesis, whereas mutations and polymorphisms 
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should be carefully used, as they have a strong ethnic 
influence. 
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