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Review Article

KRAS, BRAF and gastric cancer
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Abstract: Gastric cancer (GC) remains a major worldwide health problem and survival rates continue 
to be poor in patients with advanced stage disease despite multimodal treatment combining different 
chemo(radio)therapy regimens with surgery or best supportive care. Thus, there is an urgent clinical need 
to identify new potential drug targets in order to improve survival for GC patients. KRAS encodes a small 
guanosine triphosphatase and point mutations in codons 12 and 13 of KRAS have been detected in many 
human cancers. BRAF is a member of the RAF family of protein kinases and has a hotspot for mutations 
in codon 600 (so called V600E mutation). KRAS and BRAF proteins are both components of the MAPK/
ERK pathway. When mutated, KRAS becomes constitutively active resulting in enhanced BRAF activity. 
KRAS and BRAF mutations in colorectal cancers (CRC) are known predictors of poor response to epidermal 
growth factor receptor (EGFR) targeting agents. This PubMed and Web of Science based review aimed to 
analyze and summarize the current literature on mutations in KRAS and BRAF in GC and their relationship 
to clinicopathological and molecular variables including KRAS amplification. In total, 69 studies were 
included in this review. The median incidence of a KRAS mutation was 6.5% ranging from 0-29%. The 
median incidence of KRAS mutations was similar in studies from the East and the West (East: 6%, ranging 
from 0-20%; West 7.5%, ranging from 0-29%). KRAS amplifications were reported at an incidence of 
1-9%. The median BRAF mutation incidence in GC was 0%, ranging from 0% to 12%. Due to the low 
incidence and often small study size, many of the published studies had insufficient statistical power to detect 
a potential relationship between KRAS mutation status and clinicopathological variables including patient 
survival. In summary, the current literature on KRAS and BRAF in GC is still limited and very heterogeneous 
making any comparisons between different studies difficult. BRAF V600E mutations are very rare in GC. 
Interestingly, the incidence of KRAS mutations in GC is much lower than that in CRC and there appears to 
be no difference by ethnicity of the patients. KRAS mutations and KRAS amplifications seem to be mutually 
exclusive suggesting the need to screen GC patients for both genetic aberrations. So far, all clinical studies 
in unselected patients with metastatic GC have failed to show a significant benefit for EGFR targeting 
therapy. However, there has been a recent report indicating that the subgroup of signet ring cell GC, which 
is known to be resistant to standard cytotoxic chemotherapy, has a higher incidence of KRAS mutations (15%). 
Thus, EGFR targeted therapy in this particular histological subtype of GC could potentially be a promising 
treatment option in the future.
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Introduction

Gastric cancer (GC) is a common cancer with a worldwide 
incidence of nearly one million cases per year (1). In 2012, 
there were an estimated 723,100 GC deaths worldwide, 
making GC the third most frequent cause of cancer 
related death. There is a large geographic variation in 
GC incidence, with the highest incidence rates in Eastern 
Asia (particularly in Korea, Mongolia, Japan, and China), 
Central and Eastern Europe, and South America and 
lowest rates in Northern America and most parts of Africa. 
The incidence of GC in men is about twice as high as in 
women (2) and approximately 10% of GCs have a familial 
component (3). Helicobacter pylori (H. pylori) infection 
is an established risk factor for developing GC. 89% of 
cases of non-cardia GC worldwide are attributed to this 
bacterium (4). Survival of GC patients remains poor. The 
overall 5-year survival of patients with locally advanced 
unresectable, recurrent or metastatic GC is 5-20% if 
treated with cytotoxic chemotherapy (5), increasing to 
36% in patients with locally advanced resectable GC 
treated with peri-operative chemotherapy followed by 
surgery (6). Thus, there is an urgent clinical need to 
identify new potential drug targets in order to improve 
survival for GC patients.

Macroscopically, GCs are categorized according to 
the Borrmann classification into type I (polypoid), type II 
(fungating), type III (ulcerating), and type IV (diffusely 
infiltrating) (7). Histologically, GCs are most commonly 
categorized using the Lauren classification into intestinal, 
diffuse and mixed/indeterminate type (8). The intestinal-
type occurs more commonly in elderly patients, whereas 
the diffuse-type is seen in particular in young female 
patients and has a poorer prognosis (9). In the West, the 
relative proportion of intestinal-type GC is up to 74% 
intestinal-type (10) compared to 44% in the East (11). 
Staging of GC is performed using the International Union 
Against Cancer (UICC) (12), American Joint Committee 
on Cancer (AJCC) (13) or Japanese Gastric Cancer 
Association (JGCA) (14) Tumor Node Metastasis (TNM) 
staging system which follow same principals but have some 
minor variations.

Molecular aberrations are known to play an important 
role in the development of GC. In addition to mutations 
in oncogenes, such as TP53, APC, CDH1, p16 and PTEN, 
or tumor suppressor genes such as β-catenin, BRAF, KRAS, 
PIK3CA and ERBB2 (15), microsatellite instability (MSI) 
caused by deficient DNA mismatch repair (MMR) has 

been identified in 15% to 30% GC (16). DNA aneuploidy, 
a surrogate marker for chromosomal instability, has been 
reported in 24-85% GC (17) and Epstein-Barr Virus (EBV) 
infection has been identified in approximately 9% GCs (18). 
Several different molecular classifications of GCs have been 
proposed recently (19). For a recent review on this subject 
see Tan et al. (20).

The focus of this review is on the existing literature on 
genetic alterations in KRAS and BRAF in GC. Reported 
incidence of mutations in KRAS and BRAF and their 
relation to clinicopathological and molecular variables 
including KRAS amplification are analyzed and summarized. 
Literature on KRAS/BRAF epigenetic changes has been 
excluded from this review. Results from GC are compared 
with studies investigating KRAS and BRAF mutations in 
CRC and cancer of the small bowel. Furthermore, the 
clinical relevance of determining the mutational status and 
DNA copy number of these genes in relation to GC patient 
treatment will be discussed. 

Methods

The Web of Science (from 1988-14th May 2015) and 
PubMed (from 1946-14th May 2015) databases were 
searched for all known gene aliases of KRAS and BRAF 
(gene aliases from www.genecards.org, accessed on 8th 
May 2015). These aliases were used as search terms in 
combination with (‘‘gastric cancer’’ or ‘‘stomach cancer’’ or 
‘‘gastric carcinoma’’ or ‘‘stomach carcinoma’’, see Table 1). 

Eligibility to be included in the current review was 
restricted to original articles reporting GC studies using 
human tissue, blood or plasma samples irrespective of sample 
size and stage of disease. Other tumors of the stomach such as 
lymphomas or gastrointestinal (GI) stromal tumors, and cell 
line studies were excluded. The reference lists of publications 
included in this review were searched for further relevant 
articles. Each article was analyzed for information on study 
size, geographical origin of patient cohort (East versus West), 
age, gender, survival, and whether any chemo(radio)therapy 
was given. With regard to DNA isolation from tumor tissue, 
the reported tumor cell density, number of blocks used, 
and tissue processing [frozen versus formalin-fixed paraffin 
embedded (FFPE)] were analyzed. Furthermore, information 
on the mutation incidence, the mutation detection method 
and investigated codons was collected from each study. The 
relationship of mutation status with clinicopathological 
variables, DNA MMR status and MSI, and DNA ploidy was 
noted. 
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Results

The initial database searches found 1,369 articles in total. 
After screening, applying exclusion criteria and including 
additional articles from references, the final number 
of articles used for this review was 69. For a Preferred 
Reporting Items for Systematic Reviews and Meta-Analyses 
(PRISMA) flow diagram illustrating the manuscript 
selection process, see Figure 1.

The KRAS

Mammalian cells encode three functional RAS genes: 
HRAS, KRAS and NRAS (21,22). Although these different 
isoforms share a similar structure, their expression and/
or activation differs by tissue and cancer types (23-25). 
This review will focus on KRAS as it is the most frequently 
mutated RAS gene in GC (26).

Kirsten Rat Sarcoma Viral Oncogene Homolog (KRAS) 
was discovered in 1982 by Chang et al. (21). KRAS is a 
tumor suppressor gene which is located on chromosome 
12p12 (www.genecards.org, accessed 8th May 2015). It 
has six exons and alternative splicing of exon 4 produces 
KRAS4A and KRAS4B which contains 188 and 189 amino 
acids, respectively (27). KRAS encodes a small guanosine 
triphosphatase (GTPase) protein with a molecular mass of 
21.6 kD (28).

The KRAS protein contains four domains which 
determine the interaction with GTP (G-domain, amino 

Table 1 Search terms used in PubMed and Web of Science

Variables Search term

KRAS (“KRAS” OR “Kirsten Rat Sarcoma Viral Oncogene Homolog” OR “KRAS2” OR “RASK2” OR “V-Ki-Ras2 Kirsten 

Rat Sarcoma 2 Viral Oncogene Homolog” OR “V-Ki-Ras2 Kirsten Rat Sarcoma Viral Oncogene Homolog” OR 

“c-Ki-ras” OR “K-Ras 2” OR “CFC2” OR “NS” OR “C-K-RAS” OR “K-RAS2A” OR “K-RAS2B” OR “K-RAS4A” OR 

“K-RAS4B” OR “KI-RAS” OR “KRAS1” OR “NS3” OR “C-Kirsten-Ras Protein” OR “Cellular C-Ki-Ras2 Proto-

Oncogene” OR “GTPase KRas” OR “K-Ras P21 Protein” OR “Oncogene KRAS2” OR “PR310 C-K-Ras Oncogene” 

OR “Transforming Protein P21” OR “Ki-Ras” OR “c-K-ras”) AND (“gastric cancer” or “gastric carcinoma” or 

“stomach cancer” or “stomach carcinoma”)

BRAF (“BRAF” OR “V-Raf Murine Sarcoma Viral Oncogene Homolog B” OR “V-Raf Murine Sarcoma Viral Oncogene 

Homolog B1” OR “Proto-Oncogene B-Raf” OR “BRAF1” OR “RAFB1” OR “NS7” OR “94 KDa B-Raf Protein” OR 

“B-RAF1” OR “B-Raf Proto-Oncogene Serine/Threonine-Protein Kinase (P94)” OR “Murine Sarcoma Viral (V-Raf) 

Oncogene Homolog B1” OR “Serine/Threonine-Protein Kinase B-Raf” OR “EC 2.7.11.1” OR “p94”) AND (“gastric 

cancer” OR “gastric carcinoma” OR “stomach cancer” OR “stomach carcinoma”)

Identification

•	 Articles	 identified	 through	searching	Web	of	

Science and Pubmed databases: n=1,369

Screening
•	 Articles	not	in	English:	n=100
•	 Articles	 remaining	 after	 limitations	 applied:	

n=1,269
•	 Number	of	duplicate	articles:	n=237
•	 Articles	remaining	after	 removal	of	duplicates:	

n=1,032
•	 Title	or	abstract	did	not	meet	eligibility	criteria:	

n=948
•	 Articles	remaining	after	screening:	n=84

Eligibility
•	 Unable	to	access	full	text:	n=21
•	 Article	full	text	obtained:	n=63	
•	 Articles	excluded	as	eligibility	criteria	not	met	

after reading full paper: n=10

Included
•	 Full	 text	 ar ticles	 included	 in	 current	 study	

describing KRAS and/or BRAF in gastric cancer: 
n=53

•	 Additional	articles	 found	 from	reference	 lists:	
n=16

•	 Total	number	of	articles	included	in	review:	n=69

Figure 1 PRISMA flow diagram showing the number of studies 
included at each stage of the review process. PRISMA, Preferred 
Reporting Items for Systematic Reviews and Meta-Analyses.
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acids 1-165), the anchoring of the protein in the plasma 
membrane (hypervariable region at the C-terminus, amino 
acids 165-188) as well as the binding of other regulators and 
effectors such as RAF and PI3K (28). 

KRAS cycles between an inactive GDP-bound state and 
an active GTP-bound state (29). Activation of KRAS is 
triggered through a number of different types of receptors 
including tyrosine kinase receptors such as epidermal growth 
factor receptor (EGFR), as well as cytokine receptors, T cell 
receptors, and subunits of heterotrimeric G proteins (30).  
Active RAS-GTP undergoes a conformational change 
affecting its interaction with various downstream effector 
molecules such as RAF and mitogen-activated protein 
kinase (MAPK) (31) or PI3K/AKT (32). This in turn 
activates nuclear transcription factors inducing a cascade 
of cellular processes such as proliferation, angiogenesis, 
apoptosis, or cell survival (26). Mutant KRAS functions as 
an oncogene inducing malignant transformation of cells due 
to permanent activation of downstream effectors (33). 

KRAS mutations have been found in many human cancers. 
The most common mutations are located in codon 12 or 
13 in exon 1, and less frequently in codon 61, 63, 117, 119 
and 146 (28). Mutations in codons 12 and 13 are known to 
result in conformational changes and permanent expression 
(‘activation’) of the KRAS protein (34). Overexpression of 
KRAS as a result of loss of p16INK4 or loss of p53 has also 
been reported (35). For a more general review on KRAS 
mutations in human cancer, see Jancik et al. (28).

KRAS in GC

KRAS mutations
The first report of a KRAS mutation in a single GC was 
published in 1986. Investigators described the presence of a 
single mutated KRAS allele (gly-12 to ser), together with a 
30-50 fold amplification of the other KRAS allele (36). 

Since this first publication, 64 studies have reported on 
the incidence of KRAS mutations in GC, with the majority 
of studies (61%) originating from Asia (see Tables 2,3). Two 
studies compared KRAS mutations between GC patients 
from the East and the West (37,38). Forty-five (70%) 
studies investigated the KRAS mutation status in patient 
cohorts comprising less than 100 patients. 

GC cohorts 
The median number of patients per study was 61, ranging 
from 5 to 712 patients. Excluding three international 
multicenter studies and two studies that did not mention the 

geographical origin of their patients, there were 39 (66%) 
studies from the East and 22 (37%) studies from the West. 
Studies from the East had a higher median study size of  
66 patients, ranging from 5 to 319 patients compared 
to studies from the West with a median study size of  
33 patients, ranging from 7 to 494 patients. The largest 
GC study was an international multicenter study including  
712 GCs: 278 GC from the United Kingdom, 230 GC from 
Japan and 204 CG from Singapore (38). 

Twenty-five (39%) studies performed KRAS testing on 
samples from multiple centers (19,37-60), 20 (31%) studies 
used samples from a single center (61-80), and the remaining 
did not report this information. Twenty-seven (42%) studies 
were performed using DNA extracted from formalin-fixed 
paraffin (37-39,41,42,44,45,47,48,50-52) embedded tissue 
samples (56,61,63-66,68,69,72-74,81-84). With the exception 
of 11 studies which did not report at all which tissue was used 
(40,54,77,80,85-91), all other studies used DNA from ‘paraffin 
embedded tissue’ (fixation method not reported) (43,92-94), 
frozen tissue (19,46,53,59,60,67,70,71,75,76,78,79,95-98), 
blood or plasma samples (99), or a combination of the above 
(49,55,57,58,62). Of the studies using tissue samples, 37 (59%) 
used DNA extracted (38,39,44,46,47,50,52-54,60-64,67,68) 
from resection specimens (70,71,73-76,78-82,84,88-
91,93,95-98), ten (16%) used a combination of biopsy and 
resection specimens (37,40,45,51,65,69,72,87,92,94) and 
two (3%) used biopsy specimens (77,86). The remaining 14 
(22%) did not report on the type of specimen used (19,41-
43,48,49,55-59,66,83,85). No study reported extracting DNA 
from multiple blocks, thus we have assumed that all studies 
used a single block for DNA extraction. Thirty-seven (59%) 
studies considered the tumor cell density of the tissue prior 
to DNA extraction by either performing microdissection 
or preselecting areas of tumor with tumor cell density 
ranging from >20% to >80% (19,37-40,44,46-54,61,62,64-
71,73-76,81,82,84,89,93,94,98). Twenty-two (34%) studies 
investigated only subgroups of GC patients, thus eight (36%) 
studies investigated locally advanced GC (40-44,61,62,82), 
four (18%) studies metastatic and advanced GC (48,49,81,94), 
three (14%) studies early GC (45,65,84), two (9%) studies 
metastatic GC (66,90), two (9%) studies compared early with 
advanced GC (46,93), one (5%) study intestinal GC (47), one 
(5%) study MSI GC (85) and one study (5%) investigated 
GC with concomitant renal cancer (63).

KRAS mutation detection methods
A wide variety of methods was used to detect KRAS 
mutations. Twenty-six (41%) studies used polymerase chain 
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Table 2 Published literature on KRAS mutation status in gastric cancer excluding studies testing chemotherapeutic agents

Author Year Origin Total, n
mut KRAS,  

n [%]
Comment

Nagata et al. 1990 Japan 25 2 [8] –

Victor et al. 1990 South Africa 11 0 –

Kihana et al. 1991 Japan 35 3 [9] Three	of	seven	adenoma	had	mut	KRAS; mut KRAS in 

well	diff	GC	only

Miki et al. 1991 Japan 31 4 [13] mut KRAS	only	found	in	intestinal-type	GC

Capella et al. 1991 Europe 14 1 [7] –

Ranzani et al. 1993 Europe 32 3 [9] One mut KRAS also had allelic losses

Koshiba et al. 1993 Japan 37 1 [3] No mut KRAS in 13 adenoma

Craanen et al. 1995 Europe 45 0 Only	early	GC	tested

Sakurai et al. 1995 Japan 19 0 Only	early	GC	tested

Hongyo	et al. 1995 Europe 34 7 [21] Only	intestinal-type	GC	tested;	no	mut	KRAS in stage III

Lee et al. 1995 South Korea 140 11 [8] mut KRAS more common in DNA aneuploid and in upper 

third GC

Hosoi et al. 1995 Japan 31 0 Biopsy	samples	tested

Hao et al. 1998 China 206 0 –

Iwaya	et al. 1998 Japan 5 1 [20] Synchronous	primary	cancers	of	the	esophagus	and	

other organs

Arber et al. 2000 USA	 32 1 [3] –

Russo et al. 2001 Europe 63 5 [8] mut KRAS	not	related	to	DNA	ploidy

Lee et al. 2002 South Korea 71 1 [1] –

Yoo et al. 2002 South	Korea	/US 104 10 [10] mut KRAS	related	to	intestinal-type	GC	and	higher	pT

Hiyama	et al. 2002 Japan 48 4 [8] mut KRAS	related	to	well	diff	histology	type,	younger	age	

and H. pylori infection 

Lee et al. 2003 South Korea 319 9 [3] mut KRAS	related	to	advanced	GC

Brennetot et al. 2003 Europe 82 10 [12] mut KRAS	only	seen	in	MSI	not	in	MSS	GC

Kim et al. 2003 South Korea 66 4 [6] –

Wu	et al. 2004 Japan 62 1 [2] mut KRAS GC related to MSI; KRAS and BRAF mutations 

were	exclusive

Zhao et al. 2004 China 94 8 [9] Seven	of	eight	GC	with	mut	KRAS	were	MSI.	All	mut	

KRAS in GC from antrum

Yashiro et al. 2005 Japan 180 20 [11] Only	advanced	GC	tested.	mut	KRAS more common in 

well	diff	GC	and	Bormann	type	I.	No	relationship	with	H. 

pylori infection

Oliveira	et al. 2005 Europe 25 6 [24] Only	MSI	GC	tested

Tajima et al. 2006 Japan 133 7 [5] Only	early	GC	tested;	no	KRAS mutation in 63 gastric 

adenoma 

Sasao et al. 2006 Japan 55 1 [2] –

Kusano et al. 2006 Japan 78 4 [5] –

Gylling	et al. 2007 Europe 59 4 [7] mut KRAS	only	seen	in	MSI	not	in	MSS	GC

Tajima et al. 2007 Japan 134 8 [6] Only	differentiated	GC	tested	

Table 2 (continued)



434 Hewitt et al. KRAS, BRAF and gastric cancer

© Translational Gastrointestinal Cancer. All rights reserved. Transl Gastrointest Cancer 2015;4(6):429-447www.amepc.org/tgc

Table 2 (continued)

Author Year Origin Total, n
mut KRAS,  

n [%]
Comment

Kimura et al. 2007 Japan 66 3 [5] –

Liu et al. 2009 China 52 5 [10] mut KRAS	only	seen	in	males

Mita et al. 2009 Japan 86 0 5% KRAS amp

Betge et al. 2011 Austria 12 1 [8] GC	with	concomitant	renal	cancer

Liu et al. 2011 China 58 6 [10] mut KRAS	only	seen	in	males

Corso et al. 2011 Europe 63 11 [17] Only	MSI	GC	tested;	mut	KRAS	more	common	in	elderly	

patients

Chen et al. 2011 China 123 12 [10] KRAS tested in blood

Saxena	et al. 2012 India 62 0 –

Deng et al. 2012 Singapore 139 1 [1] 9% KRAS amp

Matsubara et al. 2013 Japan 71 1 [1] –

Van Grieken et al. 2013 Europe/Japan/

Singapore

712 29 [4] mut KRAS	associated	with	MMR-deficient	GC.	In	Europe	

cohort mut KRAS	associated	with	pN,	in	Japan	cohort	

mut KRAS	associated	with	elderly	patients

Kim et al. 2013 South Korea/Japan 30 2 [7] mut KRAS	associated	with	CIMP

Warneke	et al. 2013 Europe 475 17 [4] mut KRAS	associated	with	worse	survival	in	proximal	GC.	

mut KRAS	intestinal-type	GC	with	worse	prognosis	than	

KRAS	wild-type	intestinal-type.	9%	KRAS amp

Kim et al. 2014 South Korea 17 1 [6] Early	and	advanced	GC	tested.	Missense	mutation	

detected

Kim et al. 2014 South Korea 89 3 [3] Only	metastatic	GC	tested.	KRAS	amp	in	two	cases;	one	

case	had	increased	copy	number

Peng and Zhao 2014 China 126 9 [7] Tissue and plasma tested

Palacio-Rua et al. 2014 Colombia 29 2 [7] –

Qian et al. 2014 China 131 8 [6] mut KRAS and KRAS amp (5%)	mutually	exclusive;	

associated	with	different	outcomes

TGCA 2014 Multicenter 215 36 [17] –

Ali et al. 2015 USA 116 12 [10] 6% KRAS amp. Includes 36 samples from metastatic 

sites

Lu et al. 2015 China 156 7 [4] mut KRAS	associated	with	pN0	GC

Cristescu et al. 2015 South Korea 223 18 [8] 8% KRAS amp

Yoda et al. 2015 Japan 50 4 [8] 8% KRAS amp

mut KRAS, mutant KRAS;	GC,	gastric	cancer;	pT,	tumor	invasion	depth;	MSI,	microsatellite	instability;	MSS,	microsatellite	stable;	

well	diff,	well	differentiated;	pN,	lymph	node	metastasis;	CIMP,	CpG	island	methylator	phenotype;	KRAS amp, KRAS	amplification.
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reaction (PCR) (37,43,44,49,60,61,66,70,74,75,80,88,98) or 
single-strand conformation polymorphism (SSCP) (39,45,
47,52,64,65,71,72,85,93,95,97,99) for mutation screening, 
followed by confirmatory direct Sanger sequencing. 
Other methods used to detect KRAS mutations included 
restriction fragment length polymorphism (RFLP) 
(51,76-78,83,86), next-generation sequencing (NGS) 
(19,46,48,59,67,81,87,96), pyrosequencing (63,68), Q-PCR 
(41,94), nested and COLD-PCR (55), denaturing gradient 
gel electrophoresis (DGGE) (89,91), dot blot hybridization 
assay (56-58,69,73,82), high-resolution melting analysis 
(HRMA) (42,50,53,54) and direct Sanger sequencing 
(62,79). The largest international multicenter study used 
a combination of HRMA followed by Sanger sequencing, 
pyrosequencing, and MassARRAY (38). One study used 
RFLP and SSCP followed by direct sequencing (92), while 
other studies used a combination of RFLP and dot blot 
hybridization (84) or a combination of Q-PCR and Sanger 
sequencing (40). One study did not report which KRAS 
mutation detection method was used (90).

Investigated KRAS codons 
Excluding eight studies that performed whole genome 
sequencing, 49 (88%) studies published information on 
investigated codons for mutation testing. The remaining 
seven (13%) studies did not provide any information 
which codons they investigated, however, they later report 
only mutations in specific codons. All studies investigated 
multiple codons, with 49 (100%) investigating codon 12, 
45 (92%) codon 13, 18 (37%) codon 61, and 1 codon 146. 
Only a single study investigated all four codons (codons 12, 
13, 61 and 146) (62) and one study investigated codon 59, in 
addition to codons 12, 13 and 61 (93).

Incidence of KRAS mutations
The overall median incidence of a KRAS mutation in 
GC was 6.5% ranging from 0-29%. The median KRAS 
incidence was similar in studies from the East and the West 
(East: 6%, ranging from 0-20%; West 7.5%, ranging from 
0-29%). Likewise, the largest international multicenter 
study reported an overall incidence of KRAS mutations of 
4.2% which did not differ between Eastern and Western 
countries (UK: 6%, Japan 4%, Singapore 2%) (38).

Of the 36 studies that reported the location of the 
mutations in KRAS, 154 mutations were found in codon 
12, 66 mutations in codon 13, six mutations in codon 61. 
No mutation has been found so far in codon 146. The only 
study to report KRAS mutations in codon 11, was the result 

of SSCP and direct sequencing of exon 1. This revealed that 
two of the seven mutations found in 34 GCs were located in 
codon 11, all other mutations were in codons 12 and 13 (47).  
Another study, in addition to identifying one KRAS 
mutation in codon 12 and two KRAS mutations in codon 
13, also found a K5N mutation in exon 2 and five A59T 
mutations in exon 4 (93). There was only a single report 
of a single GC having multiple mutations in codon 12 and 
codon 13 (78). 

KRAS mutation status and clinicopathological variables
Twenty-nine (45%) studies have investigated the relationship 
between KRAS mutation status (19,37,38,40,46,47,50-
54,56,60,62-64) and one or more clinicopathological variables 
(68,69,71-73,75,76,82,88,91,93,96,98). These included 
grade of tumor differentiation, Lauren classification, tumor 
location, tumor invasion depth (pT), lymph node status (pN), 
Borrmann classification, age, gender, and infection with H. 
pylori or EBV. The most frequent investigated association was 
found between KRAS mutation status and pT, followed by 
gender and age reported in 33%, 30% and 30% of studies, 
respectively.

KRAS mutation and age
Nineteen (30%) studies investigated the relationship 
between patient age and KRAS mutation status mostly 
suggesting that KRAS mutations are more frequent 
in elderly GC patients. Seven (37%) studies reported 
individual ages or the median age of patients with a KRAS 
mutation (19,46,60,62,63,69,96), whereas the remaining 
studies stratified patient age into a range of subcategories 
(38,50,52-55,68,72,76). Only Hiyama et al. reported 
a significantly higher incidence of KRAS mutations in 
patients younger than 60 years (72). One study reported 
an equal number of KRAS mutations in patients ≤65 years 
old and >65 years old (54). All other studies found KRAS 
mutations more frequently in elderly patients although 
this association often did not reach statistical significance 
(38,50,52,53,55,68,76,98).

KRAS mutation and gender
Nineteen (30%) studies investigated the relationship 
between gender and KRAS  mutation status in GC. 
Although no statistically significant relationship between 
KRAS mutation status and gender was found, most studies 
seem to suggest that KRAS mutations are more frequent 
in males. Nine (47%) studies found a higher incidence in 
males (38,46,50,55,62,68,69,72,76), three (16%) studies 
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reported that KRAS mutations were exclusively found 
in males (53,54,63) whereas four (21%) studies found an 
equal incidence of KRAS mutations in males and females 
(60,75,91,96). 

KRAS mutation and tumor location
Twelve (19%) studies investigated the relationship between 
KRAS mutation status and GC location within the stomach. 
Tumors in the upper third of the stomach had a significantly 
higher incidence of KRAS codon 12 mutations compared to 
GCs in the middle or lower (3%) third of the stomach (76). 
Summarizing and interpreting the results from the other 
studies is difficult as stomach area categorization varied 
substantially between studies. We therefore defined that 
GCs located in the cardia or upper third are ‘proximal’ and 
GCs located in all other regions are ‘distal’. These studies 
found a higher incidence of KRAS mutations in distal GC  
(19,37,38,60,63,64,68,72,75,91). 

KRAS mutation and Borrmann classification
A single study investigated the relationship between KRAS 
mutation status and macroscopic classification according 
to Borrmann. This study investigated KRAS codons 12 
and 13 in 108 GC patients with advanced disease and 
found a significant relationship between KRAS mutation 
status and Borrmann Type 1 (polypoid) GC (82). The 
incidence of KRAS mutation was 6/14 (43%), 8/29 (28%), 
2/11 (18%), and 4/54 (7%) in Borrmann type 1 to 4 GCs, 
respectively. Interestingly all KRAS mutations in polypoid 

GCs were located in codon 12. This is in contrast to a study 
investigating 48 GC which did not find any relationship 
between macroscopic appearance (classified according to 
the Japanese Research Society for Gastric Cancer) and 
KRAS mutation status (72).

KRAS mutation and primary tumor invasion depth (pT 
category)
Twenty-one (33%) studies investigated the relationship 
between KRAS mutation status and pT in GC. Unfortunately, 
different staging systems were used in different publications 
and some studies compared groups of pT categories against 
each other making the results interpretation difficult. None 
of the studies reported a significant association between pT 
category/stage and KRAS mutation status. Overall, there was 
a higher incidence of KRAS mutations in higher pT (pT2-4) 
GC compared to lower pT (pT1) GC (19,37,38,47,50,53,54,
60,63,68,75,76,82,88,91,93,96).

KRAS mutation and lymph node status (pN category)
Eleven (17%) studies investigated the relationship between 
KRAS mutation status and presence of lymph node 
metastases with conflicting results. Five (45%) studies 
found that KRAS mutant GCs tended to have either no 
lymph node metastases (46,50,53,54) or significantly fewer 
lymph node metastases (38). Whereas other studies report 
that KRAS mutations are more frequent in GCs with lymph 
node metastases (19,63,68,91,96). 

KRAS mutation and histological subtype according to 
Lauren classification
Seventeen (27%) studies including a total of 2,583 patients 
investigated the association between KRAS mutation 
status and histological subtype according to the Lauren 
classification (19,37,38,40,46,47,56,60,62,63,68,72,75,
76,88,91,93). Although 11 (65%) of studies reported a 
higher incidence of KRAS mutations in intestinal-type 
GC (see Figure 2), this association did not reach statistical 
significance in any of the studies (19,37,38,40,56,60,62,68,
72,75,91).

KRAS mutation and grade of tumor differentiation
Fifteen (23%) studies investigated the relationship between 
KRAS mutation and grade of tumor differentiation reporting 
discordant results. One (7%) study investigating advanced 
disease found that KRAS mutations were significantly more 
frequent in histologically differentiated GC (82), three 
(20%) studies found a higher incidence of KRAS mutations 

Figure 2 Distribution of KRAS mutation incidence in gastric 
cancer (GC) by Lauren classification.
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in well-differentiated GCs (47,69,72) whereas nine (60%) 
studies reported a higher incidence of KRAS mutations in 
poorly-differentiated GCs (38,46,50,53,54,63,73,75,76). 
Two studies (13%) found the same incidence of KRAS 
mutations in well- and poorly-differentiated GC (40,96). 

KRAS mutation and survival
Seven (11%) studies investigated the relationship between 
KRAS mutation status and survival (38,41,62,66,68,76,79), 
The largest international multicenter study reported a trend 
towards better survival in patients with a KRAS mutant 
GC (38). In contrast, subgroup analysis in a different 
study showed that the median survival of patients with 
KRAS mutant proximal GCs was significantly shorter  
(3.5±3.1 months) compared with KRAS wild-type GCs 
(12.7±0.7 months, P=0.021) (68). The same study found that 
KRAS mutant intestinal-type GCs had a worse prognosis 
compared to KRAS wild-type intestinal-type GC, however this 
difference was not significant on univariate analysis (P=0.098). 
Similarly, patients with a KRAS mutant GC in the upper third 
of the stomach may have improved survival over patients with 
KRAS mutant GC in the middle or distal stomach (76). 

KRAS mutation and chemotherapeutic agents
Ten (16%) studies investigated the relationship between 
KRAS mutations and the use of chemotherapeutic agents 
(see Table 3). Four studies (40%) did not find any association 
between KRAS mutation status and progression free survival 
(PFS) or overall survival (OS) (40,41,62,66), three (30%) 
studies did not detect any KRAS mutations (42,44,94) and 
two (20%) studies did not find an association between 
KRAS mutations and response to chemotherapy (43,90).

KRAS mutation and H. pylori infection
Six (9%) studies have investigated the relationship 
between H. pylori infection and KRAS mutation status. 
Three studies reported a higher incidence of KRAS 
mutations in H. pylori infected GCs, but the difference was 
not significant or statistical analysis was not performed 
(47,82,97). In contrast, thirteen (87%) KRAS mutant GCs 
were found to be H. pylori negative, compared to two H. 
pylori KRAS mutant GCs (68). One study reported an 
equal incidence of KRAS mutations in H. pylori positive 
and negative GCs (75). The study by Hiyama et al. found 
that KRAS mutations in H. pylori-chronic gastritis were 
significantly more frequent in patients with GC than those 
without and in patients with KRAS mutated GC than in 
KRAS wild-type GC (72). 

KRAS mutation and EBV infection
Four (6%) studies investigating a total of 848 GC for KRAS 
mutation status and EBV infection found no relationship 
between EBV and KRAS mutation (19,63,68,97). 

KRAS mutation status and molecular variables

KRAS mutation and DNA MMR deficiency/MSI 
(MMR/MSI)
Thirteen (20%) studies investigated the relationship 
between KRAS mutation status and MMR/MSI with 
controversial results. One study which included only MSI 
GC reported that 18% harbored a KRAS mutation (98). 
Eight (62%) studies reported a higher incidence of MSI in 
KRAS mutant GCs (39,63,67,70,74), which was significant 
in three studies (19,75,91). This finding was supported 
by one study which found that KRAS mutations were 
more frequent in MMR-deficient GC (38). In contrast, 
two studies reported that KRAS mutant GC were more 
frequently microsatellite stable (MSS) (46,68). 

KRAS mutation and DNA ploidy
Three (5%) studies investigated the relationship between 
DNA ploidy and KRAS mutation status. Two investigated 
DNA ploidy by DNA flow cytometry. One study investigated 
KRAS mutations in codons 12 and 13 (71), whereas the other 
study focused on codon 12 (76). Another study investigated 
DNA ploidy by NGS (19). No associations were reported 
in any study.

KRAS amplification
Eight (13%) studies investigated KRAS amplification in 
addition to KRAS mutations with contradictory results. 
Three studies found that the incidence of KRAS amplification 
varied between 5% and 9% but was higher than that of 
KRAS mutation in GC (between 0% and 4%) (59,68,80). In 
contrast, four studies found that KRAS mutations are more 
frequent than KRAS amplifications in GC (48,67,87). One 
study, reported similar frequencies of KRAS amplification 
(6%) and KRAS mutation (6%) (79). Interestingly, the 5-year 
survival of patients with a KRAS amplification was worse 
than that of the patients KRAS mutant GC (HR 3.0, 95% 
CI: 1.3-7.0). Furthermore, KRAS amplification and KRAS 
mutation were exclusive. Deng et al. reported that patients 
with GC with a KRAS amplification had a significantly 
poorer prognosis, however, as only one KRAS mutation 
was detected, the relationship between KRAS mutation and 
prognosis could not be analyzed (59). 
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The BRAF

BRAF is a member of the RAF family of protein kinases 
which has three members: ARAF, BRAF and CRAF (100). 
All RAF proteins share a common structure (101), but 
BRAF is the only one known to be activated by mutation in 
human cancer, and therefore the focus of this review (102). 

BRAF is also known as v-raf murine sarcoma viral 
homolog B1 (100) and was discovered in 1988 by Ikawa 
et al. (103). BRAF is a proto-oncogene and is located on 
chromosome 7 (7q34) (www.genecards.org, accessed 8th 
May 2015). BRAF exists in multiple splicing variants, which 
seem to exhibit tissue specific expression patterns (104). 

The BRAF protein is 75 to 100 kDa and has three 
conserved regions (CR): CR1, CR2 and CR3 (100). CR1 
and CR2 are located at the N-terminus and are both 
regulatory domains, whereas CR3 is a kinase domain and 
is located at the C-terminus. CR1 is composed of the 
RAS-binding domain and a cysteine-rich domain binding 
RAS and membrane phospholipids. CR2 is a serine/
threonine rich domain which when phosphorylated can 
bind regulatory proteins. CR3 is the protein kinase domain 
which is regulated through phosphorylation (101).

After RAS is activated via extracellular stimuli, it activates 
BRAF by phosphorylation of two residues in the kinase 
domain. Activated BRAF phosphorylates and activates 
MEK1 and MEK2 which then activate MAP kinases ERK1 
and ERK2. ERK1/2 activates numerous cytoplasmic and 
nuclear targets including transcription factors (100).

More than 65 different mutations have been identified 
in BRAF in human cancer. Most of these mutations are in 
exon 11 or exon 15 in the catalytic kinase domain (100). 
The most frequently detected BRAF mutation is a single 
amino acid substitution (V600E) in exon 15 (105). BRAF 
is most commonly mutated in melanomas (67%) and 
CRC (10%) (105,106). Mutant BRAF displays an elevated 
kinase activity (105) and becomes insensitive to negative 
feedback mechanisms (107). For a review on BRAF 
mutations in benign and malignant human tumors, see 
Michaloglou et al. (108).

BRAF in GC

In total, 22 studies have investigated the incidence of 
BRAF mutations in GC. Seven (32%) studies screened 
for  BRAF  mutat ions by PCR, fol lowed by direct 
sequencing (43,61,62,68,70,75,98,109). Other detection 
methods included denaturing high pressure liquid 

chromatography, SSCP (39,40,52,93,110), HRMA (42), 
NGS (46,48,81), amplification-refractory mutation system-
PCR, PCR-high resolution melting (50), real-time PCR, 
immunohistochemistry using a mutation-specific probe (111) 
or a combination of the above (38,88,112).

Fourteen (64%) studies used FFPE samples (38,39, 
42,43,48,50,52,61,68,81,88,93,109,111), five (23%) used 
frozen tissue samples (46,70,75,98,110) and one study 
used a combination of FFPE and frozen samples (62). Two 
studies did not report this information (40,112). Excluding 
the study that performed IHC, ten studies selected areas of 
tumor with a median tumor cell density of >55%, ranging 
from >20% to >80% (38,46,48,50,68,70,81,98,109,110). 
Six studies performed microdissection of the selected area 
(39,40,52,62,75,93). The remaining five studies did not 
provide this information (42,43,61,88,112).

All studies investigated the BRAF exon 15 ‘mutation 
hotspot’ (V600E mutation). Some studies extended their 
mutation search to exon 11 and other regions of exon 
15, or whole genome sequencing. The median BRAF 
mutation incidence in GC is 0%, ranging from 0% to 12% 
(38,39,42,43,46,48,50,52,61,62,68,70,75,81,88,93,98,109-
112). Only six of the BRAF mutations identified were in 
V600E of exon 15 (38,40,70,110,112). Six mutations were 
found in codon 396 and four mutations in codon 608 of 
exon 15 by Sasao et al. (52). Lee et al. found two mutations 
in codon 593 and the remaining five mutations were in 
codon 599 (V599 M) (93) and Okines et al. identified a 
mutation in V600M and G596D of exon 15 (40).

The highest BRAF mutation incidence (12%) was 
reported in a Korean study of 17 early and advanced 
GC using whole-genome sequencing by NGS. The two 
mutations identified were missense mutations; one was 
detected in a mixed-type early cancer, the other one in 
an intestinal-type advanced cancer (46). There has been 
a single publication that used immunohistochemistry and 
a mutation specific antibody to detect the mutated BRAF 
protein as a surrogate for a BRAF mutation. All cases were 
negative (no evidence suggesting a BRAF mutation) (111). 

Due to the low incidence of BRAF mutations no studies 
have reported a relationship between BRAF mutation status 
and DNA ploidy or clinicopathological variables. There are 
three studies that have investigated the relationship between 
MSI and BRAF mutation. BRAF mutations were not found 
in any of 37 MSI GC (110) which was confirmed in a study 
by Wu et al. where the BRAF mutant GC was MSS (70). 
However, in another study the two BRAF mutant GC were 
found to be MSI (46). 
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EGFR pathway in GC

The EGFR pathway is known to be activated in GC (113).  
When EGFR i s  bound to  i t s  l igand ,  i t  t r iggers 
homodimerisation and heterodimerisation of the EGFR 
receptor. This activates a signaling cascade, including 
MAPK, through effector molecules RAS and RAF (113). 
Anti-EGFR monoclonal antibodies block ligand-induced 
binding EGFR tyrosine kinase activation by binding to the 
extracellular domain of EGFR (114).

Discussion

KRAS and BRAF mutations in GC

The current literature reporting on KRAS and BRAF 
mutations in GC is very heterogeneous in terms of sample 
size, patient ethnicity, patient treatment, mutation detection 
methods, tumor stage and grade of differentiation, as well as 
other clinicopathological variables.

The majority of studies (70%) investigated the KRAS 
mutation status in less than 100 patients. Such small 
studies may not be representative of the GC patient 
population and thus the patient selection bias may 
significantly influence any results. Thus, two of the 
smallest studies with five and seven patients reported 
some of the highest incidence of KRAS mutations, of 20% 
and 29%, respectively (41,95). Similarly, for BRAF, the 
smallest study of 17 patients reported the highest BRAF 
mutation incidence of 12% (46). Furthermore, twenty-two 
(34%) studies investigating KRAS mutations deliberately 
selected subgroups of GC patients to study the KRAS/
BRAF mutation status, such as advanced and/or metastatic 
disease and early disease. 

Despite the much higher incidence in the East, the 
number of studies investigating the relationship between 
KRAS and BRAF in GC from the East and the West is 
almost equal. Nevertheless, potential bias due to differences 
in the histological subtypes (diffuse-type GC is more 
prevalent in the East), disease stage (GC is diagnosed at 
an earlier stage in the East) and patient survival (better 
OS in the East) (115) needs to be considered when 
comparing study results, particularly in the twenty studies 
that performed KRAS mutation testing on series from a 
single center. However, the incidence of KRAS mutations 
between East and West were comparable and do not seem 
to be related to the differences in GC incidence (38). Thus, 
bias due to the patient’s country of origin appears to have 
no or minimal influence on the incidence of KRAS/BRAF 

mutations in GC.
An issue that was not addressed in any of the studies 

included in this review was the potential influence of tumor 
heterogeneity on the results. Tumor heterogeneity of KRAS 
and BRAF mutations has been described in CRC suggesting 
that more than one tumor block should be investigated 
if possible (116). None of the studies investigating KRAS 
and/or BRAF mutations in GC seem to have investigated 
multiple blocks. Studies either did not provide any 
information or investigated single blocks. Thus, it is 
impossible to assess whether the incidence of KRAS and/
or BRAF mutations in GC is underestimated based on the 
current literature. 

Over ten different methods were used to detect KRAS 
and/or BRAF mutations in GC. It is known that the 
sensitivity (ratio of mutant to wild-type) of different 
methodologies varies between techniques (117), with 
COLD-PCR having the highest  sensi t iv i ty  (1%) 
and direct Sanger sequencing having the lowest (10-
30%). Despite this low sensitivity, Sanger sequencing 
is considered the ‘gold standard’ technique due to its 
ability to detect substitutions, insertion and deletions. 
The median KRAS mutation incidence in GC appears to 
be similar irrespective of the detection method and thus, 
the detection methodology does not appear to affect the 
incidence of mutations detected in GC. 

Several  of  the studies  invest igat ing the use of 
chemotherapeutic agents in the treatment of GC that 
also performed KRAS mutation testing, did not provide 
sufficient information on the type of tissue used for KRAS 
testing (biopsy/primary resection/recurrent resection/pre- 
or post-treatment), detection methods used, or codons 
investigated. Thus it is not possible to accurately interpret 
the results and make comparisons between such studies. 
Future studies need to report detailed methodologies in 
order for conclusions to be drawn from the results.

A recent study suggested that KRAS amplifications 
contribute to the activation of KRAS in GC (80) and 
that activation by KRAS amplification may account for 
the low incidence of KRAS mutations in GC compared 
to other types of cancer (59). However, the results from 
studies comparing the incidence and relationship of KRAS 
mutations (0-10%) and KRAS amplifications (1-9%) in 
GC remain contradictory (48,59,67,68,79,80,87). Three 
studies seem to indicate that KRAS amplifications and 
mutations are mutually exclusive (48,79,80) suggesting a 
need to screen GC patients for both KRAS mutations and 
amplifications. 
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Incidence of KRAS and BRAF mutations—comparison 
between GC, small bowel and colorectal cancer (CRC)

According to the RASCAL collaborative, the incidence 
of KRAS mutation in CRC is 38% (118), and a similar 
incidence has been reported in other studies. Thus, the 
incidence of KRAS mutations in GC is much lower than 
in CRC. The incidence of KRAS mutations in small bowel 
adenocarcinomas seems to vary dramatically from 9-43% 
based on data from four studies investigating each less than 
100 patients and is therefore partly comparable to that of 
GCs and partly similar to CRCs (51,119-121). 

In contrast to GC, in CRC many studies have reported 
a significant association between BRAF mutation and either 
deficient MMR status or MSI (106,110,122-126). This 
could be related to the fact that BRAF mutations are much 
more frequent in CRC (5-22%) (127) than in GC (0-12%). 
In adenocarcinomas of the small bowel, the incidence of 
BRAF mutations is comparable to those reported in GC 
(119-121). Whereas in CRC KRAS and BRAF mutations 
appear to be mutually exclusive (128), there are two reports 
indicating that GC can harbor a KRAS and BRAF mutations 
simultaneously (48,93). In summary, KRAS mutations in 
GC are a rare event compared to other cancers of the GI 
tract. Such differences in the incidence of these mutations 
between cancers of the GI tract may reflect differences in 
carcinogenesis.

Although no significant relationship between gender and 
incidence of KRAS mutations has been reported in GC, 
KRAS mutations are more frequently reported in males. 
In addition, the incidence of KRAS mutations is higher in 
intestinal-type than diffuse-type GC. Both observations 
may be explained by the fact that the incidence of GC in 
men is twice as high as in women (2) and that intestinal-type 
GC is found more frequently in males (129). In CRC, the 
worldwide incidence is also higher in males but the relative 
difference is not as prominent as in GC (746,000 new CRC 
cases per year in males versus 614,000 in females) (2). The 
relationship between KRAS mutations in CRC and gender 
is not consistent. One study found a higher incidence of 
KRAS mutations in females (130), whereas the QUASAR 
study did not find a difference (122).

Twelve studies investigated the relationship between 
KRAS mutations and MMR/MSI in GC mostly suggesting 
a higher incidence of MSI in KRAS mutant GC compared 
to KRAS wild-type GC. This is in contrast to CRC, where 
KRAS mutant tumors are found to be less frequent MMR-
deficient (118). 

In CRC, patients with KRAS wild-type cancer seem to 
have a better survival (131). Few studies (9%) investigated 
the relationship between KRAS mutation status and survival 
in GC and the results do not concur with those from CRC.

KRAS and BRAF mutations and response to anti-EGFR 
therapy

In CRC, KRAS mutation and BRAF mutation are known 
predictors of poor response to EGFR targeted agents, 
such as cetuximab and panitumumab (132) and RAS/BRAF 
mutation screening is now part of routine clinical diagnosis. 
In contrast, the predictive value of KRAS and BRAF 
mutations in GC is far less clear. In vitro, several studies in 
KRAS wild-type GC cell lines reported sensitivity to EGFR 
targeting drugs (133-135). Other investigators report 
that, both KRAS mutant and wild-type GC cell lines were 
resistant to cetuximab (136). In GC xenografts, apoptosis 
was only induced in KRAS wild-type tumor cells treated 
with Cetuximab (136). Cetuximab was shown to reduce 
tumor volume, dissemination and vascularisation in EGFR-
expressing, KRAS wild-type xenografts (133). 

To date, the use of anti-EGFR agents (cetuximab and 
panitumumab) in phase III metastatic GC trials in patients 
has either showed no difference (137) or poorer survival 
than the control group (138). In the REAL3 trial, KRAS 
mutation status did not predict resistance to panitumumab 
in GC (40).

Due to the low incidence of BRAF mutations in GC, 
a clinical trial which stratifies GC patients according 
to their BRAF status is probably not feasible due to the 
high number of patients that would need to be screened. 
Although all studies investigated the V600E mutation, 
three of the studies that also investigated exon 11 and 15 
found BRAF mutations other than the hotspot V600E 
mutation (40,52,93). Thus, there could be an argument 
for investigating the whole length of the BRAF gene for 
mutations in GC.

Conclusions

In conclusion, despite the decrease in the incidence, GC 
remains a major worldwide health problem. KRAS was 
one of the first oncogenes discovered in GC in 1986. 
Nevertheless, the current literature on KRAS and BRAF 
in GC is still limited and very heterogeneous making any 
comparisons between different studies difficult. However, 
it appears that the incidence of KRAS mutations in GC 
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is much lower than in CRC, does not differ significantly 
by ethnicity and that BRAF V600E mutations are very 
rare in GC. Due to the low incidence and often small 
studies, many of the published studies did not have enough 
power to detect a potential relationship between KRAS 
mutation status and clinicopathological variables including 
patient survival. Even fewer studies have assessed KRAS 
amplifications as a mechanism for KRAS activation. So far 
all clinical studies in unselected metastatic GC have failed 
to show a significant benefit for EGFR inhibitors. A recent 
meeting abstract reported the incidence of KRAS mutations 
in signet ring cell GC is higher (15%) than in other types 
of GC (139). As the incidence of this histological subtype of 
GC is increasing, particularly in the West (10) and as this 
subgroup of GC appears to be highly resistant to standard 
chemotherapy (140), EGFR targeted therapy in signet ring 
GC could potentially be a promising treatment option in 
the future. 
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