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Introduction

Fatty liver disease (FLD), caused by excessive accumulation 
of fat in hepatocytes, which is a frequent pathological 
change of liver, not an independent disease. In China, FLD 

is the seriously threatening hepatopathy that second to viral 

hepatitis with the increasing incidence, and the age of onset 

is getting younger and younger. It is divided into alcoholic 

fatty liver disease (AFLD) and nonalcoholic fatty liver 
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disease (NAFLD) clinically, and both of them are significant 
contributors to the global financial burden of liver disorders 
that are consuming substantial healthcare resources and 
having a strong impact on mortality, morbidity, and life 
quality (1,2). Compared with NAFLD, AFLD has been 
focused on lesser studies, and biopsy-proven AFLD patients 
have been verified higher risk to developing hepatocellular 
carcinoma and liver-related mortality than biopsy-proven 
NAFLD in the few existing studies (1,3). Thus, we will 
select AFLD as the research object.

AFLD is an aftermath of chronic or excessive alcohol 
drinking. It is well-accepted that chronic alcohol intake 
can also bring about more severe forms of liver injury, 
such as hepatic steatosis, steatohepatitis, fibrosis, cirrhosis, 
hepatocarcinoma, and hepatic failure (4-6). Moreover, 
steatosis and inflammation, which lead to liver injury, 
are the significant symptoms of AFLD (7). By now, the 
pathogenesis of AFLD is still extremely limited. Recently, 
hepatocyte autophagy has been proved to play a protective 
effect in NAFLD and its complications by improving lipid 
accumulation and hepatic steatosis (8-10). Few pieces of 
literature reported that defective autophagy is also involved 
in the pathogenesis of AFLD, chronic ethanol-induced 
liver damage, and steatosis (11,12). Therefore, hepatocyte 
autophagy will be the focus of our study.

Blueberry polyphenol, extracted from blueberries, 
plays a potential preventive effect on liver injuries such 
as hepatic steatosis and NAFLD (13,14). Additionally, 
it functions as antioxidant, anti-inflammatory, and anti-
obesity roles and took part in glucose and lipid metabolism 
(15-17). Anthocyanins, one of the main ingredients of 
blueberry polyphenols, are beneficial for ameliorating the 
metabolic syndrome issues, such as obesity, hyperglycemia, 
hyperinsulinemia, and hyperlipidemia (18). Nevertheless, 
the effects of blueberry polyphenol in AFLD are unclear, 
and if blueberry polyphenol accelerating cell autophagy 
is unprecedented. Thereby, the present work also aims to 
determine the impact of blueberry polyphenol on AFLD 
and its corresponding mechanism.

Methods

Extraction of blueberry polyphenols

Fresh Northeast China blueberries (Vacciniun spp.) 
were bought, and the extraction and purification of 
blueberry polyphenols were performed according to the 
previous report with some alterations (13,16,19). Briefly, 

the wild blueberries were lyophilized, then the crushed 
and homogenized dry blueberry pulp (15.0 g) was made 
by using a homogenizer (XHF-D; Ningbo Science & 
Biotechnology Co., Ningbo, Zhejiang, China) at 5,000 rpm 
for 1 min. Next, the homogenized sample was extracted 
with 200 mL ethanol solution (60%) for 120 min at 50 ℃ 
using the ultrasonic-assisted method. Subsequently, the 
crude blueberry extract was obtained after the extraction 
mixture was filtered by vacuum filtration with a filter paper 
(Hangzhou Special Paper Industry Co. Ltd., Zhejiang, 
China). Then, the purified blueberry extract was gained 
from the crude extract that underwent a purification with 
XAD-7 macroporous resin column (4.0 cm × 60 cm). 
Finally, the purified blueberry polyphenol extract (PPE) was 
freeze-dried into powder and stored in a −80 ℃ refrigerator 
until use. 

Animals and groups

A total of 60 male C57BL/6J of 4-week-old mice were 
bought from the Laboratory Animal Center of Shanghai 
Public Health Clinical College. All mice were raised for at 
least one week in a temperature-controlled room at 25 ℃  
and 60% relative humidity with 12 hours’ light cycle and 
given free access to standard laboratory diet and water 
before experiments. The mice were treated and cared for 
according to the ethical guidelines of the National Institute 
of Health Guide and Use of Laboratory Animals of China. 
In addition, they were divided into six groups, and each 
group included 10 mice: (I) low-fat diet alone, named as 
control group (LF, 10% of calories as fat (6% cocoa butter 
and 4% safflower oil)); (II) low-fat diet plus 100 mg/kg 
body weight (bw)/day PPE (control + PPE100); (III) low-fat 
diet plus 200 mg/kg bw/day PPE (control + PPE200); (IV) 
low-fat diet plus ethanol, named as model group (identical 
to the control LF diet but with ethanol added to account 
for 29% of total calories); (V) low-fat diet plus ethanol and  
100 mg/kg body weight (bw)/day PPE (Model + PPE100); 
and (VI) low-fat diet plus ethanol and 200 mg/kg bw/day 
PPE (Model + PPE200). The PPE was dissolved in distilled 
water, while control and model groups were fed the same 
volume of normal saline. The work was performed for a 
continuous 1 month.

Sample harvest

Mice were anesthetized with Hypnorm, Dormicum, 
and water (1:1:2) at a dose of 0.15 mL/100 g bw by 
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subcutaneous injection. Then, saline (0.9%) was infused 
into the heart for 15 min via the left ventricle, the heart 
was spontaneously beating on the initiation of infusion, and 
the animals were simultaneously allowed to exsanguinate 
via the right atrium puncture. The arterial blood from 
the left ventriclewas collected and centrifuged to gain 
theserum for total cholesterol (CHOL) and triglyceride 
(TG) detection. Subsequently, anterior fixation of tissue 
was conducted with 4% paraformaldehyde in phosphate 
buffer saline. Liver specimens obtained were after-fixed 
in 4% paraformaldehyde for 4 to 6 hours and placed in 
20% sucrose solution in PBS overnight at 4 ℃. Serial liver 
tissue sections were cut at 50 or 100 μm and reserved in the 
ultralow freezer at −80 ℃ for later use for the TG contents 
and configurations measurements of liver tissues by the Oil 
Red O (ORO) and hematoxylin and eosin (HE) dyeing. 
Moreover, the fresh liver tissues that untreated with 4% 
paraformaldehyde were stored at −80 ℃ for qRT-PCR and 
WB experiments. 

Blood biochemical tests

Three hundred μL serum was taken out into Kuhlman 
AU480 blood biochemical analyzer to perform the CHOL 
and TG contents measurements by using kits (Hangzhou 
Yanchuang Bioengineering Institute, Zhejiang, China) 
according to manufacturer instructions.

ORO staining 

ORO staining was performed for the determination 
of TG contents in liver tissues according to published  
literature (20). Briefly, tissue sections were fixed for 10 min 
with 10% ice paraformaldehyde and washed by distilled 
water three times after placed on slides for 30 min at room 
temperature. After slices underwent drying for several 
minutes, then slices were performed ORO staining with 
oil red and deionized water (3:2) for 8 min, 85% propylene 
glycol solution differentiation for 2 min, washed twice, 
hematoxylin counterstained for 30 s, flushed with water for 
3 min. Lastly, an electronic microscope and the Olympus 
Image-Pro Plus 6.0 software were utilized for observation 
and quantitative analysis of ORO staining contents of TG. 

The HE stains

According to the earlier paper (20), liver sections were 

executed HE stains for measurement of hepatic histology. 
The tissue sections were observed and photographed with 
×100 and ×200 original magnification under an electronic 
microscope.

Real-time quantitative reverse transcription-polymerase 
chain reaction (qRT-PCR)

qRT-PCR was adopted to evaluate the mRNA expression 
level of lipogenesis-related genes such as sterol regulatory 
element-binding protein 1 (SREBP-1), fatty acid synthase 
(FAS), acetyl coenzyme A carboxylase (ACC) α (ACCα), and 
lipolysis-related genes such as adipose triglyceride lipase 
(ATGL) and sirtuin 1 (SIRT1) in mice liver tissues. Total 
RNA was obtained by using Trizol reagent (Invitrogen, 
USA) according to the manufacture’s instruction. Broadly, 
cDNA was produced by using cDNA chain synthesis kit 
(ThermoFisher) reagent, and DNA contamination was 
evaluated by RNAse-free DNase I. The determinations of 
high mRNA levels were performed by quantitative PCR 
(qPCR) instrument. GAPDH (PPM02946E) was used as 
an internal control to assess the relative quantification of 
detected genes by the 2−ΔΔCT method. 

Western blot (WB)

WB was performed to detect the expression of autophagy 
proteins p62, LC3-I, and LC3-II. Proteins were extracted 
from mice liver tissues (250 mg) and then treated with 
RIPA lysis buffer (Beyotime, Jiangsu, China) holding a 2% 
cocktail pill (Roche). Samples were centrifuged at 12,000 g 
for 15 min at 4 ℃, then the supernatant was collected, and 
the protein concentration was measured by BCA protein 
assay kit (Beyotime Institute). For detection of p62, LC3-I 
and LC3-II, the precipitated proteins (80 μg) were separated 
on 5% SDS-PAGE gel at 75 V for 2 h and transferred to 
PVDF membranes at 350 mA for 2 h. Then the membrane 
was blocked with 5% nonfat milk and diluted by TBST for 
1h at room temperature. Subsequently, the membranes were 
incubated overnight with the primary antibody of p62, light 
chain 3 (LC3)-I and LC3-II (rabbit, Abcam, USA; 1:2,500) 
at 4 ℃, and proteins were visualized by incubating in the 
secondary antibody (goat anti-rabbit IgG, ZSGB-BIO, 
China, 1:5,000) for 2 h, then scanned in Alpha Innotech 
(Bio-Rad) with ECL. Anti-β-actin was used as the internal 
control (mouse, Santa Cruz Biotechnology, USA; 1:5,000). 
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Figure 1 The effect of blueberry polyphenols on blood lipid levels in alcoholic fatty liver disease C57BL/6J mice. (A) The serum CHOL 
concentrations in distinct groups; (B) the serum TG concentrations in separate groups. *, P<0.05; **, P<0.01. CHOL, total cholesterol; TG, 
triglyceride; PPE, purified blueberry polyphenol extract.

Statistical analysis

All data were analyzed by using One-way ANOVA, LSD-t, 
and S-N-K-q test by SPSS 16.0 software and expressed 
as the mean ± SD. Statistical significance was defined as 
P<0.05.

Results

Blueberry polyphenol reversed the alcohol-induced 
dyslipidemia

Blood biochemical tests showed that chronic alcohol intake 
could cause unusual blood fat, while blueberry polyphenol 
produced no effects on serum lipid levels. Whereas 
blueberry polyphenol could play therapeutic effects on 
alcohol-induced dyslipidemia and then presented a gradient 
effect (Figure 1). Concretely, compared with the control 
group, the serum contents of CHOL was significantly 
declined and TG was markedly elevatedin the model group 
(P<0.01), but the CHOL was slightly raised and TG was 
mildly slumped in both control + PPE100 and control + 
PPE200 groups with no statistical differences (P>0.05). 
Compared with the model group, the serum contents of 
CHOL were increased, and TG was reduced in both the 
model + PPE100 (P<0.05) and model + PPE200 groups 
(P<0.01). Besides, lower CHOL and higher TG were found 

in model + PPE100 than in control + PPE100 group, and in 
model + PPE200 than in control + PPE200 group (P<0.05).

Blueberry polyphenol improved the alcohol-induced hepatic 
steatosis 

ORO and HE staining revealed that chronic alcohol 
consumption led to hepatic steatosis with accumulated lipid 
droplets in the livers, whereas rare lipid droplets existed in 
livers in low-fat diet control mice or control mice treated 
with blueberry polyphenol. Meanwhile, the model mice 
administered with ethanol-fed showed no hepatic lipid 
droplets accumulation after accepted blueberry polyphenol 
managements, and blueberry polyphenol administration 
displayed a gradient effect (Figure 2A,B). Furthermore, 
the quantification of hepatic lipid TG contents showed 
that markedly higher liver TG levels in model group than 
in control group (P<0.01), and in model + PPE100 than 
in control + PPE100 group (P<0.05), as well as in model 
+ PPE200 than in control + PPE200 group (P<0.05). 
Nevertheless, no statistical differences were showed between 
control and control + PPE100 or control and control+ 
PPE200 group (P>0.05). Notably, blueberry polyphenol 
administration observably decreased hepatic TG contents in 
model mice, and the declined TG levels were positive with 
the contents of blueberry polyphenol (Figure 2C). 
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Figure 2 The effect of blueberry polyphenols on alcohol-induced hepatic steatosis. (A) The representative electron microscope pictures of 
ORO staining; (B) the representative electron microscope pictures of HE stains; (C) the TG lipid droplets content in the liver. ×100 or ×200: 
magnification times of 100 or 200 under an electron microscope. *, P<0.05; **, P<0.01. PPE, purified blueberry polyphenol extract; TG, 
triglyceride. 
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Figure 3 The relative mRNA expressions of lipogenic genes of SREBP1, FAS, and ACCα and the lipodieretic genes of ATGL and Sirt1 
evaluated by qRT-PCR. *, P<0.05; **, P<0.01. SREBP-1, sterol regulatory element binding protein 1; FAS, fatty acid synthase; ACCα, acetyl 
coenzyme A carboxylase; ATGL, adipose triglyceride lipase; SIRT1, sirtuin 1; PPE, purified blueberry polyphenol extract. 
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Blueberry polyphenol inhibited the effects of alcohol on 
lipogenic and lipoclastic genes

qRT-PCR attested that ethanol-fed remarkably raised 
the expression levels of lipogenic genes SREBP1, FAS, 
and ACCα, and markedly reduced the levels of the 
lipoclastic gene of ATGL and Sirt1 (P<0.01), whereas 
blueberry polyphenol alone did not transform the lipogenic 
and lipoclastic genes levels in control mice (P>0.05). 
Interestingly, compared with the model group, the lipogenic 
genes were decreased in model + PPE100 group (P<0.05) 
and significantly reduced in model + PPE200 group 
(P<0.01), and the lipoclastic genes were increased in model 
+ PPE100 group (P<0.05) and significantly enhancive in 
model + PPE200 group (P<0.01) (Figure 3).

Blueberry polyphenol prevented alcohol-induced hepatocyte 
autophagy damage

WB identified that chronic drinking decreased or damaged 
the hepatocyte autophagy with higher level of p62 and 
lower specific value of LC3-II/LC3-I than in corresponding 
control mice (P<0.05 or P<0.01), however, compared with 
the control group, blueberry polyphenol added 100 or  
200 mg/kg bw/day increased this autophagy with antipodal 
finds with model group (ethanol-fed added) with no 
statistical differences (P>0.05). Compared with the model 
group, blueberry polyphenol fortified the autophagy in 
hepatocyte with declined p62 level and elevated the specific 
value of LC3-II/LC3-I in model mice, and this stimulative 
effect of autophagy by blueberry polyphenol displayed a 
gradient tendency (Figure 4). 

Discussion

In the current work, we initially demonstrated that 
the effects of blueberry polyphenols in AFLD and on 
hepatocyte autophagy: blueberry polyphenols alleviates 
AFLD in mice via promoting hepatocyte autophagy with 
declined p62 and increased LC3-II/LC3-I, then to decrease 
the serum lipid level with reductive TG and elevated 
CHOL contents in serum, as well as lower the hepatic 
steatosis conditions with lessened hepatic lipid droplets 
accumulation of TG, reduced lipogenic genes of SREBP1, 
FAS and ACCα, and accessorial lipodieretic genes of ATGL 
and Sirt1 in liver tissues. 

As everyone knows, blueberry polyphenols have 
diversified potential health benefits. It can inhibit 
endogenous and exogenous oxidative productions of 
nitric oxide (NO) and intracellular reactive radical species 
(ROS) to act as antioxidants then to regulate homeostasis, 
wound heal ing,  inf lammation and mitochondria l 
respiration, prevent cell damage and the occurrence and 
development of cancers (15,21,22). Blueberry polyphenols 
have been reported anti-inflammatory through reducing 
the inflammatory markers of cyclooxygenase-2 (Cox-2), 
inducible nitric oxide synthase (iNOS), and interleukin-
1b (IL-1β) (15,23,24). Blueberry polyphenols have also 
been proved to take part in glucolipid metabolism. It can 
down-regulate PEPCK mRNA (a key-enzyme of the citric 
acid cycle (TCA), involved in hepatic energy metabolism 
and gluconeogenesis) in rat hepatoma cells (H4IIE), and 
the inhibition of PEPCK mRNA will lead to repressing 
gluconeogenesis and consequent blood glucose decline to 
play antidiabetic activity, and inhibit anabolic reactions 
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Figure 4 The relative autophagy protein expression of p62, LC3-I, and LC3-II measured by WB. (A) The representative grey-scale maps of 
western blotting; (B) quantification of band intensity of p62 protein; (C) quantification of band intensity of LC3-II/LC3-I ratio. *, P<0.05; 
**, P<0.01. PPE, purified blueberry polyphenol extract.
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to functions as tumor-suppressor (15,25-27). Besides, 
excessive lipid accumulation could cause lipid peroxidation 
to induce the cells’ injury (17). Steatosis and inflammation, 
which lead to liver injury, are the significant symptoms of 
AFLD (7). Thus, these reported conclusions were forcefully 
supported our finding that blueberry polyphenols improved 
the steatosis in the liver tissue induced by chronic alcohol 
intake. In Jiao et al.’s study, blueberry polyphenols were 
attested to decrease the low-density lipoprotein (LDL-C) 
and increased high-density lipoprotein cholesterol (HDL-C) 
level in serum, significantly reduced the TCHO levels in 
liver in high-fat diet(HFD)-induced obese C57BL/6 J mice. 
Complementary, blueberry polyphenols also decreased 
the serum TG, alanine aminotransferase (ALT), aspartate 
transaminase (AST), and leptin levels, but not significantly 
(P>0.05), and not reduced the serum T-CHO levels. 
Blueberry polyphenols did not reduce the TG levels in the 
liver in HFD-induced obese mice (16). In our study, we 
found that blueberry polyphenols alone did not impact the 
serum TCHO and TG levels, as well as TG content in the 
liver compared with the normal mice, but increased the 
serum TCHO and decreased TG levels both in serum and 
liver in AFLD mice. Despite some contradictions existed, 
the model is different, and the effect of attenuating the 

abnormally elevated lipid metabolism is consistent with 
Jiao et al.’s report. Additionally, in our unreported paper, 
although serum CHOL was abnormally elevated in 42.86% 
NAFLD patients, there were 5.49% of patients showed 
abnormally descending serum CHOL. So, blueberry 
polyphenols increased the serum TCHO in AFLD mice 
also could prove its effects of lowering fat. Besides, rare 
evidence supported that blueberry polyphenols can play 
potential protective roles on liver injuries such as hepatic 
steatosis and NAFLD (13,14), and it can ameliorate 
microvascular steatosis in hepatocytes and reduce adipose 
cell sizes via reducing the levels of the lipogenic gene of 
PPARγ, FAS, and SREBP-1 and significantly increasing 
the levels of the lipoclastic gene of CPT 1 and PPARα in 
liver tissue in HFD-induced obese C57BL/6J mice (16). 
However, the effects of blueberry polyphenols in AFLD 
are unreported. Here, we first identified that blueberry 
polyphenols were beneficial to AFLD that improved the 
chronic ethanol intake-induced hepatic steatosis, elevated 
blood lipids and impaired hepatocyte autophagy in male 
C57BL/6J mice, and these preventive effects of blueberry 
polyphenols in AFLD appeared with a concentration 
gradient effect. In our study, we found that blueberry 
polyphenols did not produce effects on the lipogenic or 
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lipoclastic genes levels in normal mice, and attenuated 
ethanol intake-induced hepatic steatosis with decreased TG 
content, reduced lipogenic genes levels of SREBP1, FAS, 
and ACCα, and raised lipoclastic genes levels of ATGL and 
Sirt1in liver in AFLD mice that supported by the above 
reports. 

Although the pathogenesis of AFLD is still very 
limited, a small number of reports demonstrated defective 
hepatocyte autophagy is a crucial pathogenesis of both 
NAFLD and AFLD, even the complications of them, that 
lead to lipid accumulation and hepatic steatosis, while up-
regulation of autophagy can accelerate the fat elimination 
in liver then to prevent hepatocytes injuries such as 
steatosis and cell death (8-12). Here, we also proved that 
chronic alcohol consumption induced hepatic steatosis with 
accumulated lipid droplets and increased TG content in the 
livers compared with low-fat diet control mice, and these 
alterations induced by ethanol is associated with down-
regulated autophagy (enhancive protein expression level 
of p62, and decreased protein ratio of LC3-II/LC3-I), 
increased lipogenic mRNA levels of SREBP1, FAS, and 
ACCα, and declined lipodieretic mRNAs of ATGL and 
Sirt1. As we all know, LC3-I and LC3-II are only and 
disparate forms of LC3 protein (a biomarker protein on the 
autophagic membrane) in cell, when the LC3-I converts 
into LC3-II via proteolytic cleavage and lipidation or LC3-
II/LC3-I is increased and the total level of LC3 does not 
increase, that can represent a normal autophagy function in 
mammalian and also can reflect the autophagy level in cells 
(9,28,29). Moreover, the accumulation or increase of p62  
in vivo is a hallmark of impaired autophagy (30,31). 
However, the roles of blueberry polyphenols on cell 
autophagy are unclear by now, and we firstly found that 
blueberry polyphenols promote cell autophagy in low-
fat/normal diet control mice, but there was no statistical 
difference noted. However, blueberry polyphenols 100 or 
200 mg/kg bw/day feeding for a continuous 1 month can 
markedly promote cell autophagy with decreased p62 and 
increased LC3-II/LC3-I in liver compared with the low-fat 
diet plus ethanol model mice, and the effect is more distinct 
while feeding with 200 mg/kg bw/day.

Cell autophagy but not lipid droplets is a compensatory 
mechanism to promote energy metabolism, and cell 
autophagy can accelerate the fat elimination (9,32). ATGL 
is a lipoclastic enzyme by catalyzing the initiating step of 
lipolysis via hydrolyzing TGs in cytosolic lipid droplets, and 
scarce ATGL results in the accumulation of TGs and LC3-
II, decreased p62 expression in most organs and cells, such 

as macrophages, that indicates down-regulation of ATGL 
will bring about the increased autophagy (32). Besides, 
MnCl2-induced autophagic dysregulation with decreased 
LC3-II/LC3-I level causes an increase of SIRT1level, and 
this suggests that autophagy is associated with SIRT1 (33). 
Autophagy is known to be a pivotal mechanism in keeping 
the balance of liver lipid metabolism. In the study of Zhang 
et al., a spontaneous hepatic steatosis, presented as massive 
accumulation of lipid droplets with significant accessorial 
TG in hepatocytes, which was accompanied by upregulated 
lipid synthesis-associated proteins (primarily triglyceride 
synthesis) levels of ACCα, FAS and SREBP1 that might 
related to the autophagy dysfunction with upregulated 
P62 and reduced LC3BII/LC3BI ratio both in vitro (34), 
these findings are consistent with our outcomes. Hence, 
blueberry polyphenols resist AFLD may through facilitating 
hepatocytes autophagy to promote lipolysis and remove 
excessive TG accumulation in liver cells. 

Conclusions

In the present work, we can obtain several conclusions as 
follows: 

(I) Blueberry polyphenols can alleviate alcohol-
induced fatty liver disease with a concentration 
gradient effect;

(II) Blueberry polyphenols can inhibit the expression of 
lipid synthesis-associated genes caused by alcohol;

(III) Blueberry polyphenols can facilitate the expression 
of lipid disintegration-associated genes induced by 
alcohol;

(IV) The mechanism of  blueberry polyphenols 
improving the  hepat ic  s teatos i s  in  AFLD 
C57BL/6J mice may be associated with enhanced 
cell autophagy to accelerate the decomposition of 
fat than to eliminate excessive TG accumulation in 
hepatocytes.
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