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Introduction

Obstructive sleep apnea-hypopnea syndrome (OSAHS) 
as an independent risk factor for cardiovascular diseases is 
closely related to the development of many cardiovascular 
diseases such as left ventricular remodeling (1), vascular 
endothelial injury (2), coronary heart disease, congestive 
heart failure (3), and arrhythmia (4,5). It is well known that 
the intermittent hypoxia is involved in the pathogenesis of 

OSAHS. Hypoxia may activate the sympathetic nerves and 
the renin angiotensin-aldosterone system (RAAS), leading 
to the vasoconstriction and subsequent hypertension. 
In addition, the fluctuation of intrathoracic negative 
pressure due to obstruction of the upper airway causes the 
mechanical and hemodynamic changes that may alter the 
cardiac output. These pathophysiological changes eventually 
cause oxidative stress. Granger et al. (6) found that oxidative 
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stress was involved in the ischemia-reperfusion injury of the 
heart disease.

Oxidative stress produces excessive reactive oxygen 
species (ROS). In normal aerobic metabolism, the balance 
between oxidation and reduction is dynamically maintained. 
However, the imbalance between them may disrupt the 
antioxidant defense and lead to the excessive formation of 
ROS (7). At the same time, oxidative stress can selectively 
activate the pro-inflammatory pathways (8). ROS and 
inflammatory mediators can act together on myocardial 
subcellular structures such as proteins, nucleic acids, and 
mitochondria, causing myocardial metabolic dysfunction 
and structural changes. In the pro-inflammatory pathways, 
Ca2+ is an important regulator of ROS production (9), and 
mitochondria is a known pool of calcium. The reduced Ca2+ 
concentration in the mitochondria leads to a decreased ATP 
production, while the Ca2+ overload in the mitochondria 
may cause excessive ROS production, resulting in a series of 
myocardial pathophysiological changes (10). Oxidative stress 
induced by intermittent hypoxia can induce endoplasmic 
reticulum stress by activating the angiotensin II-
phospholipase C-trisphosphate (AngII-PLC-IP3) pathway, 
which induces the release of Ca2+ from the endoplasmic 
reticulum into the cytosol and leads to Ca2+ imbalance (11). 

The transient receptor potential canonical (TRPC) 
channel is a classical calcium channel widely distributed 
in mammalian cells, but the TRPC2 is not expressed in 
humans (12). In recent years, increasing attention has been 
paid to the physiological and pathological roles of TRPCs 
due to its wide expression (13). Some studies have found that 
the activation of TRPC channels is closely related to the 
occurrence and development of cardiovascular diseases. For 
example, TRPC1 is involved in the proliferation, migration 
and apoptosis of vascular smooth muscle cells (14-17);  
TRPC3 expression is associated with the hypertension (18),  
atrial fibrillation (19), arrhythmia, cardiomyocyte 
hypertrophy (20) and myocardial fibrosis (19). The 
expression of TRPC4 channel increases in the endothelial 
cells (21,22) . TRPC6 is involved in the process of 
myocardial hypertrophy (20) and myocardial ischemia-
reperfusion injury (23). Recently, TRPC7 has been 
found to be also involved in the myocardial ischemia-
reperfusion injury (23). Thus, TRPCs are closely related 
to the pathogenesis of cardiovascular diseases including the 
OSAHS induced cardiovascular diseases. To investigate the 
role of TRPC in the pathogenesis of OSAHS, a rat model of 

OSAHS was established by intermittent hypoxic exposure, 
and the protein and mRNA expressions of TRPCs were 
detected in the heart by Western Blotting and qRT-PCR, 
respectively.

Methods

Animal model

This study was approved by the Ethics Committee of 
Xinjiang Medical University (IACUC-20170214045). 
Sprague Dawley rats (SD rats) were provided by the 
Experimental Animal Center of Xinjiang Medical 
University. Eighteen male SD rats, 15-17 w of age (at the 
time of surgery) were used in the present study. Animals 
were housed for 1 week before experiment and then 
randomly assigned to the experimental group (n=9) and the 
control group (n=9). In the experimental group, rats were 
placed in a chamber and exposed to intermittent hypoxia for  
8 h (10AM-6PM) once daily. In the hypoxic exposure, rats 
were exposed to 8.5% oxygen for 1 min and then air (21% 
oxygen) for 1 min. Blood gas analysis was performed after  
4 weeks (24,25): the arterial oxygen partial pressure 
was 20.9–29.7 mmHg, the blood oxygen saturation was 
31.2–58.3%, and the blood oxygen partial pressure was 
71.6 mmHg when they were exposed to air (21% oxygen). 
106.4 mmHg, blood oxygen saturation was 92.2–97.4%, 
which was in line with the diagnostic criterion for human 
severe OSAHS (SaO2 <80%). Among then, 1 rat in the 
experimental group and one rat in the control group died 
in the experiment. After hypoxic exposure, the rats were 
sacrificed and the hearts were harvested for detection of 
TRPC expressions.

Real-time PCR relative quantitation of cardiomyocytes

The heart tissues (25–50 mg) were homogenized and total 
RNA extracted with 1 mL of Trizol. Then, 2 μL of RNA 
was reversely transcribed into cDNA, which served as 
templates for amplification. The primers used in the PCR 
were synthesized in the Ouyi Biotech Co., Ltd in Xinjiang 
Province (Table 1). 

PCR was performed as follows: pre-denaturation at 
95 ℃ for 2 min, 40 cycles of denaturation at 95 ℃ for 5 s, 
annealing at 60 ℃ for 30 s and extension at 60 ℃ for 30 s. 
The PCR products (10 μL) were subjected to 1.8% agarose 
gel electrophoresis at 150 V for 10 min (26-28). 
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Table 1 Primers used for the amplification of TRPC genes

Primers Sequences (5' to 3') Size

TRPC1-F CTGCTTATCTTCATGTGCGGTC 138 bp

TRPC1-R GAAGCTGTGGTAGGCTCTGT

TRPC3-F ACGCAGTACGGCAACATC 209 bp

TRPC3-R CGCACATAGCCTTTGCTGAT

TRPC4-F AAGGATTAGCTTCACGGGGTG 198 bp

TRPC4-R CCTCCTCCTGGGCGTGTTTC

TRPC5-F CCATACAGAGACCGCATCCC 283 bp

TRPC5-R CCTTGCGGATGGCATAGAGT

TRPC6-F AAACAGACTGACTCACCGGC 238 bp

TRPC6-R CGCCAACTGTAGGGCATTCT

TRPC7-F TTGGGGAGCAACACCTTCAA 97 bp

TRPC7-R TGAACATGTAGGCAGGACCC

GAPDH-F CAGGGCTGCCTTCTCTTGTG 172 bp

GAPDH-R GATGGTGATGGGTTTCCCGT

Western blotting

The heart tissues were homogenized and lysed in 40 μL of 
RIPA with protease inhibitor (AR0105; Boster), and then the 
homogenate was centrifuged at 12,000 rpm for 15 min at 4 ℃. 
The supernatant was collected, and the protein concentration 
was determined with BCA method (DQ111-01). Then, the 
proteins were mixed with 5× SDS-PAGE loading buffer 
(containing β-mercaptoethanol), and the mixture was 
boiled at 100 ℃ for 5 min to denatured proteins. Then, 
the mixture was centrifuged at 12,000 rpm for 5 min. The 
supernatant was collected and subjected to electrophoresis 
(12% separating gel and 5% stack gel, followed by protein 
transferring at 300 mA for 2 h. The membrane was blocked 
in 5% non-fat milk for 1 h at room temperature and 
then incubated with primary antibody at 4 ℃ over night 
(anti-rabbit TRPC6 (D3G1Q; 1:500; CST, anti-TRP 7 
(N64A/36; 1:500, CST), anti-TRPC5 (1C8; 1:100, Santa 
cruz). The membrane was washed in TBS-T (PH 7.6) and 
then incubated with horseradish peroxidase conjugated 
secondary antibody, followed by visualization with enhanced 
chemiluminescence. The protein bands were scanned and 
analyzed with AlphaEaseFC 4.0 software. The expressions 
of TRPC1, TRPC3 and TRPC4 were undetectable, but the 
expressions of TRPC5, TRPC6 and TRPC7 were detectable. 

Statistical analysis

Data are reported as mean ± standard error (SEM). The 
statistical analysis was performed with SPSS version 19.0 
(IBM). The independent sample T test for data with normal 
distribution and the rank sum test for data with abnormal 
distribution were used for comparisons between groups. A 
value of P<0.05 was considered statistically significant. 

Results

mRNA expression of TRPC

The results in Table 2 indicate that the ratio of RNA sample 
A260/A280 is an RNA purity test method, and RNA 
samples with a ratio ranging from 1.8 to 2.1 are considered 
acceptable. The sample of HVL213, HVL215, HVL216 of 
normal group and HVL201, HVL202, HVL203, HVL205, 
HVL206, HVL209 of test group were qualified. Figure 1 
shows that in the electrophoresis chart, 28S and 18S have 
higher brightness, 5S is weakest or no band, and the band is 
single intact, which is regarded as a qualified RNA sample. 
As shown in Figure 2, the expression of TRPC3, TRPC4, 
and TRPC5 in the OSAHS group was significantly higher 
than in the control group (P<0.05).
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Protein expression of TRPC by Western-blot 

The protein sample concentration value was greater than  
5.0 μg/μL and the protein concentration is acceptable  
(Table 3). Table 4 suggests that the expression of TRPC5 
protein in the heart tissue of OSAHS rats was statistically 
significant (P<0.05) (Figure 3).

Discussion

TRPC5 channel is one of TRPC channels. It is not 
only a non-selective cation channel with four specific 
structures, but also a non-voltage-gated cation channel 

mainly permeable to Ca2+. TRPC5 mainly regulates the 
permeability of microcirculation vessels to intracellular 
free Ca2+ (29). The TRPC5 channel is mapped to q23 
in the human X chromosome and mainly expressed in 
the central nervous system, kidney and cardiovascular 
system (30). The activation of TRPC5 channel via the 
phospholipase C (PLC) signaling pathway is its primary 
mechanism of action. Upon binding of the agonist to the 
G-protein coupled receptor or tyrosine receptor, the PLC 
is activated to hydrolyze phosphatidylinositol bisphosphate 
(PIP2) to produce inositol trisphosphate (IP3) and diacyl- 
glycerol (DAG), and then the DAG can be metabolized 
to arachidonic acid and linolenic acid. The IP3 acts on the 
endoplasmic reticulum or sarcoplasmic reticulum causing 
Ca2+ release in the calcium reservoir. When the calcium 
depletion is exhausted, the TRPC channel on the cell 
membrane is activated to initiate Ca2+ influx. This is called 
calcium influx of the calcium reservoir manipulation, the 
loaded channel is store-operated Ca2+ channel (SOCC), 
and TRPC5 channel is a kind of store-operated Ca2+ 
channel (31). In recent years, some studies have focused 
on the role of TRPC5 channel in the pathogenesis of 
diseases of the kidney (32), tumor (33,34) and nerve (35,36). 
Studies have shown that TRPC5 channels are involved in 
the proliferation, contraction, migration, and hypertrophy 
of vascular smooth muscle cells (37). Ca2+ is an important 
regulator of ROS production, and Ca2+ overload in the 
mitochondria can lead to excessive ROS production and 
cause a series of myocardial pathophysiological changes.

In this study, a rat model of OSAHS was established via 
intermittent hypoxia (IH) exposure, and the mRNA and 
protein expressions of different TRPCs were detected in 

Table 2 mRNA expression of different TRPC genes

No. Sample grouping Sample number 260 nm 280 nm 230 nm 260/280 260/230 C: ng/uL Eligibility

1 Normal group HVL213 5.44 2.96 6.51 1.84 0.84 217.49 Qualified

2 HVL216 1.86 1.03 1.34 1.80 1.39 74.45 Qualified

3 Test group HVL201 6.96 3.57 4.56 1.95 1.53 278.58 Qualified

4 HVL202 5.43 2.87 5.32 1.89 1.02 217.24 Qualified

5 HVL203 7.28 3.72 4.56 1.96 1.60 291.30 Qualified

6 HVL205 6.04 3.15 4.36 1.92 1.39 241.58 Qualified

7 HVL206 7.27 3.71 6.12 1.96 1.19 290.90 Qualified

8 HVL209 8.96 4.64 6.37 1.93 1.41 358.54 Qualified

9 Normal group HVL215 8.80 4.49 4.53 1.96 1.94 351.91 Qualified

1 2 3 4 5 6 7 8 9

1 HV-L213  
2 HV-L216
3 HV-L201
4 HV-L202
5 HV-L203

6 HV-L205  
7 HV-L206
8 HV-L209
9 HV-L215

Figure 1 RNA electropherogram.
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Figure 2 PCR primer identification electropherogram. *, P<0.05.

Table 3 Protein concentration table (part)

Sample 
number

OD1 OD2 OD3 OD mean OD blank Post-dilution concentration  
(µg/mL)

Predilution concentration  
(µg/µL)

HV-L201 1.353 1.366 1.374 1.360 1.244 1287.778 12.878

HV-L202 1.528 1.540 1.552 1.534 1.418 1481.667 14.817

HV-L203 1.520 1.531 1.541 1.526 1.410 1472.222 14.722

Table 4 Western-blot analysis of protein expression in cardiac tissue of rats with obstructive sleep apnea syndrome (x±s, n=8)

Group TRPC6 TRPC7 TRPC5

Normal group 1.460±0.537 6.030±0.675 6.822±1.909

Test group 1.530±0.767 5.028±1.836 11.448±2.601

T −0.137 0.886 −2.648

P 0.896 0.410 0.038
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Figure 3 Expression of TRPC5 protein in the heart tissue of OSAHS rats. 

the heart.
Results showed the mRNA expression of TRPC3 (normal 

group 1.002±0.080, experimental group 1.576±0.218), 
TRPC4 (normal group 1.003±0.092, experimental group 
1.167±0.063), and TRPC5 (normal group 1.001±0.055, 
experimental group1.198±0.102) in the heart tissues of 
OSAHS group was significantly higher than in the control 
group (P<0.05). This suggests that the intermittent hypoxia 
may affect the mRNA expression of TRPC3/TRPC4/
TRPC5 in rat heart. 

Furthermore, the protein expression of different 
TRPCs was also detected in the heart tissues of rats after 
intermittent hypoxia exposure. The protein expression of 
TRPC1/TRPC3/TRPC4 was undetectable in two groups, 
but that of TRPC5/TRPC6/TRPC7 was detectable in 
both groups. Our results showed the protein expression of 
TRPC5 in the heart of the OSAHS group was significantly 
different between two groups (P<0.05), while the protein 
expression of TRPC6/TRPC7 was comparable between 
them. Compared with the control group, the protein 
expression of TRPC5 in the heart increased dramatically in 

the OSAHS group. This indicates that TRPC5 channel is 
likely to be involved in the myocardial pathophysiological 
changes caused by OSAHS (intermittent hypoxia), but 
the specific mechanism underlying the role of TRPC5 
in the OSAHS is needed to be further studied, which 
would provide a new target for the clinical prevention and 
treatment of OSAHS related cardiac damage.
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