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Background: Dyslipidemia is one of the mechanisms of atherosclerosis (AS). Depletion of estrogen 
plays a key role in the pathogenesis of postmenopausal AS in women, and the blood lipid levels of women 
are closely related to endogenous estrogen levels. Phytoestrogens (PEs) exert estrogenic effects, including 
protection against AS, without the adverse effects of estrogen administration. Bazi Bushen capsule (BZBS) is 
a traditional Chinese medicine herbal compound prescription that has been shown to contain 11 unique PEs. 
In the present study, we assessed the effects of BZBS against lipid metabolism disorders.
Methods: All ApoE-/- mice underwent ovary ligation and bilateral ovariectomy (Ovx) to induce surgical 
menopause (Ovx/ApoE-/- mice), whereas the C57BL/6J mice underwent sham surgery (needle threading). 
Ovx/ApoE-/- mice were given a high-fat diet without estrogen and C57BL/6J mice were given a normal diet 
for 12 weeks. Ovx/ApoE-/- mice treated with G1, a highly selective G-protein-coupled estrogen receptor1 
(GPER1) agonist with proven activity against AS, were used as positive controls. Estrogen levels were 
measured and uterine atrophy index was calculated to determine the success of the model. Serum levels of 
triglycerides (TG), total cholesterol (TC), low-density lipoprotein cholesterol (LDL-C) and high-density 
lipoprotein cholesterol (HDL-C) were measured in each group. The orthogonal projections to latent 
structures discriminant analysis (OPLS-DA) model was used to separate the groups, MetaboAnalyst was then 
used to analyze the metabolic pathway, and the most representative metabolites were finally identified.
Results: Removal of bilateral ovaries resulted in successful surgical menopause models, where BZBS 
increased estrogen levels but did not increase the risk of uterine proliferation. BZBS attenuated dyslipidemia, 
including decreased TG, TC, and LDL-C levels, but increased HDL-C levels. The OPLS-DA model 
successfully distinguished the groups with good predictive ability and revealed their tendency to separate 
from each other. MetaboAnalyst suggested that both the G1 group and high-dose BZBS (HD-BZ) could 
improve the effect of lipid metabolism: the glycerophospholipid metabolism pathway was mainly improved 
by the G1 group, while the inositol phosphate metabolism pathway was mainly improved by the HD-BZ 
group. For the four compounds with the highest content, the concentrations of docosahexaenoic acid (DHA), 
3-hydroxybutyric acid, and 5(Z), 8(Z), 11(Z)-eicosatrienoic acid were dramatically lower in the model group 
compared to the control group. Lysophosphatidylethanolamine (18:0) was higher in the model group than in 
the control group. BZBS corrected these effects.
Conclusions: BZBS treatment reduced serum lipid levels and improved fatty acid metabolism in high-fat 
diet-fed, surgically induced menopausal ApoE-/- mice.
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Introduction

Atherosclerosis (AS), the common underlying pathology 
of cerebral and cardiovascular diseases, is the leading cause 
of death worldwide (1,2). The risk of AS in premenopausal 
women is much lower than that in men; however, the risk 
increases significantly after menopause. These differences 
suggest that estrogen, a steroid hormone that performs various 
physiological functions by binding to its corresponding 
receptors, plays a key protective role in the pathogenesis of 
AS (3). Dyslipidemia is one of the mechanisms of AS. The 
blood lipid levels of women are closely related to endogenous 
estrogen levels (4). Estrogen is synthesized in the ovaries using 
low-density lipoprotein cholesterol (LDL-C) as a substrate. 
However, LDL-C in the blood of postmenopausal women 
cannot be used to synthesize estrogen, leading to estrogen 
deficiency and further dyslipidemia (5). The accumulation 
of subcutaneous and visceral fat in postmenopausal women 
is more obvious than that before menopause, leading to 
abnormal fatty acid metabolism. The decomposition of 
triglycerides (TG) into glycerol and free fatty acids increases, 
which increased lipid deposition (6).

Despite the potent vascular protective activity of 
estrogen, its clinical application has been limited by several 
potential side effects, such as headaches, thrombosis, 
endometrial hyperplasia with high cancer risk, breast pain, 
and other disorders (7). Phytoestrogens (PEs), phenolic-
ring-containing molecules similar in structure to estrogen, 
can bind to estrogen receptors. They exert protective 
estrogenic activity against AS without the adverse effects 
caused by estrogen administration (7). Bazi Bushen capsule 
(BZBS; Eight-seed Kidney-Tonifying Capsule) is a herbal 
compound used in traditional Chinese medicine. It is 
derived from Wuzi Yanzong Wan (Five-Seed Progeny Pill), 
which is another popular prescription, famously recorded 
by a doctor named Li Chan (1518–1593) during the Ming 
Dynasty in his book Yi Xue Ru Men (Introduction to 
Medicine). We identified 14 components in BZBS, 11 of 
which were PEs including epimedin A, icariin, baohuoside 
I, isoquercitrin, hyperoside, osthole, imperatorin, 
deoxyschizandrin, schisandrin B, catalpol, and verbascoside.

For the present study, we aimed to assess the potential 

use of BZBS against lipid metabolism. To this end, we 
examined the effects of BZBS oral gavages on blood lipid 
and serum metabolomics in ovariectomized (Ovx) ApoE-/-  
mice, an animal model of post-menopausal AS. G1, a 
selective G-protein-coupled estrogen receptor1 (GPER1) 
agonist that has already been shown to decrease blood lipid 
level and hinder AS in post-menopausal conditions, was 
used as a positive control. Our results revealed that BZBS 
reduced serum lipid levels and improved lipid metabolism 
in Ovx/ApoE-/- mice by affecting fatty acid metabolism 
pathways.

We present the following article in accordance with the 
ARRIVE reporting checklist (available at http://dx.doi.
org/10.21037/apm-20-906).

Methods

Preparation and quality control (QC) of BZBS 

BZBS samples were obtained from Shijiazhuang Yiling 
Pharmaceutical Co., Ltd (Shijiazhuang, China). BZBS 
consists of 14 components. In the process of BZBS 
production, the species, origin, harvest time, medicinal 
parts, and concocted methods for each component 
were strictly standardized according to the Chinese 
Pharmacopoeia (2015 Edition). The stability of the product 
was verified by ultra-performance liquid chromatography 
(UPLC) analysis of 12 batches of BZBS. The respective 
chromatographs and the 14 identified “fingerprints” are 
shown in Figure 1A and B. BZBS was administered as an 
intragastric injection into mice in a suspension of 0.5% 
sodium carboxymethyl cellulose (CMC). 

Preparation of G1

G1 was purchased from ApexBio (Houston, TX, USA). A 
stock solution was prepared by dissolving G1 in absolute 
ethanol at 20 μg/mL. The working solution (2 μg/mL) was 
prepared by diluting the stock in 9 volumes of the aqueous 
vehicle (0.9% NaCl, 0.1% albumin, and 0.1% Tween-20). 
Mice were injected subcutaneously with 100 μL of the 
working solution each day (8).
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Grouping and drug administration

Sixty female homozygous ApoE-/- mice (of C57BL/6J 
background) and fifteen female C57BL/6J control mice 
(6–8 weeks old and weighing 18–22 g) were purchased from 
GemPharmatech Co., Ltd. (Nanjing, China). All mice were 
housed in a standard facility at 22 ℃ under a 12 h light-
dark cycle with food and water available ad libitum. After 
a 3-day adaptation period, all ApoE-/- mice underwent 
ovary ligation and bilateral ovariectomy (Ovx) under sterile 
conditions to induce surgical menopause (Ovx/ApoE-/-  
mice), whereas the C57BL/6J mice underwent sham 
surgery (needle threading). Animals were left to recover 
for 7 days to ensure that the sex hormones in their bodies 
were eliminated. Afterward, the Ovx/ApoE-/- mice were 
randomly assigned into four groups (n=15 per group): 
the model group (high-fat diet + CMC via intragastric 
injection), the G1 treatment group (high-fat diet + G1  
0.2 μg/day via subcutaneous injection), the high-dose BZBS 
(HD-BZ) group (high-fat diet + 2.8 g/kg/day BZBS via 
intragastric injection), and the low-dose BZBS (LD-BZ) 
group (high-fat diet + 1.4 g/kg/day BZBS via intragastric 
injection). The 15 C57BL/6J mice were used as the control 

group (normal diet + CMC via intragastric injection).
Normal diet (standard commercial diet) was purchased 

from Moldiets Co., Ltd (Chengdu, China). High-fat diet 
(PE-free, 40 kcal% fat, 1.25% cholesterol, and 0.5% 
cholic acid) was purchased from Research Diets, Inc (New 
Brunswick, NJ, USA).

Uterus atrophy index (mg/g) determination 

After 12 weeks on normal or high-fat diet, all mice were 
fasted overnight and weighed for the last time. The animals 
were sacrificed and each uterus was taken and weighed. For 
each mouse, a uterus atrophy index was determined, which 
was defined as the weight of the uterus (in mg) divided by 
the total body weight (in g). 

Serum estradiol and lipid levels analyses 

The serum of mice from each group were separated by 
centrifugation at 3,000 rpm for 15 min and collected. 
Estradiol (E2) measurements were performed by Beijing 
North Institute of Biotechnology Co., Ltd. (Beijing, China). 

Figure 1 Chromatographic fingerprints of BZBS. (A) Representative UPLC chromatograph of BZBS fingerprints. The peaks are as follows: 
3, neochlorogenic acid; 5, chlorogenic acid; 7, cryptochlorogenic acid; 13, isoquercitrin; 14, hyperoside; 17, verbascoside; 22, epimedin 
A; 24, icariin; 29, baohuoside I; 31, imperatorin; 32, osthole; 36, catalpol; 37, deoxyschizandrin; 39, schisandrin B. (B) Chromatographic 
fingerprints obtained from 12 BZBS batches (S1–S12:BZ1–BZ12).
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Total cholesterol (TC), TG, and LDL-C biochemical 
kits were purchased from Beijing Strong Biotechnologies, 
Inc. (Beijing, China). The lipid levels were detected by 
automatic biochemical analyzer (Hitachi 7080, Japan).

Sample extraction and ultra-performance liquid 
chromatography-mass spectrometry (UPLC-MS) analysis

The serum from the mice was processed to undergo ultra-
performance liquid chromatography-mass spectrometry 
(UPLS-MS) analysis. Extraction and analysis were performed 
as described previously with a few modifications (9). In brief, 
50 μL of serum was added to a tube containing 200 μL  
of a mixed precipitator (methanol: acetonitrile at 5:3, v/v)  
to extract metabolites and precipitate proteins. A 20 μL 
aliquot of each supernatant was mixed for performance 
QC samples. Serum metabolites were separated using an 
ACQUITY UPLC HSS T3 column (2.1 μL × 150 mm ×  
1.8 mm) (Waters Corp., Milford, MA, USA) at 40 ℃ and at 
a flow rate of 0.35 mL/min. The injection volume was 3 μL; 
the two mobile phases and separation have been described 
previously (9). An AB5600 mass spectrometer equipped with 
electron spray ionization (ESI) source was used to acquire 
mass spectral profiles (AB Sciex LLC, Redwood City, CA, 
USA). The optimized operating parameters were as follows: 
source voltage, 5.50 kV (positive mode) and 4.50 kV  
(negative mode); mass spectra were acquired by scanning 
over the 50–1,200 m/z range.

Statistical analysis 

Orthogonal projection to latent structures discriminant 
analysis (OPLS-DA) was performed with SIMCA-P 13.0 
software (Umetrics AB, Umeå, Sweden) based on the 

dataset. Statistical analysis was done by one-way analysis 
of variance (ANOVA) if more than two groups were 
compared. Correlation analysis was performed using SPSS 
17.0 software (SPSS Inc., Chicago, IL, USA). Differences 
with P value <0.05 were considered statistically significant. 
All results were presented as mean ± standard error of the 
mean. 

Results

BZBS treatment increased serum estradiol levels without 
uterine proliferation

Compared with the control group, the E2 levels of the 
model group were substantially lower, confirming that the 
bilateral ovariectomy resulted in a post-menopause-like 
state. There was no significant change in E2 levels between 
the G1 group and the model group. In contrast, the 
concentration of E2 was elevated in both the HD-BZ and 
the LD-BZ group (Figure 2A).

With respect to uterus atrophy, the index values of all 
Ovx/ApoE-/- mice were significantly lower than those of 
the control group (C57BL/6 mice). In other words, the G1 
group and BZBS groups had no obvious effect on uterine 
nutrition (Figure 2B).

BZBS treatment improved the serum lipid levels in Ovx/
ApoE-/- mice

Oxv ApoE-/- mice were fed an atherogenic diet for 12 weeks. 
At the end of this period, serum lipid levels were assessed 
in order to evaluate whether BZBS treatment can improve 
serum lipid levels. The serum levels of all lipids were 
significantly higher in the model group than in the control 

Figure 2 Effects of BZBS on the estrogen levels (A) or uterus atrophy index values (B) of high fat diet-induced atherosclerotic Ovx/ApoE-/- 

mice at 12 weeks. **, P<0.01 vs. the control group; #, P<0.05, vs. the model group (n=6–15).
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group. In the case of TC, TG, and LDL-C, treatment with 
G1 or BZBS statistically significantly decreased these levels 
compared to the model group, with high-dose BZBS having 
a stronger effect than low-dose BZBS. In contrast, G1 and 
BZBS treatment actually increased the HDL-C level even 
higher, but the effect was greater in the low-dose BZBS 
group (Figure 3).

BZBS treatment had a positive effect on metabolic shifts 

After preprocessing, 1,358 ion signals (845 in positive 
mode and 513 in negative mode) were detected in the 
raw data and aligned in our high-resolution accurate mass 
UPLC-MS platform. Our OPLS-DA model successfully 
distinguished the groups with good predictive ability and 
revealed their tendency to separate from each other. The 
model group was the farthest from the control group. The 
G1 group migrated towards the control group, while the 
position of the high- and low-dose BZBS groups was similar 
to that of the G1 group. The high-dose group was slightly 
closer to the control group than the low-dose group, 
suggesting BZBS had a dose-dependent effect (Figure 4). 

BZBS treatment affects fatty acid metabolic pathways 

MetaboAnalyst was used to analyze the metabolic pathway. 
The main differences between the model group and the 
control group were found to be the glycerophospholipid 
metabolism and the inositol phosphate metabolism 
pathway (Figure 5A). Figure 5B shows that the difference 
between G1 and the model group was the improvement of 
2 pathways, namely, glycerophospholipid metabolism and 
inositol phosphate metabolism. According to Figure 5C,  
the difference between G1 and the normal control group 
was mainly concentrated on inositol phosphate metabolism; 
in other words, it almost completely improved the 
glycerophospholipid metabolism pathway. Meanwhile, 
Figure 5D illustrates the difference between the HD-
BZ group and the model group. The HD-BZ group 
also improved the two pathways of glycerophospholipid 
metabolism and inositol phosphate metabolism. Figure 
5E shows the difference between the HD-BZ group 
and the normal group. Unlike G1, the HD-BZ group 
restored the inositol phosphate metabolism pathway to a 
normal level. The results suggest that both G1 and HD-

Figure 3 Effects of BZBS on serum lipids of high fat diet-induced atherosclerotic Ovx/ApoE-/- mice at 12 weeks. **, P<0.01 vs. the control 
group; #, P<0.05, ##, P<0.01 vs. the model group (n=10–15).
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Figure 4 OPLS-DA modeling demonstrates the effects of BZBS 
on metabolic shifts in high-fat diet-induced atherosclerotic Ovx/
ApoE-/- mice at 12 weeks. (n=9–15). 

Figure 5 Metabolic pathway analysis diagram in high-fat diet-induced atherosclerotic Ovx/ApoE-/- mice serum. (A) Model group vs. control 
group; (B) G1 group vs. model group; (C) G1 group vs. control group; (D) HD-BZ group vs. model group; (E) HD-BZ group vs. control 
group. (n=9–15).
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alleviated the effect through decreasing the concentration to 
levels closer to that of the control group (Figure 6A,B,C,D). 
These results indicate that both the metabolome and 
endogenous small molecules demonstrated the effect of 
BZBS.

Discussion 

Estrogen has three receptors: the classic nuclear receptor 
(ER α and ER β) and the membrane receptor GPER1 (10).  
GPER1 agonist G1 was selected as a positive control 
because G1 is devoid of uterotrophic activity, which is 
similar to PEs (11). Our study demonstrated that BZBS did 
not prevent uterus atrophy in Ovx/ApoE-/- mice (Figure 2B). 
It is known that after the cessation of estrogen production 
by the ovaries, E2 biosynthesis takes place in peripheral 
tissues, especially adipose tissue, through aromatase 
conversion of androgens in postmenopausal women (12). 
Several studies have shown that PEs elevate the levels of 
E2 in female mice, and BZBS can also increase serum E2 
levels (13,14). This is likely because PEs can competitively 
bind to ERα and ERβ, and the amount of ER in plasma is 

limited. Endogenous estrogen cannot bind to the receptor 
and will be unbound in the plasma, leading to an increase in 
E2 plasma levels (13,15). As a traditional Chinese medicine, 
BZBS is composed of a complex molecular mixture and has 
multi-target effects. Thus, one cannot rule out that ERα 
and ERβ play a role in BZBS activity. 

AS is characterized by the accumulation of lipids in the 
artery wall (16,17), and dyslipidemia is a major risk factor 
for the development of AS (18,19). Previous research has 
demonstrated that PEs may prevent the progression of 
atherosclerotic lesions by improving lipid metabolism (20),  
and the present study additionally found that BZBS 
significantly lowered the serum levels of TC, TG, and 
LDL-C, while raising that of HDL-C. The role of BZBS in 
regulating blood lipids was related to its active components. 
Isoquercitrin has been demonstrated to enhance AMPK 
phosphorylation, up-regulate the expression of AdipoR1, 
and down-regulate the expression of sterol regulatory 
element-binding protein transcription factor 1 (SREBP-1) 
and fatty acid synthase (FAS) genes to regulate lipid 
accumulation (21). Meanwhile, hyperoside has been shown 
to inhibit fat formation by inhibiting the expression of 

Figure 6 Effect of drugs on metabolite levels in high-fat diet-induced atherosclerotic Ovx/ApoE-/- mice serum. (A) Docosahexaenoic acid; (B) 
3-hydroxybutyric acid; (C) 5(Z), 8(Z), 11(Z)-eicosatrienoic acid; (D) lysophosphatidylethanolamine (18:0). (n=9–15). *, P<0.05, **, P<0.01 vs. 
the control group; #, P<0.05, ##, P<0.01 vs. the model group. 
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transcription factors and fat-forming genes and reducing 
lipid accumulation in 3T3-L1 adipocytes (22). Epimedin A 
and icariin inhibited HDL oxidation and glycation, mainly 
by inhibiting peroxidation of lipids, accumulation of apoA-
1, increase of negative charge, and formation of advanced 
glycosylation end products (AGEs). Also, osthole and 
catalpol have been observed to reduce the levels of TC, 
TG, and LDL-C in the blood of high-fat fed mice or rats, 
while increasing the levels of HDL-C (23). The possible 
mechanism by which osthole regulates lipid metabolism is to 
inhibit liver lipid accumulation through activation of AMPK 
pathway, improve lipolysis, and inhibit the expression of 
adipogenesis transcription factors (24). Imperatorin down-
regulated the important transcription factors peroxisome 
proliferator-activated Receptor γ (PPAR-γ) and SREBP-1 
for lipid synthesis (25). Schisandrin B increased protein 
kinase A (PKA)-mediated hormone sensitive lipase (HSL) 
activity, increased lipolysis and fatty acid oxidation gene 
expressions, thereby regulating lipid metabolism (26). 
However, the effect of BZBS on HDL-C that we observed 
is inconsistent with previous research results. Many studies 
report that PEs dose-dependently affect HDL-C; that is, 
high-dose PEs increased HDL-C level more significantly, 
while BZBS was the lower-dose group that elevated 
HDL-C better (27,28). In fact, the effect of estrogen on 
HDL-C is controversial, and other studies have shown 
that estrogen does not regulate HDL-C (29,30). Further 
research is necessary to explore the complex relationship of 
estrogen and PEs.

The metabolic pathway analysis showed that G1 and 
BZBS improved both glycerophospholipid metabolism and 
inositol phosphate metabolism, and we further identified the 
metabolites. The metabolomics analysis identified DHA; 
3-hydroxybutyric acid, 5(Z), 8(Z); 11(Z)-eicosatrienoic acid; 
and lysophosphatidylethanolamine (18:0), as the four most 
abundant differentially expressed compounds. Both of the 
differential compounds and both of the metabolic pathways 
are related to fatty acid metabolism (31). Vascular endothelial 
inflammation and apoptosis are important mechanisms for 
the development of AS (32). DHA is an n-3 polyunsaturated 
fatty acid (PUFA) that has been demonstrated to inhibit 
atherogenesis (33), possibly by reducing endothelial cell 
inflammation (34). DHA also reduces endothelial apoptosis 
by decreasing transcription of the anti-apoptotic gene 
cIAP1, which is involved in gene coding for an endogenous 
caspase inhibitor that reduces caspase-3 activity (35). 
β-Hydroxybutyrate (β-HB) is a fatty acid-derived molecule 
mainly produced in the liver. β-HB is transported by blood 

to peripheral tissues (including the brain, heart, and skeletal 
muscles), where it provides the energy required by tissues 
during fasting (36). β-HB is not only a metabolic intermediate 
but also possesses a variety of signaling functions (37). It 
is known to downregulate caspase-3 and to significantly 
increase the expression of Bcl-2 (38,39). Epoxyeicosatrienoic 
acids (EETs) are biologically active epoxide derivatives 
products of arachidonic acid that are formed by cytochrome 
P450 (CYP) epoxygenases, and they exhibit potent anti-
inflammatory properties and vascular-protecting effects 
(40,41). EET regioisomers differ in their anti-inflammatory 
effects, with 11 and 12-EET being the most effective (42). 
EETs have found to be able to reduce the expression of 
adhesive molecules VCAM-1, ICAM-1, and E-selectin in 
cytokine-induced endothelial cells (ECs) through the IκB 
kinase/NF-κB pathway (42). The anti-apoptotic effects of 
EETs have been associated with inhibition of the Bcl-2/Bax/
caspase 3 signaling pathway (43). Phospholipids are the main 
structural components of cell membranes and contribute 
greatly to membrane biochemical and biophysical properties. 
Phosphatidylethanolamine, phosphatidylcholine, and 
phosphatidylserine are major phospholipids of the membrane 
of mammalian cells (44). Phosphatidylethanolamine 
has been shown to suppress the activity of MAPK (45) 
and Raf-1 kinase (46), while activating heterotrimeric 
G proteins (47). Lysophosphatidylethanolamine (LPE) 
is a phosphatidylethanolamine molecule lacking a fatty 
acid chain (48). Accumulating evidence suggests that 
cell apoptosis has a pivotal effect on membrane lipid 
homeostasis, causing membrane destruction or cell structure 
collapse (49). Our study was consistent with previous studies 
that reported fatty acid metabolites being significantly higher 
in postmenopausal women than in normal women (50),  
with BZBS correcting for this effect.

Conclusions

Our study demonstrated that BZBS treatment reduced 
serum lipid levels and improved fatty acid metabolism in 
high-fat diet-fed, surgically induced menopausal ApoE-/- 

mice. Our findings indicate that BZBS may be a potential 
pharmaceutical agent for the prevention of AS in post-
menopausal women.
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